SCHOOL OF MATHEMATICS, DAVV

Program outcomes/Course outcomes/Program specific outcomes

Program outcome/program specific outcomes

Program	Program outcome	Program specific outcomes
M.Sc.	 (i) Working knowledge in courses taught. (ii) Ability to apply to real life problems and industrial problems. (iii) Tackle applications to other branches of Mathematics and science. (iv)Ability to face competitive exams like NET, GATE, SET etc., 	To become good teachers and researchers
M.Phil.	 (i) Working knowledge in courses taught. (ii) Ability to apply to real life problems and industrial problems. (iii) Ability to do understand research papers and develop independent thinking. (iv) Tackle applications to other branches of mathematics and science. 	To become good teachers and researchers
Ph.D.	(i)Ability to do research independently.	To become good teachers and researchers

	Courses	Course outcome
M.Sc		
Semester I		
	M 111 Field theory	To find roots of polynomials in a given field
		or an extension of the field.
	M 112 Real Analysis-I	To compute Riemann Stieltjes integral and
		check uniform convergence of sequences
		and series of functions.
	M 113 Topology-I	To check cardinality of a given set, To check
		continuity of a function, To determine
		whether given set is closed or open.
	M 114 Complex Analysis-I	To verify analyticity of a given complex
		valued function, Finding contour integrals.
	M 101 Differential Equations-I	Solving initial value problems, boundary
		value problems, Linear differential
		equations.

Semester II		
	M 211 Advanced Abstract Algebra	Analysing the nature of linear
		transformations, Computing various canonical forms.
	M 212 Real Analysis-II	To verify measurability of a given set and a
	,, ,	given function, To check Lebesgue
		integrability of a given function.
	M 213 Topology-II	To apply various techniques of separation
		of a given point and a given set.
	M 214 Complex Analysis-II	To deal with applications of various
		important complex valued functions like
		Gamma, Zeta functions etc.,
	M 201 Differential Equations-II	To deal with non linear differential
		equations.
Semester III		
	M 311 Integration Theory	To understand generalizations of the
		Lebesgue measure and integration.
	M 312 Functional Analysis	To understand functionals, bounded linear
		transformations of Banach spaces and
	M 242 Destiel Differential Faustians	Hilbert spaces.
	M 313 Partial Differential Equations	To understand Heat, Energy and Wave
	M 301 Theory of Linear Operators-I	equations. To understand various spectra of
	IVI 301 THEORY OF LINEAR OPERATORS-I	operators.
	M 302 Linear Programming-I	To understand theory of simplex method
	W 302 Linear Frogramming F	and solve linear programming problems.
	M305 Mathematical Modelling-I	To understand basics of Modelling.
Semester IV		
	M 411 Mechanics	To understand calculus of variations.
	M 401 Theory of Linear Operators - II	To understand spectral representations of
		bounded operators and unbounded
		operators
	M 402 Linear Programming-II	To solve integer programming,
		Transportation and assignment problems.
	M 404 Topics In Ring Theory	To understand basic tools required to study
		commutative algebra.
	M 406 Analytical Number Theory	To understand characters of finite abelian
		groups, Dirichlet series and Euler products,
		partitions and generating functions.
	M 405 Algebraic Topology	To understand homotopic paths,
		fundamental groups, covering spaces etc.,
	M405 Mathematical Modelling-II	To understand basics of Modelling.