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ABSTRACT
In this paper, we explore the use of multiscale bubble entropy and power metric for feature extrac-
tion procedure and extend it withMLA and stability analysis to design a reliablemultichannel seizure
detection technique. First, we represent the multichannel EEG signal in 2D matrix form and then
apply AM FMmodel to exploit the decomposed form of EEG. Thereafter, we construct the complex-
ity coefficient using multiscale bubble entropy analysis from decomposed EEG wave. Then, second
feature set is formed by using simple and efficient power procedure to obtain absolute power index
and relativepower index. Using twomachine learning approaches, classificationperformanceof pro-
posed approach is explored to correctly identify the epileptic seizures. To show the robustness of
multiscale bubble entropy, the stability analysis is performed with normal EEG dataset. Experimen-
tal results demonstrate that our proposed technique can effectively detect the epileptic seizures
and achieve a superior classification performance with the ANN classifier compared to KNN classi-
fier. This method provides higher discriminating capability with greater stability, so that they could
detect wider range of seizure and thus help advance the current diagnosis system.

KEYWORDS
ANN; Bubble entropy; EEG;
Epilepsy; KNN; Multiscale
entropy

1. INTRODUCTION

Epilepsy is prominently characterized by neurological
state of diverse etiologies of brain which is known as
recurrent debilitating seizures. Symptoms of epilepsy
may include disturbed behavior, odd sensation, repetitive
rhythmic jerks, and involuntary clonic movements. Dur-
ing epileptic seizure, abnormal electrical activity results
from asynchronous firing of electrical signal from differ-
ent neurons. EEG modality which is essentially a brain
activity is the optimal choice for diagnosis of epilepsy
implying that EEG provides human brain matrices in
terms of electrical signal. EEG signal can be recorded
using an array of electrodes positioned on scalp of patient
to obtain electric matrices of brain.

Several spectral decomposition methods have been uti-
lized for the extraction of features from different decom-
posed sub-bands of EEG [1]. These techniques include
various frequency spectral features such as energy, abso-
lute power, relative power and power spectral den-
sity [1–5]. These features provide significant difference
among various classes of EEG which means they have
higher discriminating capability. The deficiency of spec-
tral decomposition technique is their inconsistence per-
formance. Many of the researchers are focused on

complexity measurement of EEG using entropy analy-
sis, [6–10]. The typical attributes for complexity mea-
surement are Shannon entropy, approximate entropy,
and permutation entropy. Several algorithms are also
designed to determine the entropy at multiple scale
[9,11]. One of the drawbacks of entropy measures, how-
ever, is that their performance depends highly on two
parameters: embedding dimension and scale factor. Cur-
rently, a new algorithm has been designed to improve
the performance of entropy analysis using bubble entropy
[12]. The counting property of bubble entropy is their
stable behavior for larger range of embedding dimen-
sion besides removing the necessity of scale factor. Recent
efforts have been focused onmixed or combined analysis
for the construction of integrated feature set [3, 10, 13].

In our previous proposed approaches [4, 14–16], we have
made efforts on the extraction of appropriate features
and the combination of these features has proven their
efficiency for the detection of epileptic seizure. Advance-
ments in the better understanding of neurological epilep-
tic signal and theirmodes of information processing have
enabled choosing suitable features that can best represent
the characteristics of EEG and suitable classifier which
can successfully classify wide variety of epileptic seizure
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pattern. Different machine learning approaches are also
being used for accurate detection of epileptic seizure. The
widely used techniques inmachine learning approach are
ANN [17, 18], KNN [19–21], SVM [22], and GMM [23].
One prominent technique among them is ANN [6, 17].
However, in biomedical application such as epilepsy asso-
ciated with sudden occurrence of seizures, it has been
found that the choice of classification or machine learn-
ing technique plays important role for accurate detection.

Initial results of parts of overall method have been pre-
sented in [16] and it achieved effective outcomes with
two class classification problems. The proposed study
explores it with three class classification problems with
different MLAs and extends it with stability analysis to
offer the robustness to the seizure detection system. One
of the common drawbacks of existing entropy-based fea-
ture extraction technique is that its performance highly
depends on two parameters: embedding dimension and
scale factor. Hence, the entropy features usually show
the unstable behavior which in turn adversely affects the
seizure detection performance. To address this issue, we
proposed a new stabilized entropy feature called multi-
scale bubble entropy to obtain the stable performance
in [16]. Multiscale bubble entropy, a particular varia-
tion of bubble entropy, is first performed to yield more
effective representation of complexity measures at mul-
tiple scale. The multiscale bubble entropy based feature
extraction technique explores complexity coefficients at
multiple frequency sub-bands, so that it is able to pro-
vide more detail seizure information. In this paper, we
perform the stability analysis of novel multiscale bub-
ble entropy feature in terms of embedding dimension
to obtain stabilized epileptic seizure detection param-
eters. To the best of our knowledge, this is the first
time to perform such analysis for seizure detection of
EEG signal. Feature extraction technique is then con-
ducted the power metric analysis to obtain absolute
power index and relative power index for discrimina-
tive processing of EEG. The proposed algorithm relies
on the bubble entropy to obtain stabilized complexity
coefficient as one of the feature which is defined as inte-
grated feature set after combining with power analysis.
In this paper, we analyzed the performance of our pro-
posed feature extraction technique [16] with three class
classification problems using different machine learning
approach (MLA) to achieve reliable classification perfor-
mance. To show the robustness of our proposed mul-
tiscale bubble entropy, we also performed the stability
analysis of multiscale bubble entropy with various val-
ues of embedding dimension. In short, the objective of
our proposed technique lies in three aspects described
below:

1. The first aspect is that AM-FM model performs
decomposition of EEG signal into different sub-
bands such as δ, θ , α, β , and γ .

2. The second one is that both multiscale bubble
entropy and power metric (absolute power and rel-
ative power) feature vectors possess unique charac-
teristics of EEG that facilitate the stable performance
with higher discriminating capability.

3. The integrated feature set is used as input to different
machine learning approaches to analyze intelligent
classification working programs.

4. Finally, we aim to achieve high level of robust-
ness with respect to the variation of embedding
dimension, the stability analysis of multiscale bub-
ble entropy is performed with different values of
embedding dimension.

The organization of the rest of the paper is given as
follows. Section 2 presents the methodology of the pro-
posed technique. In Section 3, experimental results are
discussed and comparative analysis of different machine
learning approach is also presented. This section is fol-
lowed by the conclusion.

2. METHODOLOGY

This study presents a novel seizure detection system to
uniquely characterize the seizure pattern with multiscale
bubble entropy and power metric analysis and it cor-
rectly distinguishes EEG signals into preseizure, seizure,
and normal EEG data using different MLAs. Multiscale
bubble entropy analysis is used to build stable complex-
ity coefficients of EEG signal. This provides the map-
ping of complexity coefficients of EEG signal in different
frequency sub-bands to achieve stabilized seizure detec-
tion performance with high accuracy while maintaining
the lower FDR. Afterword the power analysis is used
to obtain absolute and relative power coefficients which
provide discriminative quality control feature vectors.
Power analysis has the ability of built in discrimina-
tion of data so that it assures for higher classification
accuracy. At the end, our proposed technique combined
these two analyses to achieve high accuracy with lower
FDR. The proposed feature extraction technique takes
advantage of stable multiscale bubble entropy feature
and descriptive power feature to characterize the seizure
activity. The key feature of our proposed feature extrac-
tion technique is their stable behavior for larger range of
embedding dimension and it also removes the necessity
of scale factor. Figure 1 shows the flowchart of proposed
methodology. In our proposed approach, three features
are extracted from EEG signal. These three features were
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Figure 1: Flowchart of the proposed technique

selected because of their ability to effectively distinguish
the seizure activity from normal event.

The proposed technique consists of several consequen-
tial steps for the detection of seizures: decomposition of
EEG, feature extraction, and more importantly classifier
analysis. First, EEG signal is decomposed into different
sub-bands using the AM-FM model. Then by applying
feature extraction technique, three types of features are
extracted for the construction of integrated feature set.
Next, the integrated feature set is used as input to differ-
ent machine learning approaches to classify the EEG into
different classes.

2.1 AM-FMModel

AM-FM model is a versatile model to represent the
biomedical signal such as EEG wave in terms of their
amplitude and phase component. It represents the EEG
wave by various decomposed waves such as δ, θ , α, β

and γ waves. The spectral range of 0–40Hz contains the
rhythmic characteristic of EEG which is very important
for seizure diagnosis task. Each monocomponent wave
corresponds to each EEG rhythm or epoch. This model
is intended to describe the multichannel EEG wave as
summation of monocomponent wave. Each xth rhythm
of EEG Ex(n) can be defined as

Ex = Ax(n) cos�x(n) (1)

2.2 Power Metrics

2.2.1 Absolute Power Index
Absolute power index is computed at each electrode from
each sub-band. There are 19 electrodes and 4 sub-bands,
leading to the estimation of 76 absolute power features
from each EEG record. PAI is defined as

[PAI = PAδ1, PAθ1, PAα1, PAβ1 . . . PAδ19,

PAθ19, PAα19, PAβ19] (2)

2.2.2 Relative Power Index
The relative power index PRI is determined as

PRI = (Pij/Pi)
i ∈ { δ, θ , α, β }
j ∈ { 1, 2, 3 . . . 19 }

(3)

where Pij represents the spectral power at a particular
electrode in a specific decomposed wave and Pi is the
average spectral power of that specific decomposed wave.
This index is also estimated at each of 19 electrodes. PRI
is given as

[PRI = PRδ1, PRθ1, PRα1, PRβ1 . . . PRδ19,

PRI θ19, PRα19, PRβ19] (4)

2.3 Bubble Entropy

In our analysis, we have selected the bubble entropy to
measure the complexity of EEG because it provides sta-
ble performance. Bubble entropy essentially decreases the
dependency of entropy measure on embedding dimen-
sion (m) causing it to give consistent entropy measures
for large range of embedding dimension and it also
removes the requirement of scale factor (r). It is com-
prised of two entropy measures: conditional permuta-
tion entropy and renyi’s entropy. Multiscale conditional
permutation renyi’s entropy (EMCPR) is defined as

EMCPR = 1
1 − α

log
m!∑

i=1
p(Jk)α (5)

where Jk represent the time series of vectors.

It makes the use of bubble sort algorithm to arrange the
feature vectors in ascending order and thereafter counts
the number of swaps which decide the value of α for
computation of entropy.

EB = [(EMCPR)m+1–(EMCPR)m) ]/[ log(m + 1/m − 1)

(6)

Multiscale bubble entropymeasures are determined from
the five sub-bands (δ, θ , α, β , and γ ).
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Figure 2: Multichannel EEG signal

Table 1: Absolute power index for normal, preseizure, and seizure patterns
Absolute power
at Delta band

Absolute power
at Theta band

Absolute power
at Alpha band

Absolute power
at Beta band

Electrodes NE PSE SE NE PSE SE NE PSE SE NE PSE SE

1 22.36 37.07 29.12 0.95 7.73 2.89 1.33 11.59 5.33 1.73 2.21 1.89
2 48.19 58.37 52.53 0.77 10.08 4.42 1.87 15.87 8.23 1.62 2.15 2.12
3 4.33 4.39 4.35 0.69 1.34 0.85 1.08 2.46 1.89 1.04 0.48 0.45
4 8.92 13.47 12.16 0.66 2.34 0.98 0.34 3.46 1.23 0.75 0.47 0.47
5 5.55 112.7 42.82 2.37 14.83 7.46 1.79 15.29 3.26 1.14 2.05 1.18
6 11.05 74.15 61.47 0.81 11.87 3.12 1.6 12.42 5.45 0.74 0.99 0.55
7 25.64 27.22 26.12 0.45 5.08 1.88 0.85 7.53 2.76 0.72 0.42 0.35
8 26.97 51.03 43.76 0.7 5.79 2.86 2.48 6.5 3.84 1.25 0.67 0.42
9 6.88 3.7 2.15 0.41 1.61 0.73 1.94 7.06 4.12 2.03 2.49 1.56
10 16.67 80.78 57.42 1.01 8.17 7.12 1.93 6.88 3.89 1.96 1.24 0.48
11 15.56 29.72 24.11 0.61 2.4 1.33 1.16 3.93 1.58 3.13 0.61 0.13
12 3.67 4.52 3.15 0.39 1.03 0.89 0.45 1.85 0.89 1.14 0.31 0.12
13 7.94 157.2 96.89 1.16 23.54 8.54 4.37 22.12 10.89 1.88 2.2 1.29
14 2.4 216.2 45.62 1.11 33.76 12.6 2.86 42.4 12.74 1.99 3.76 1.46
15 14.31 24.79 21.24 1.6 9.1 4.56 5.06 19.31 8.67 7.17 2.74 0.87
16 19.91 55.94 38.60 0.82 10.08 6.22 1.38 18.56 8.87 2.69 2.39 1.23
17 21.63 151.4 88.45 0.69 15.09 5.87 0.67 23.53 9.58 0.83 2.63 0.92
18 31.53 159 92.57 1.05 29.81 15.5 3.63 30.5 8.54 2.06 2.58 2.16
19 46.3 117.1 78.66 0.98 20.77 8.12 1.78 26.22 15.78 1.15 3.14 1.76

3. EXPERIMENTAL RESULTS ANDDISCUSSION

3.1 Database

The epileptic EEG database that is used to demonstrate
the performance of our proposed technique was acquired
from University of Bonn, Germany. Physiological EEG

signals were recorded using RMS advance lab sys-
tem with 128 channel amplifier configuration. For EEG
recording, 19 electrodes were positioned on the scalp
of patient according to the international 10–20 system.
Band pass filter was used to filter EEG recording with
the bandwidth of 0.1–70Hz. EEG signals are digitalized
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Figure 3: Absolute power index of δ sub-band

Figure 4: Absolute power index of θ sub-band

with sampling rate of 173.61Hz and having 12-bit A/D
resolution.

Database implementation procedure includes five differ-
ent sets of EEG recording: Z, O, N, F, S. Each dataset
has N = 100 EEG recordings with K = 4097 data
point. Z dataset contains the EEG recording of healthy
patients with open eye condition and S dataset has
EEG recording of seizure activity. O dataset consists
of EEG recording of healthy patients with close eye

condition. N and F datasets are the preseizure EEG
recording.

3.2 Results

The performance of algorithm is evaluated using Z–S–N
classification problem (three class classification). The
preseizure event is defined as the initial part of the seizure
which is associated with rhythmic jerk cause abrupt
changes. This rhythmic jerk gradually down with time.

Figure 5: Absolute power index of α sub-band
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Figure 6: Absolute power index of β sub-band

Table 2: Relative power index for normal, preseizure, and seizure patterns
Relative power at Delta band Relative power at Theta band Relative power at Alpha band Relative power at Beta band

Electrodes NE PSE SE NE PSE SE NE PSE SE NE PSE SE

1 84.8 63.3 52.3 3.6 13.2 4.34 5 19.8 6 6.6 3.8 1.26
2 91.9 67.5 43.5 1.5 11.7 2.23 3.6 18.4 5.3 3.1 2.5 2.96
3 60.6 50.7 34.6 9.6 15.4 11.7 15.2 28.4 17.32 14.6 5.5 3.26
4 83.6 68.2 49.6 6.2 11.8 7.45 3.1 17.5 4.89 7.1 2.4 0.33
5 51.1 77.8 56.2 21.8 10.2 3.12 16.5 10.6 6.12 10.5 1.4 0.27
6 77.8 74.6 56.3 5.7 11.9 6.54 11.2 12.5 11.45 5.2 1 0.12
7 92.7 67.6 34.4 1.6 12.6 2.32 3.1 18.7 5.23 2.6 1.1 0.88
8 85.9 79.7 61.2 2.2 9 4.89 7.9 10.2 8.65 4 1.1 0.25
9 61.1 24.9 14.5 3.6 10.8 4.51 17.2 47.5 20.34 18 16.8 0.23
10 77.2 83.2 61.4 4.7 8.4 7.12 9 7.1 5.98 9.1 1.3 1.21
11 76 81.1 55.3 3 6.5 5.22 5.7 10.7 6.87 15.3 1.7 0.44
12 64.9 58.6 47.6 7 13.3 8.44 8 24 9.15 20.1 4 1.38
13 51.8 76.7 56.7 7.6 11.5 6.54 28.4 10.8 8.64 12.2 1.1 0.26
14 28.7 73 54.3 13.3 11.4 23.3 34.2 14.3 9.53 23.8 1.3 0.57
15 50.9 44.3 32.1 5.7 16.3 9.33 18 34.5 22.19 25.5 4.9 1.34
16 80.3 64.3 47.8 3.3 11.6 7.38 5.6 21.3 6.88 10.8 2.7 0.97
17 90.8 78.3 33.8 2.9 8.2 2.16 2.8 12.2 2.32 3.5 1.4 0.34
18 82.4 71.7 56.8 2.7 13.4 4.45 9.5 13.7 8.32 5.4 1.2 0.23
19 92.2 70 23.3 1.9 12.4 3.88 3.5 15.7 5.77 2.3 1.90 0.45

This gradual part of seizer is given as seizure event.
We begin this section with the evaluation of absolute
power index and relative power index from each elec-
trode. The multichannel EEG signal with 3D view of
brain is shown in Figure 2. The numerical results of abso-
lute power index for different sub-bands are illustrated

in Table 1 and shown in Figures 3–6. In Tables 1 and
2, the NE stand for normal event, PSE is for pre-
seizure event and SE refers to the seizure event. The θ

and α bands present significant difference in their val-
ues with respect to preseizure and normal data, with
higher absolute power values for the one that carries

Figure 7: Relative power index of δ sub-band
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Figure 8: Relative power index of θ sub-band

Figure 9: Relative power index of α sub-band

seizure information and lower absolute power values for
non-seizure event.

The relative power index values with respect to pre-
seizure, seizure, and normal events are noted in Table 2.
Their graphical representation for different sub-bands is
illustrated in Figures 7–10. It can be observed that in α

band 16 out of 19 values of relative power index achieve
higher values for preseizure events and it maintain lower
values for normal event. Table 3 shows the numerical

results of bubble entropy at multiple scales. The com-
plexity measures exploit the decreasing behavior dur-
ing seizure activity, so that we obtain the lower values
of bubble entropy parameter during preseizure activity,
moderate for seizure event and higher for normal EEG
rhythm.

Accuracy and false detection rate were used to quantita-
tively access the performance of our proposed technique.
False detection rate is determined as the amount of false

Figure 10: Relative power index of β sub-band
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Table 3: Multiscale bubble entropy parameter for
preseizure, seizure and normal patterns
Sub-bands Preseizure pattern Seizure pattern Normal pattern

δ (0–4 Hz) 11.52 12.42 14.62
θ (4–8 Hz) 13.17 14.16 17.61
α (8–13 Hz) 11.34 13.47 15.55
β (13–30 Hz) 12.32 12.41 12.45
γ (f > 30 Hz) 11.31 11.32 11.38

detection per hour. Accuracy is determined as follows:

ACCURACY = (TTP + TTN)

(TTP + TTN + TFP + TFN)

where TTP (total true positive) is the number of sick or
epileptic event correctly detected as sick and TTN (total
true negative) represents healthy events correctly identi-
fied as healthy. TFP (total false positive) is the number of

Table 4: Performance parameter of
different MLAs

Evaluation parameter

MLA Accuracy FDR

ANN 99.73 0.121
KNN 96.10 0.132

healthy event incorrectly detected as sick and TFN (total
false negative) is the sick event incorrectly detected as
healthy. ANN and KNN classifiers were used to access
the performance of proposed technique. TheANNclassi-
fier is structured with one input layer, two hidden layers,
and one output layer. It uses back propagation learning
algorithm with logistic activation function. Input layer

Table 5: Stability analysis of multiscale bubble entropy parameter for different sub-bands
Embedding dimension (m) MSE at Delta band MSE at Theta band MSE at Alpha band MSE at Beta band MSE at Gamma band Permutation entropy

1 14.86 17.56 15.63 12.62 10.85 0.1
3 14.56 17.62 15.6 12.88 11.59 2.02
5 14.78 17.12 15.69 12.5 10.83 5.15
7 14.6 17.34 15.69 12.54 11.59 7.14
9 14.6 17.44 15.73 12.65 11.04 8.32
10 14.62 17.61 15.55 12.35 11.38 9.28
11 14.71 17.74 15.55 12.31 11.4 9.85
13 14.65 17.74 15.89 12.54 11.32 9.65
15 14.54 17.69 15.85 12.55 11.3 9.71
17 14.46 17.62 15.77 12.85 11.27 9.7
19 14.57 17.5 15.7 12.88 11.12 9.8

Figure 11: Stability analysis of multiscale bubble entropy
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Figure 12: Classifier analysis

Figure 13: Comparative analysis with the existing technique

has number of neurons equal to number of input features.
Training procedure is affected by hidden layer neurons.

The training testing procedure is repeated for NR = 20
times that gave the best classification results with num-
ber of neurons in first hidden layer is 15 and in second
hidden layer is 10. The training data size is 50 from
each group (Z, S, & N). The training testing procedure
for NR = 20 repetition is completed for 100 instances.
WithNR = 20 training repetition and training size = 50
from each group yields the best classification accuracy of

99.73% and lower FDR of 0.121 per hour. The significant
high accuracy obtained with Z–N–S classification prob-
lem that shows the proposed multiscale bubble entropy
and power feature well characterize the seizure activity.
KNN model utilizes the supervised learning algorithm
which determines the set of K nearest neighbors using
Euclidean distance measure. The class is assigned to each
new testing EEG sample by searching through entire
training dataset. Training data size is 50 from each group
(Z, S, andN). This searching procedure evaluates K num-
ber of training points nearest to the test EEG sample,



10 H. PAL AND A. KUMAR: STABILITY ANALYSIS OF MULTISCALE BUBBLE ENTROPY

then it assigned the class to test sample which is most
amongst to the K nearest neighbor. It is observed that
KNN provides the classification results with lower accu-
racy of 96.10%. The performance measure of ANN and
KNN is given in Table 4. Our proposed study with three
class classification problemachievedminor improvement
of 0.02 in accuracy with ANN and one more perfor-
mance attribute (FDR) is computed compared to two
class classification technique of [16]. Equipped with spe-
cific properties of multiscale bubble entropy and power
analysis withMLA analysis achieves higher accuracy and
lower false detection rate compared to other state-of-art
techniques.

3.3 Discussion

Stabilized classification performance of EEG data relies
on the bubble entropy which is determined at different
frequency sub-bands. Multiscale bubble entropy enables
us to provide stabilized complexity measures of EEG.
Bubble entropy analysis is adapted to achieve lower FDR.
The powermatrices provide significant difference among
various classes of EEG that means they have higher dis-
criminating capability. The use of power analysis pro-
duces quality control discrimination of EEG signal with
the higher accuracy. The correct combination of feature
vectors is necessary to achieve higher accuracywith lower
FDR. The complexity coefficients and power feature sup-
port to form an integrated feature set which represent
progressive quality information and guarantee the lower
FDR. Therefore our proposed feature extraction tech-
nique derives integrated feature vector set using bubble
entropy and power analysis.

We also evaluate the stability performance of proposed
multiscale bubble entropy feature with increased value of
embedding dimension from (m = 1–20) with an inter-
val of 2 as noted in Table 5. In Figure 11, the values of
multiscale bubble entropy for all different sub-bands at
different values of (m) have been plotted.We perform the
stability test ofmultiscale bubble entropywith the normal
EEG signal and compare it with the permutation entropy
parameter of [12]. We observe that our proposed feature
presents stable behavior for all values of (m) and permu-
tation entropy seems to be stable afterm = 10. The clas-
sification accuracy, when usingANNandKNNclassifiers
were 99.73% and 96.10% respectively. The obtained false
detection rate with ANN and KNN was 0.121 and 0.132
respectively. This means that when classify the complex
EEG signal, increment of 3.63% in classification accu-
racy was achieved with ANN, compared to KNN. Their
comparative analysis is given in Figure 12. We observe

Table 6: Comparative analysis
with the existing technique
Authors Accuracy

Faust[1] 93.3%
Martis [24] 95.3%
Chua [25] 93.1%
Bhattacharyya [26] 99.4%
Ocak [10] 96%
Guo [6] 98.27%
Ghosh Dasidar [13] 96.7%
Acharya [5] 99.70%
Ashwani [2] 99.3%
Peker [27] 99.15%
Proposed approach 99.73%

that ANN outperforms KNN, both in terms of accu-
racy and false detection rate attained while maintaining
seizure detection performance. The result shows that the
proposed algorithm yields significant improvement com-
pared to several state-of-art techniques. To make this
analysis more comprehensive, we have also performed
extensive comparative studies of our proposed approach
with a few of state-of-art approaches using Table 6 and
their comparative analysis is shown in Figure 13. Our
proposed technique provides a novel, comprehensive,
and comparative approach for the detection of epileptic
seizure.

4. CONCLUSION

This study proposed a combined framework of fea-
ture extraction technique for appropriate feature set
and comparative analysis of different machine learning
approaches for accurate identification of seizures. The
feature extraction technique is basically extract bubble
entropy, absolute power index, and relative power index
features to characterized seizures activity. The count-
ing property of bubble entropy is their stable behavior
for larger range of embedding dimension. The proposed
technique is an effort to gain better insight into intelligent
classification program using classifier analysis. The capa-
bility of ANN is to classify EEG into preseizure, seizure,
and normal events with higher accuracy of 99.73% and
lower false detection rate of 0.121 compared to KNN.
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