

DEVI AHILYA VISHWAVIDYALAYA, INDORE

School of Chemical Sciences

1.1.1 Syllabus of all programs

Scheme and Syllabus of M.Sc. Chemistry

I and III Semesters Effective from Academic Year 2018-19 onwards

Devi Ahilya Vishwavidyalaya, Indore (M.P.), 452001

SCHOOL OF CHEMICAL SCIENCES DEVI AHILYA VISHWAVIDYALAYA, INDORE

COURSE STRUCTURE

M.Sc. Chemistry (Four Semester Course Based on Choice Based Credit System) w.e.f. July 2018

SEMESTER I

Code	Type of Course	Name of the Course	Credits
MCH-101	Core Course	Inorganic Chemistry - I	3
MCH-102	Core Course	Organic Chemistry - I	3
MCH-103	Core Course	Physical Chemistry - I	3
MCH-104	Core Course	Symmetry, Group Theory and	3
		Spectroscopy	
MCH-105	Elective Course –Generic*	Concepts of Mathematics	3
	(Any One)		
MCH-106		General Biology	3
MCH-107	Laboratory Course I	Practical	5
		Comprehensive Viva-Voce	4
Total Credits			24

SEMESTER II

Code	Type of Course	Name of the Course	Credits
MCH-201	Core Course	Inorganic Chemistry - II	3
MCH-202	Core Course	Organic Chemistry - II	3
MCH-203	Core Course	Physical Chemistry-II	3
MCH-204	Elective Course-Discipline Centric	Chemistry of Drugs	3
MCH-205	Elective Course –Generic*	Computer Applications in	3
	(Any One)	Chemistry	
MCH-206			3
		Computer Programming	
MCH 207	Laboratory Course II	Practical	5
		Comprehensive Viva-Voce	4
Total Credits		24	

SEMESTER III

Code	Type of Course	Name of the Course	Credits
MCH-301	Core Course	Molecular Spectroscopy	3
MCH-302	Elective Course-Discipline	Organic Photochemistry	3
	Centric		
MCH-303	Elective Course-Discipline	Bio-inorganic Chemistry	3
	Centric		
MCH-304	Elective Course-Discipline	Diffraction Methods and	3
	Centric	Spectroscopy	
MCH-305	Elective Course –Generic*	Advanced Medicinal Chemistry	3
	(Any One)		
MCH-306		Chemistry of Polymers	3
МСН 307		Organic Synthesis	3
WICH-307		Organic Synthesis	5
MCH-308	Laboratory Course III	Practical & Spectral	5
		Interpretation / Seminar	
		Comprehensive Viva-Voce	4
Total Credits			24

SEMESTER IV

Code	Type of Course	Name of the Course	Credits
MCH-401	Core Course	Advances in Analytical	4
		Chemistry	
MCH-402	Elective Course-Discipline	Environmental Chemistry	4
	Centric		
MCH-403	Elective Course-Discipline	Solid State Chemistry and	4
	Centric	Nanoscience	
MCH-404	Elective Course-Discipline	Bio-organic Chemistry	4
	Centric		
MCH-405	(Any One)	Organometallic Chemistry	4
MCH-406		Chemistry of Natural Products	4
MCH-407		Heterocyclic Chemistry	4
MCH-408	Project	Dissertation/ Project	4
		Comprehensive Viva-Voce	4
Total Credits			24

*Note:

- 1. The students can choose this course or any other P.G. level Generic Course of 3 Credits being run at other School/ Institute.
- 2. Credit earned through Choice Based Course from other department will be counted in calculating CGPA for the award of the Degree in which admission is taken.
- 3. Teaching and examination of Choice Based Course will be conducted by School of Studies / Institute where this course is being offered.

M.Sc. Chemistry

SEMESTER I MCH-101: INORGANIC CHEMISTRY-I

Unit I	Stereochemistry and Bonding in Main Group Compounds: Valence shell Electron Pair Repulsion (VSEPR) model, Walsh diagram, Bent's Rule and energetic of hybridization, Vander-Waals's force, Ionic bond, Ion-dipole forces, Dipole-dipole interaction, Induced –dipole interactions and instantaneous diploe –diploe interactions
Unit II	Metal-Ligand Equilibrium in Solution Stepwise and overall formation constants and their interaction, trends in stepwise constant, factors affecting the stability of metal complexes with reference to the nature of metal ion and ligand. Chelate effect and its thermodynamic origin, determination of binary formation constants by potentiometry and spectrophotometry.
Unit III	Reaction Mechanism of Transition Metal Complexes Energy profile of a reaction, reactivity of metal complex, inert and labile complexes, kinetic application of valence bond and crystal field theories, kinetics of octahedral substitution, acid hydrolysis, factors affecting acid hydrolysis, base hydrolysis, conjugate base mechanism, direct and indirect evidences in favour of conjugate mechanism, anation reactions, reactions without metal ligand bond cleavage. Substitution reactions in square planar complexes, the trans effect, mechanism of the substitution reaction. Redox reaction, electron transfer reactions, mechanism of one electron transfer reactions, outer sphere type reactions, cross reactions and Marcus-Hush theory, inner sphere type reactions.
Unit IV	 Metal-Ligand bonding Limitation of crystal field theory, molecular orbital theory, octahedral, tetrahedral and square planar complexes, p-bonding and molecular orbital theory. Books Suggested Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley. Inorganic Chemistry, J.E. Huhey, Harpes & Row. Chemistry of the Elements. N.N. Greenwood and A. Earnshow, Pergamon. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier. Magnetiochemistry, R.1. Carlin, Springer Verlag. Comprehensive Coordiantion Chemistry eds., G. Wilkinson, R.D. Gillars
	and J.A. Mc Cleverty, Pergamon.

M.Sc. Chemistry

SEMESTER I MCH-102: ORGANIC CHEMISTRY-I

Unit I	Chirality, Absolute and relative configuration, The terms chiral, achiral, stereogenic center (stereocenter), representations of three dimensional molecules, stereoisomerism resulting from more than one stereogenic unit, Pi-diastereoisomerism and torsional chirality in carbon-carbon double bonds, some stereochemical reactions near a stereocenter (formation of diastereomers) stereoselective and stereospecific reactions, stereoisomerism in compounds without a stereogenic carbon, optical activity due to stereoplane (planar chirality)-paracyclophanes and trans-cyclooctene, optical activity of compounds due to helicity, asymmetric synthesis
Unit II	Aromaticity, NMR spectroscopy and aromaticity, aromatic compounds, antiaromatic compounds, nonaromatic compounds, annulenes, ions, metallocenes Crown ether complexes and cryptates, phase transfer catalysis The Hammett equation- linear free energy relationship, Taft equation, steric effects, strain and Bredt rule.
Unit III	Aliphatic nucleophilic substitution, $S_N 2$ reaction as a stereospecific reaction, $S_N 1$ Mechanism-Ion Pairs and other aspects, $S_N i$ and SET mechanisms, neighbouring group participation-anchimeric assistance, non-classical carbocations Conformations and stereoisomerism of acyclic and cyclic systems, conformation and chemical reactivity.
Unit IV	Stereochemistry of elimination reactions, E1, E2 and E1cB mechanisms, elimination versus substitution Free radical reactions, Structure, stability and geometry, properties of free radicals
	 Books Suggested J. March., Advanced Organic Chemistry: Reactions, Mechanisms and Structure, John Wiley P. S. Kalsi. Stereochemistry, Conformation and Mechanism, New Age International Peter Sykes, A guide book to mechanism in Organic chemistry, Orient- Longmans E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan F. A. Carey and R. J Sundberg, Advanced Organic Chemistry, Part A and B, Plenum P. S. Kalsi., Organic Reactions and their Mechanisms, New Age International

M.Sc. Chemistry

SEMESTER I MCH-103: PHYSICAL CHEMISTRY-I

Unit I	Quantum Mechanics		
	The Schrodinger equation and the postulates of quantum mechanics. Discussion		
	of solutions of the Schrodinger equation to some model systems viz., particle in a		
	box, the harmonic oscillator, the rigid rotor, Hydrogen Molecule.		
Unit II	Approximate Methods		
	Variational and perturbation methods. Applications of variation method and		
	perturbation theory to the Helium atom.		
	Molecular Orbital Theory		
	Huckel theory of conjugated systems bond and charge density calculations.		
Unit III	Applications to ethylene, butadiene, cyclopropenyl radical cyclobutadiene.		
	Classical Inermodynamics		
	Partial molar Quantities: Partial molar free energy, partial molar volume and		
	Determinations of these quantities. City Dynamic Equation. Variation of		
	Chamical notantial with temperature and pressure		
	Chemical potential with temperature and pressure.		
	functions for non ideal solutions. Waristion of fugacity with temperature and		
	reasure		
	Activity activity coefficient Debye Huckel theory for activity coefficient for		
	electrolytic solutions: determination of activity and activity coefficients: ionic		
	strength		
Unit IV	Statistical Thermodynamics		
	Partition function (O), properties of partition function. Translational partition		
	function, calculation of translational energy from translational partition function.		
	translation entropy of monoatomic ideal gas or Sackure- Tetrode equation.		
	Rotational partition function, Vibrational partition function., Electronic partition		
	function, Partition function and Equilibrium constant.		
	Books Suggested		
	1. J. P. Lowe and K.Peterson, Quantum Chemistry Academic Press.		
	2. D. A. McQuarrie, Quantum Chemistry Viva Books Pvt. Ltd.: New Delhi.		
	3. R. G. Mortimer, Mathematics for Physical Chemistry Elsevier.		
	4. F. L. Pilar, Elementary Quantum Chemistry, Dover Publication Inc.:		
	NewYork.		
	5. P. W. Atkins and J. de Paula, Atkin's Physical Chemistry, Oxford		
	University Press.		
	6. I. L. Levine, Quantum Chemistry, Prentice-Hall Inc., New Jersey.		
	7. T. Engel and P. Reid, Physical Chemistry, Benjamin-Cummings.		
	8. D. A. McQuarrie and J. D. Simon, Physical Chemistry: A Molecular		
	Approach, Univ. Science Books.		
	Wiley		

M.Sc. Chemistry SEMESTER I

MCH-104: SYMMETRY, GROUP THEORY AND SPECTROSCOPY

Unit I	Symmetry and Group theory in Chemistry I:
	Molecular symmetry and its importance, Symmetry elements and symmetry
	operations, Symmetry planes, reflections, inversion centre, proper/improper axes
	and rotations, Associated operations, Products of symmetry operations, Definition
	of group, subgroup, Conjugacy relation and classes. Point symmetry groups,
	Schonfilies symbols, representations of groups by matrices (representation for the
	Cn, C _{nv} , etc), Character of representations
Unit II	Symmetry and Group theory in Chemistry II:
	Matrix representation of symmetry of symmetry operations: Transformation
	matrices, The great orthogonality theorem (without proof) and its importance,
	Character tables and their use in spectroscopy. Derivation of character table for C_2v
	and C ₃ v point group, Symmetry aspects of molecular vibrations of H ₂ O molecule,
	Symmetry of vibrational modes, Infra red and Raman active molecular vibrations
	of AB_2 , AB_3 , AB_4 , AB_5 and AB_6 molecules
Unit III	Electron Spin Resonance Spectroscopy:
	Basic principles, Hyperfine coupling, Isotropic and anisotropic hyperfine coupling
	constants, spin polarization for atoms and transition metal ions, spin-orbit coupling
	and significance of g-tensors, factors affecting the 'g' value. Zero field splitting and
	Kramer's degeneracy; spin Hamiltonian, spin densities and Mc Connell relationship.
TI	Applications of ESR technique
UnitIV	Mössbauer Spectroscopy:
	Basic principles, spectral parameters and spectrum display. Application of the
	technique to the studies of (1) bonding and structures of Fe+2 and Fe+3 compounds
	including those of intermediate spin, (2) $Sn+2$ and $Sn+4$ compounds, nature of M-L
	bond, coordination number, structure and (3) detection of oxidation state and
	Inequivalent MB atoms
	BOOKS suggested:
	1. Physical Methods in Chemistry, R.S. Drago, Saunders College
	2. Chemical Applications of Gloup Theory, F.A. Couoli 3. Regia Principles of Spectroscopy, P. Chang, Mc Grow Hill
	5. Dasic Finicipies of Spectroscopy, K. Chang, Mc Olaw fill A Spectrometric Identification of Organic Compounds, P.M. Silverstein
	Spectrometric identification of Organic Compounds, K.W. Shverstelli, G.C. Bassler and T.C. Morrill, John Wiley
	5 G Aruldhas Molecular Structure and Spectroscopy Prentice Hal
	J. O. ATUIUIIda, MORCUIAI STRUCTURE and SDECHOSCODY, FICHNEE HAI

M.Sc. Chemistry

SEMESTER I

MCH-105: CONCEPTS OF MATHEMATICS

Unit I	Vectors: Scalar or Dot product of two vectors, Vector or Cross product of two vectors, Angle between two vectors, Perpendicular vector, co-linear vector. Matrices: Addition, subtraction, multiplication, Transpose of matrix, Properties of transpose, Symmetric and Skew-symmetric matrices, Singular and non- singular matrices, Adjoint of a matrix, inverse of a squire matrix, Determinants.
Unit II	Differential Calculus
	Functions, continuity and differentiability and rules for differentiation.
	Integral calculus
	Basic rules for integration, integration by parts, partial fractions and substitution. Partial differentiation.
Unit III	Elementary Differential equations First-order differential equations, Applications to chemical kinetics, quantum chemistry etc. second order differential equation. Applications of differential calculus including maxima and minima.
Unit IV	Permutations and Combinations
	Factorial notations, Permutations-Theorem and problems on permutation. Combinations and its applications.
	Books Suggested
	1. The chemistry Mathematics Book, E.Steiner, Oxford University Press.
	2. Mathematics for chemistry, Doggett and Suiclific, Logman.
	5. Mainematical for Physical chemistry : F. Daniels, Mc. Graw Hill. 4. Chemical Mathematics D.M. Hirst Longman
	5. Applied Mathematics for Physical Chemistery, J.R. Barante, Prenice Hall.
	6. Basic Mathematics for Chemists, Tebbutt, Wiley.

M.Sc. Chemistry

SEMESTER I MCH-106 : GENERAL BIOLOGY

Unit I	Cell structure and functions
	Structure of prokaryotic and eukaryotic cells, intercellular organelles and their
	function comparison of plant and animal cells. Overview of metabolic processes -
	catabolism and anabolism. ATP – the biological energy currency. Origin of life –
	unique properties of carbon. Chemical evolution and rise of living systems.
Unit II	Carbohydrates
	Structure and function of important derivatives of monosaccharides like glycosides
	deoxy sugers, myoinositol, amino sugers. N-acetylmuramic acid. Sialic acid.
	Structural polysaccharide: Cellulose and chitin, Storage polysaccharide: Starch and
	glycogen. Structural and biological functions of glucosaminoglycans or
	mucopolysaccharides. Carbohydrates of glycoprotein and glycolipids. Role of
	sugars in biological recognition. Carbohydrate metabolism-Kreb's cycle, glycolysis,
TI:4 TTT	glycogenesis and glycogenolysis, gluconeogenosis, pentose phosphate pathway.
Unit III	Lipids Fotty poids assential fatty poids structure and function of tripovlalycarols
	alucerophospholipids sphingolipids Lippoproteins: Composition and function role
	in atherosclerosis. Properties of lipids aggregates-micelles, bilayers, liposomes and
	their possible biological functions. Lipid metabolism- β -oxidation of fatty acids.
Unit IV	Amino acids, Proteins and nucleic acid
	Chemical and enzymatic hydrolysis of proteins to peptides, amino acid sequencing.
	Secondary structure of proteins, α -helix, β -sheets. Super secondary structure, triple
	helix structure of collagen. Tertiary structure of protein-folding and domain
	structure. Qualernary structure. Amino acid metabolism-degradation and biosynthesis of amino acids sequence determination; chemical/enzymetic/mass
	spectral recemization/detection. Chemistry of oxytocin and trytophan releasing
	hormone (TRH).
	Chemical and enzymatic hydrolysis of nucleic acids. Structure of ribonucleic acids
	(RNA) and deoxyribonucleic acids (DNA) double helix model of DNA and forces
	responsible for holding it. The chemical basis for heredity, an overview of
	replication of DNA, transcription, translation and genetic code. Chemical synthesis
	of mono and trinucleoside.
	Books Suggested
	1. Principles of Biochemistry, A.L. Lenninger, Worth Publishers.
	2. Diochemistry, L. Suryer, W.H. Freeman. 3. Biochemistry, I David Rwan, Nell Patterson
	4. Outlines of Biochemistry, E.E. Conn and P.K. Sumpf. John Wiley.

M.Sc. Chemistry

SEMESTER III MCH-301: MOLECULAR SPECTROSCOPY

Unit I	Ultraviolet and Visible spectroscopy: Fundamentals, effect of solvent and extending
	conjugation on electronic transitions, ultraviolet bands for carbonyl compounds,
	unsaturated carbonyl compounds, dienes, conjugated polyenes, Fieser Woodward
	rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic
	compounds. Steric effect in biphenyls
Unit II	Nuclear Magnetic Resonance Spectroscopy-:
	Nuclear spin, nuclear resonance, saturation, shielding of magnetic nuclei,
	chemical shift and its measurements, factors influencing chemical shift,
	deshielding, spin-spin interactions, factors influencing coupling constant 'J'
	Classification of spin systems, (AXB, AMX, ABC, A2B2 etc.). First-order and
	Second-order spectra Basic idea about instrument, FT NMR, chemical shift values
	and correlation for protons bonded to carbon (aliphatic, olefinic, aldehydic and
	aromatic) and other nuclei (alcohols, phenols, enols, carboxylic acids, amines,
	amides & mercapto), spin decoupling(double resonance), chemical exchange,
	effect of deuteration, stereochemistry, hindered rotation, NMR shift reagents,
TT	Solvent effect, Nuclear Overhauser effect (NOE).
Unit III	Carbon-13 NMR Spectroscopy: General considerations, chemical shift (aliphatic
	olefinic, alkyne, aromatic, heteroaromatic and carboynl carbon), NMR studies of
	nuclei other than proton and carbon- 19 F and 31 P.
	Two dimensional NMR spectroscopy: COSY, HETCOR, NOESY, DEPT, HMBC and
	HMQC techniques
Unit IV	Mass Spectrometry : Introduction, ion production EI, CI, FD, ESI and FAB, ion
	analysis, ion abundance, Mass spectral fragmentation of organic compounds,
	common functional groups, molecular ion peak, metastable ion peak, Mc Lafferty
	rearrangement, Nitrogen rule, High resolution mass spectrometry.
	Books Suggested
	1 R M Silverstein G C Bassler and T C Morrill Spectrometric
	Identification of Organic Compounds, John Wiley
	2. R.J. Abraham, J. Fisher and P. Loftus, Introduction to NMR spectroscopy,
	Wiley
	3. J.R. Dyer, Application of Spectroscopy of Organic Compounds, Prentice Hall
	4. D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry,
	Tata McGraw-Hill
	5. Banwell, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill
	b. G. Aruidhas, Molecular Structure and Spectroscopy, Prentice Hall

M.Sc. Chemistry

SEMESTER III MCH-302: ORGANIC PHOTOCHEMISTRY

Unit I	Basic principles of photochemistry:	
	Absorption of light by organic molecules, Jablonski diagram, properties of excited	
	states, types of excitations, mechanism of excited state processes, fate of excited	
	molecule, transfer of excitation energy, quantum yield, actinometry	
Unit II	Determination of Reaction Mechanism: Classification, rate constants and life	
	times of reactive energy state determination of rate constants of reactions. Effect	
	of light intensity on the rate of photochemical reactions, Types of photochemical	
	reactions-photo dissociation, gas-phase photolysis.	
Unit III	Photochemistry of Alkene: Photochemical isomerization of cis and trans alkenes,	
	Photochemical cyclization of reaction, di-pi methane rearrangement and cope	
	rearrangement.	
	Photochemistry of Aromatic Compounds : Isomerisations, Additions and	
TT:4 TV7	Substitutions.	
Unit IV	Photochemistry of Carbonyl Compounds Destanduction Namisk type I and Namisk type II reactions Determs Ducki reaction	
	Photoreduction, Norrish type I and Norrish type II reactions Paterno–Buch reaction,	
	Photochemistry of enones, Hydrogen abstraction rearrangement of unsaturated	
	Microllancous Photochemical Depotions	
	Photo Erica reactions of anilidas Dhoto Erica rearrangement Porton reaction	
	Singlet melacular evygen reaction Photochemical formation of smog	
	Photodegration of polymers Photochemistry of vision	
	Producegration of polymers. Photochemistry of vision	
	1 K K Rothagi-Mukheriji Fundamentals of photochemistry Wiley-Eastern	
	2 A Gilbert and I Baggott Essentials of Molecular Photochemistry Blackwell	
	2. A Orbert and J. Baggott, Essentials of Worceular Photoenenistry, Blackwen Scientific Publication	
	3. N.J. Turro, Molecular Photochemistry, Benjamin.	
	4. A. Cox and T. Camp, Introductory Photochemistry, McGraw Hill.	
	5. R.P. Kundall and A. Gilbert, Photochemistry, Thomson Nelson.	
	6. J. Coxon and B.Holtom, Organic Photochemistry, Cambridge University	
	Press.	
	7. C H Dupuoy and O L Chapman Molecular Reactions and Photochemistry, Prentice Hall	
	8. J Kagan, Organic Photochemistry, Academic Press.	

M.Sc. Chemistry

SEMESTER III MCH-303: BIO-INORGANIC CHEMISTRY

Unit I	Electron Transfer in Biology	
	Structure and function of metal of proteins in electron transport processes	
	cytochrome's and ion-sulphure proteins, synthetic models.	
	Biological nitrogen fixation, and its mechanism, nitrogenase, Chemical nitrogen	
	fixation.	
Unit II	Metalloporphyrins	
	Structure and optical spectra; heme proteins: magnetic susceptibility, epr and	
	electronic spectra; hemoglobin and myoglobin: molecular structures,	
	thermodynamics and kinetics of oxygenation, electronic and spatial structures,	
	synthetic oxygen carriers, model systems; iron enzymes, peroxidase, catalase and	
	cytochrome P-450	
Unit III	Metalloenzymes	
	Copper enzymes, superoxide dismutase, cytochrome oxidase and ceruloplasmin;	
	Coenzymes; Molybdenum enzyme: xanthine oxidase; Zinc enzymes: carbonic	
	anhydrase, carboxy peptidase and interchangeability of zinc and cobalt in enzymes;	
	Vitamin B12 and B12 coenzymes; Iron storage, transport, biomineralization and	
	siderophores, ferritin and transferrins. Hemocyanin and Hemerithrin.	
Unit IV	Metal Ions in Biological Systems	
	Bulk and trace metals with special reference to Na, K, Mg, Ca, Fe, Cu, Zn, Co,	
	and K+/Na+ pump.	
	Books Suggested	
	1. S. J. Lippard & J. M. Berg. Principles of Bioorganic Chemistry, Panima	
	Publ. Corpn.	
	2. EI. Ochiai. Bioinorganic Chemistry – An Introduction, Allyn and Bacon	
	Inc.	
	3. M. N. Hughes. The Inorganic Chemistry of Biological Processes, Wiley .	
	4. R.P. Hanzlik. Inorganic Aspects of Biological and Organic Chemistry,	
	Academic Press.	
	5. H. Kraatz & N. Metzler-Nolte (Eds.). Concepts and Models in	
	Bioinorganic Chemistry, Wiley.	
	6. 2. I. Bertini, H. B. Gray, S. J. Dippard & J. S. Valentine, Bioinorganic	
	Chemistry, Viva Books Pvt. Ltd.	
	7. 3. A.W. Addison, W.R. Cullen, D. Dolphin & B.R. James (eds.).	
	Biological Aspects of Inorganic Chemistry, John Wiley.	

M.Sc. Chemistry

SEMESTER III

MCH-304: DIFFRACTION METHODS & SPECTROSCOPY

....

Unit I	X-ray Diffraction	
	Bragg condition, Miller indices, X-Ray emission, Moseley Law, Duane Hunt Law,	
	Laue Method and Debye Scherrer method of X-ray structural analysis of crystals,	
	Crystel density, Structure of simple lattices and X-ray intensities, structure factor	
	and its relation to intensity and electron density, phase problem. Description of the	
	procedure for an X-ray structure analysis, absolute configuration of molecules.	
Unit II	Flectron Diffraction	
	Electron diffraction vs X-Ray diffraction Resolution and operating voltage of	
	electron microscope. Measurement techniques: SEM and TEM . Sample	
	preparation and elucidation of structure.	
	Neutron Diffraction	
	Difference between Neutron Diffraction and X-Ray Diffraction. Neutron	
	Spectrometer : Instrumentation and Applications, Elucidation of structure of	
	Ferro- and Antiferro- magnetic structures.	
Unit III	Photoelectron Spectroscopy	
	Basic principles; photo-electric effect, ionization process. X-Rav Photoelectron	
	Spectroscopy (XPS) · Features Advantages, Limitations and Applications	
	Photoelectron spectra of simple molecules ESCA: Chemical information from	
	Finotoelection spectra of simple molecules. ESEA: chemical molination from	
Init IV		
Umitv	Infrared-Spectroscopy:	
	Electromagnetic Radiation, basic principle of IR spectroscopy, Review of linear	
	harmonic oscillator, Selection rules, force constant and bond strengths, norma	
	modes of vibration, group frequencies, overtones, combination bands and Fermi	
	resonance, factors affecting the band positions and intensities, Far IR region, metal	
	Characteristic vibrational frequencies of alkanes alkanes alkanes aromati	
	compounds alcohols ethers phenols and amines. Detailed study of vibrational	
	frequencies of carbonyl compounds (ketones aldehydes esters amides acids	
	anhydrides lactones lactams and conjugated carbonyl compounds) Effect of	
	hydrogen bonding and solvent effect on vibrational frequencies	
	Books Suggested	
	1. L.V. Azaroff, Elements of X-Ray Crystalography, McGraw-Hill/ Wilev.	
	New York.	
	2. S. K. Chatterjee, X-Ray Diffraction,: Itys Theory and Applications, PHI	
	Learning Pvt. Ltd. New Delhi.	
	3. R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification	
	of Organic Compounds, John Wiley	
	4. Paulvan der Heide, X-ray Photoelectron Spectroscopy: An introduction to	
	Principles and Practices, Wiley.	
	5. John F. Watts, John Wolstenholme, An Introduction to Surface Analysis	
	by XPS and AES, Wiley.	
	6. P.K. Ghosh, Introduction of Photoelectron Spectroscopy.	

M.Sc. Chemistry

SEMESTER III MCH-305: ADVANCED MEDICINAL CHEMISTRY

Unit I	Antineoplastic agents	
	Introduction, cancer chemotherapy, role of alkylating agents and antimetabolite in	
	treatment of cancer, carcinolytic antibiotics, and mitotic inhibitors, Synthesis of	
	mechlorethamine, cyclophosphamide, melphalan, uracil, mustards and 6-	
	mercaptopurine, recent development in cancer chemotherapy.	
Unit II	Psychoactive drugs-The chemotherapy of mind	
	Introduction, neurotransmitters, CNS depressants, general anesthetics, mode of	
	action of hypnotics, sedatives, anti-anxiety drugs, benzodiazipines, buspiro	
	neurochemistry of mental diseases, Anti psychotic drugs the neuroleptics, an	
	depressants, butyro phenones, stereo chemical aspects of psychotropic drugs.	
	Synthesis of diazepam, oxazepam, chlorazepam, alprazolam, phenytoin,	
	ethosuximide, trimethadione, barbiturates, thiopental sodium, gluthemide.	
Unit III	Tranquilizers:-	
	Phenothiazine derivatives - structure- activity relationship, metabolism and mode of	
	action; other tranquilizers. Synthesis of chlorpromazine.	
	Sulpha Drugs:	
	Classification, structure-activity-relationship, Mode of action. Synthesis:	
	Sulphadiazine, Sulphaisoxazole, Sulphadimethoxine.	
Unit IV	Diuretics (Drugs acting on renal system):	
	Classification, structure-activity relationships and mode of action of	
	organomercurials, phenoxy acetic acids, purines carbonic anhydrase inhibitors,	
	benzothiadiazines, ulphamoyl benzoic acid derivatives, endocrine antagonists.	
	Books Suggested	
	1. Robert F.dorge Wilson and Gisvod. Textbook of organic Medicinal and	
	Pharmaceu-tical Chemistry.	
	2. Ed. M.E. Wolff, John wiley. Berger's Medicinal Chemistry and drug discovery,	
	Vol-I.	
	3. J.Faprhop and G.Penzillin. Organic synthesis-concept, method and starting material.	
	4. Eds.Korolkovas and Burkhattar J.H. John Wiley & sons. Essentials	
	of medicinal Chemistry.	
	5. Graham & Patrick, Introduction to Medicinal Chemistry OUP	
	6. Goodman and Gilman's Pharmacological Basis of Therapeutics, McGraw-Hill.	
	7. Wilson and Gisvold's Text Book of Organic Medicinal and Pharmaceutical	
	Chemistry, Ed Robert F. Dorge.	

M.Sc. Chemistry

SEMESTER III

MCH-306: CHEMISTRY OF POLYMERS

Unit I	[A]Introduction to polymers: Important terminologies and definitions used in	
	polymer chemistry such as monomers, repeat units, degree of polymerization,	
	molecular weight, size, glass transition temperature and morphology. Nomenclature	
	of polymers and their classification, Types of polymers- linear, branched,	
	crosslinked, ladder, thermoplastic, thermosetting, fibres, elastomers, natural	
	polymers, addition and condensation polymers. Stereoregular polymers- atactic,	
	syndiotactic and isotactic.	
	[B]Polymerization mechanism: condensation, addition, radical chain, ionic and co-	
	ordination and co-polymerization and their mechanisms. Methods of polymerisation	
	in homogeneous and heterogeneous systems	
Unit II	[A] Polydispersion-average molecular weight concept: Number, weight and	
	viscosity average molecular weights. Polydispersity and molecular weight	
	distribution. The practical significance of molecular weight. Measurement of	
	molecular-weights. End-group, viscosity, light scattering, osmotic and	
	ultracentrifugation methods.	
	[B] Polymerization conditions and polymer reactions Analysis and testing of	
	polymers: Chemical analysis of polymers, spectroscopic methods, X-ray diffraction	
	study, Microscopy. Thermal analysis and physical testing-tensile strength. Fatigue,	
	impact, Tear esistance, Hardness and abrasion resistance.	
Unit III	Polymer Processing	
	Plastics, elastomers, fibers, Compounding, Processing techniques, Clendering, die	
	casting, rotational casting, film casting, injection moulding, blow moulding,	
	extrusion moulding, thermoforming, foaming, reinforcing and fire spining	
Unit IV	Structure, Properties and Application of Polymers:	
	[A] Functional polymers: Fire retarding polymers and Electrically conducting	
	polymers.	
	[B] Biomedical polymers: Contact lens, dental polymers, artificial heart and kidney,	
	[C] Polymers based on boron-borazines, boranes, carboranes,	
	[D] Polymers based on Silicon, silicone's polymetalloxanes and	
	polymetallosiloxanes,	
	[E] Polymers based on Phosphorous-Phosphazenes, Polyphosphates	
	Books Suggested	
	1. Polymer Science, V. R. Gowariker, N. V. Viswanathan and J. Sreedhar, Wiley-	
	Eastern.	
	2. Textbook of Polymers Science, F.W. Billmeyer Jr., Wiley.	
	3. Contemporary Polymer Chemistry, H.R. Al cock and F.W. Lambe, Prentice Hall.	
	4. Developments in Inorganic polymer Chemistry, M.F. Lappert and G.J. Leigh.	
	5. Inorganic polymers- N.H. Ray.	
	6. Inorganic polymers, Graham and Stone.	
	7. Inorganic polymers, J. E. Mark, H. R. Allcok and R. West	

M.Sc. Chemistry

SEMESTER III MCH-307: ORGANIC SYNTHESIS

Unit I	Disconnection approach (Retrosynthetic analysis):
	Guidelines to choose disconnection, Synthons and synthetic equivalents, Functional
	group interconversion, the order of events and its guidelines, One-group C-X
	disconnections, Two-group C-X disconnections, Chemoselectivity, reversal of
	polarity, cyclization reactions and summary of strategy. Amine synthesis,
	Stereoselectivity, stereoselective reactions, stereospecific reactions
Unit II	One group C-C disconnections:
	Alcohols, carbonyl compounds, regioselectivity. Use of acetylenes
	Two-group C-C disconnections:
	Diels-Alder reactions (stereospecificity, stereoselectivity, endo-selectivity,
	regioselectivity), 1,3-Difunctionalised and , unsaturated carbonyl compounds, 1,5-
	Difunctionalised compounds, Michael addition and Robinson Annelation.
Unit III	Oxidation Processes
	Introduction, Different oxidative processes.
	Mn(VII) oxidants:Oxidation of alcohols,alkenes,alkynes,aldehydes,ketones,aromatic
	side chains and rings, amines
	Cr (VI) oxidants: Oxidation of alcohols /phenols(Jones reagent, Collins
	Ovidation with peracide: ovidation of alkanes, ketones
	Other oxidants: Oxidation with ruthenium tetraoxide lead tetra acetate thallium
	(III) nitrate potassium periodate aluminium tri-isopropoxide and aluminium tri-t-
	butoxide, hydrogen peroxide, t-Butyl hydroperoxide
Unit IV	Reduction Processes
	Introduction, Different reductive processes.
	Catalytic hydrogenation: Heterogeneous hydrogenation, Homogeneous
	hydrogenation. Metal hydride reduction :Scope, Mechanism, stereochemical aspects
	of metal hydride reduction using lithium aluminium hydride, Sodium borohydride,
	Diboranes
	Reduction by dissolving metals: Scope and basic mechanism, Clemensen reduction,
	Birch reduction Reduction by other reducing agents: Hydrozines, Dijmid
	Reduction by other reducing agents. Hydrazines, Dinnid
	Books Suggested
	1. S. Warren, Designing Organic Synthesis, Wiley.
	2. W.Carruthers, S ome Modren Methods of Organic Synthesis, Cambridge Univ.
	Press.
	5. H.U. House, Modern Synthetic Reactions, W.A. Benjamin
	4. V.K.Aniuwana ,Organic Reaction Mechanisms, Narosa Publishing House
	Macmilan
	6. J. March, Advanced Organic Synthesis: Reaction. Mechanisms and Structure.
	Wiley

Scheme and Syllabus of M.Sc. Chemistry

II and IV Semesters Effective from Academic Year 2018-19 onwards

Devi Ahilya Vishwavidyalaya, Indore (M.P.), 452001

SCHOOL OF CHEMICAL SCIENCES DEVI AHILYA VISHWAVIDYALAYA, INDORE

COURSE STRUCTURE

M.Sc. Chemistry (Four Semester Course Based on Choice Based Credit System) w.e.f. Jan. 2018

SEMESTER I

Code	Type of Course	Name of the Course	Credits
MCH-101	Core Course	Inorganic Chemistry - I	3
MCH-102	Core Course	Organic Chemistry - I	3
MCH-103	Core Course	Physical Chemistry - I	3
MCH-104	Core Course	Symmetry, Group Theory and	3
		Spectroscopy	
MCH-105	Elective Course –Generic*	Concept of Mathematics	3
	(Any One)		
MCH-106		General Biology	
MCH-107	Laboratory Course I	Practical	5
		Comprehensive Viva-Voce	4
Total Credits			24

SEMESTER II

Code	Type of Course	Name of the Course	Credits
MCH-201	Core Course	Inorganic Chemistry - II	3
MCH-202	Core Course	Organic Chemistry - II	3
MCH-203	Core Course	Physical Chemistry-II	3
MCH-204	Elective Course-Discipline Centric	Chemistry of Drugs	3
MCH-205	Elective Course –Generic*	Computer Applications in	3
	(Any One)	Chemistry	
MCH-206			3
		Computer Programming	
MCH 207	Laboratory Course II	Practical	5
		Comprehensive Viva-Voce	4
Total Credit	s		24

SEMESTER III

Code	Type of Course	Name of the Course	Credits
MCH-301	Core Course	Molecular Spectroscopy	3
MCH-302	Elective Course-Discipline Centric	Organic Photochemistry	3
MCH-303	Elective Course-Discipline Centric	Bio-inorganic Chemistry	3
MCH-304	Elective Course-Discipline Centric	Diffraction Methods and Spectroscopy	3
MCH-305	Elective Course –Generic*	Advanced Medicinal Chemistry	3
MCH-306	(This one)	Chemistry of Polymers	3
MCH-307		Organic Synthesis	3
MCH-308	Laboratory Course III	Practical & Spectral Interpretation / Seminar	5
		Comprehensive Viva-Voce	4
Total Credits	5		24

SEMESTER IV

Code	Type of Course	Name of the Course	Credits
MCH-401	Core Course	Advances in Analytical	4
		Chemistry	
MCH-402	Elective Course-Discipline	Environmental Chemistry	4
	Centric		
MCH-403	Elective Course-Discipline	Solid State Chemistry and	4
	Centric	Nanoscience	
MCH-404	Elective Course-Discipline	Bio-organic Chemistry	4
	Centric		
MCH-405	(Any One)	Organometallic Chemistry	4
MCH-406		Chemistry of Natural Products	4
MCH-407		Heterocyclic Chemistry	4
MCH-408	Project	Dissertation/ Project	4
		Comprehensive Viva-Voce	4
Total Credits			24

*Note:

- 4. The students can choose this course or any other P.G. level Generic Course of 3 Credits being run at other School/ Institute.
- 5. Credit earned through Choice Based Course from other department will be counted in calculating CGPA for the award of the Degree in which admission is taken.
- 6. Teaching and examination of Choice Based Course will be conducted by School of Studies / Institute where this course is being offered.

M.Sc. Chemistry

SEMESTER II MCH-201: INORGANIC CHEMISTRY-II

Unit – I	Electronic Spectra and Magnetic Properties of Transition Metal Complexes :	
	Spectroscopic ground states, correlation. Orgel and Tanabe-Sugano diagrams for	
	transition metal complexes (d ¹ -d ⁹ states), calculations of 10Dq, B and β parameters,	
	charge transfer spectra, anomalous magnetic moments, Orbital contribution to magnetic	
	moment, magnetic exchange coupling and spin crossover.	
Unit – II	Metal π-Complexes	
	Metal carbonyl, structure and bonding, vibrational spectra of metal carbonyls for bonding	
	and structural elucidation, important reactions of metal carbonyls; preparation, bonding	
	structure and important reaction of transition metal nitrosyl, dinitrogen and dioxgen	
	complexes; tertiary phosphine as ligand.	
Unit – III	Boranes	
	Classification, preparation, reactivity, bonding and topology of Boranes,	
	carboranes, metalloboranes and metallocarbonaes.	
	Motol Christons, Chains and Fullemenes	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested :	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested : 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley.	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested : 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley. 2. Inorganic Chemistry, J.E. Huheey, Harpes & Row.	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested : 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley. 2. Inorganic Chemistry, J.E. Huheey, Harpes & Row. 3. Chemistry of the Elements, N.N. Greenwood and A. Earnshow, Pergamon.	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested : 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley. 2. Inorganic Chemistry, J.E. Huheey, Harpes & Row. 3. Chemistry of the Elements. N.N. Greenwood and A. Earnshow, Pergamon. 4. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier.	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested : 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley. 2. Inorganic Chemistry, J.E. Huheey, Harpes & Row. 3. Chemistry of the Elements. N.N. Greenwood and A. Earnshow, Pergamon. 4. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier. 5. Magnetiochemistry, R.1. Carlin, Springer Verlag.	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested : 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley. 2. Inorganic Chemistry, J.E. Huheey, Harpes & Row. 3. Chemistry of the Elements. N.N. Greenwood and A. Earnshow, Pergamon. 4. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier. 5. Magnetiochemistry, R.1. Carlin, Springer Verlag. 6. Comprehensive Coordiantion Chemistry eds., G. Wilkinson, R.D. Gillars and	
Unit – IV	Metal Clusters, Chains and Fullerenes Compounds with metal-metal multiple bonds. Isopoly and heteropoly acids and their salts. Fullerenes Books Suggested : 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley. 2. Inorganic Chemistry, J.E. Huheey, Harpes & Row. 3. Chemistry of the Elements. N.N. Greenwood and A. Earnshow, Pergamon. 4. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier. 5. Magnetiochemistry, R.1. Carlin, Springer Verlag. 6. Comprehensive Coordiantion Chemistry eds., G. Wilkinson, R.D. Gillars and J.A. Mc Cleverty, Pergamon.	

M.Sc. Chemistry

SEMESTER II MCH-202: ORGANIC CHEMISTRY-II

Unit – I	Common organic reactions and their mechanisms, base catalysed reactions, Stork Enamine reaction, acid catalysed reactions, reactions of carboxylic acids and their derivatives Reagents in organic synthesis and relevant name reactions, organotransition metal
	reagents, some transition metal organometallic reactions, phosphorus containing reagents, organosulphur compounds, silicon reagents, boron containing reagents
Unit – II	Eletrophilic aromatic substitution- the arenium ion mechanism, orientation and reactivity, Ipso substitution, aromatic rearrangements Aromatic nucleophilic substitution-S _N Ar mechanism, S _N 1 mechanism, benzyne mechanism
Unit – III	Stereochemistry and mechanism of addition to carbon-carbon multiple bonds, addition reactions of alkenes and alkynes involving electrophiles, Birch reduction, epoxidation of alkenes Addition to carbon-hetero multiple bonds, addition to carbonyl compounds, metal hydride reduction, Meerwein-Ponndorf-Verley reduction, Wittig reaction
Unit – IV	Pericyclic reactions, conservation of molecular orbital symmetry, electrocyclic reactions, cycloaddition, sigmatropic rearrangements, the ene reaction, Mobius – Huckel analysis (PMO approach), correlation diagram method
	 Books Suggested J. March., Advanced Organic Chemistry: Reactions, Mechanisms and Structure, John Wiley P. S. Kalsi. Stereochemistry, Conformation and Mechanism, New Age International Peter Sykes, A guide book to mechanism in Organic chemistry, Orient-Longmans S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan F. A. Carey and R. J Sundberg, Advanced Organic Chemistry, Part A and B, Plenum P. S. Kalsi., Organic Reactions and their Mechanisms, New Age International

M.Sc. Chemistry

SEMESTER II MCH-203: PHYSICAL CHEMISTRY-II

Unit – I	Chemical Dynamics		
	Chemical kinetics: Empirical rate laws, Arrhenius equation, theories of reaction rates,		
	determination of reaction mechanisms.		
	Kinetics of inorganic mechanisms : Hydrogen- Bromine reaction, Hydrogen- Chlorine		
	Reaction. Decomposition of nitrogen pentaoxide, Decomposition of Ozone.		
	Kinetics of organic Decompositions : Pyrolysis of acetaldehyde, decomposition of		
	ethane.		
Unit – II	Surface Chemistry and Catalysis		
	Adsorption : Gibbs adsorption isotherm, BET equation and estimation of surface area .		
	Micelles:Surface active agents, classification of surface active agents, micellization,		
	critical micellar concentration (CMC), factors affecting the CMC of surfactants,		
	thermodynamics of micellization		
	Concepts of catalysis: Kinetics of homogenous catalysis, kinetics of enzyme reactions,		
Unit – III	Complex and Fast Reaction		
	Complex Reactions: Opposing reactions, Complex reactions, Parallel reactions,		
	kinetics of free radical polymerization		
	Fast reactions: Experimental techniques for fast reactions viz., flow method,		
	relaxation method, flash photolysis		
Unit – IV	Electrochemical Methods		
	Voltammetric Techniques: Nernst equation, Voltammetry, Current voltage		
	relationship, characteristics of DME, half-wave potential, Types of currents		
	Qualitative and Quantities applications, Numerical problems.		
	Amperometric titrations: amperometric titration curves, apparatus and technique of		
	amperometric titration, applications of amperometric titrations.		
	Cyclic voltammetry; Principle, Instrumental aspects and applications. Linear-scan		
	voltammetry.		
	Corrosion: Classification of corrosion, Wet corrosion, Dry corrosion, Electrochemical		
	principle of corrosion, factors affecting corrosion rate, Corrosion prevention methods,		
	corrosion inhibitors, Corrosion protection of the metals by surface treatment.		
	Books Suggested		
	1. P.W. Atkins, Physical Chemistry, ELBS.		
	2. A.K. Chandra, Introduction to Quantum Chemistyry, Tata Mc Graw Hill.		
	3. Ira N. Levine, Quantum Chemistry, Prentice Hall.		
	4. K.J. Laidler, Chemical Kinetics. McGraw-Hill.		
	5. V. Moraoi, Micelles, Theoretical and Applied Aspects, Plenum.		
	6. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and		
	Applications, John Wiley & Sons: New York.		

M.Sc. Chemistry

SEMESTER II

MCH-205: COMPUTER APPLICATIONS IN CHEMISTRY

Credits 3

(This is a theory cum-laboratory course with more emphasis on laboratory work).

Unit – I	Use of standard Programs and Packages
	Power Point preparation and Presentation of research work MS EXCEL
Unit – II	Use of Computer Softwares ACD Lab Origin Programs related to pi-chart, Bar diagram
Unit – III	Fundamental concepts of Programming Fundamental s of BASIC programming, Flow Charts for problems related to chemistry and mathematics, Basic concepts of FORTON, BASIC and C- Language.
Unit – IV	Programming in Chemistry Developing of small computer programs involving simple formulae in Chemistry such as Van der Waals equation. Chemical Kinetics (Determination of Rate constant), Radioactive decay (Half Life and Average Life), Determination Normality, Molarity and Molality of solutions, Evaluation of Electronegativity of atom and Lattice Energy.
	 Books Suggested : Fundamentals of Computer: V. Rajaraman (Prentice Hall Advanced Organic Chemistry, F.A. Carey and R.J. Sunderg, Plenum. Computers in Chemistry : K.V. Raman (Tata Mc Graw Hill) Computer Programming in FORTRAN IV-V Rajaraman (Prentice Hall)

M.Sc. Chemistry

SEMESTER II MCH-206: COMPUTER PROGRAMMING

Credits 3

(This is a theory cum-laboratory course with more emphasis on laboratory work).

Unit – I	Introduction to computers and Computing	
	Basic structure and functioning of computer with a PC as illustrative example. Operating	
	systems with DOS as an example Introduction to UNIX and WINDOWS.	
Unit – II	Computer Programming in FORTRAN/C/BASIC/ C	
	(The language features are listed here with reference to FORTRAN. The instructor may choose another language such as BASIC or C the features may be replaced appropriately). Constants and variables. Operations and symbols Expressions. Arithmetic assignment statement. Input and output Format statement. Termination statements. Branching statements as IF or GO TO statement. LOGICAL variables. Double precession variables. Subscripted variables and DIMENSION. DO statement FUNCTION AND SUBROUTINE. COMMON and DATA statement	
Unit – III	Programming in Chemistry Developing of small computer codes (FORTRAN/C/BASIC/C) involving simple formulae in Chemistry, such as Van der Waals equation. Chemical kinetics (determination of Rate constant) Radioactive decay (Half Life and Average Life). Determination Normality, Molarity nd Molality of solutions. Evaluation Electronegativity of atom and Lattice Energy from experimental determination of molecular weight and percentage of element organic compounds using data from experimental metal representation of molecules in terms of elementary structural features such as bond lengths, bodn angles, dihedral angles, etc.	
Unit – IV	Use of Computer programmes Operation of PC. Data Processing. Running of standard Programs and Packages such as MS WORD, MS EXCEL special emphasis on calculations and chart formations. X-Y plot. Use of Programs Chemcraft, Molden and PovRey.	
	 Books Suggested : Fundamentals of Computer: V. Rajaraman (Prentice Hall Advanced Organic Chemistry, F.A. Carey and R.J. Sunderg, Plenum. Computers in Chemistry : K.V. Raman (Tata Mc Graw Hill) Computer Programming in FORTRAN IV-V Rajaraman (Prentice Hall) 	

M.Sc. Chemistry

SEMESTER IV

MCH-401: ADVANCES IN ANALYTICAL CHEMISTRY

Unit – I	Statistical tests and Error Analysis:	
	Accuracy, precision, classification of errors, significant figures and computation, mean	
	deviation and standard deviation, Least square methods, regression coefficient, F-test, t-	
	test and Chi-test.	
Unit – H	Spectrochemical and Thermal Methods :	
	Spectrophotometry: Quantities principles of absorption, instrumentation, single beam,	
	double beam, determination of pKa value of an indicator, detectors, applications.	
	Atomic spectroscopy: Principles of emissions, atomic emission spectroscopy and flame	
	emission spectroscopy, monochromator, detector, types of interferences,	
	Thermal methods of analysis: Principles and instrumentation of TG and DTA.	
	Complementary nature of TG and DTA. Differential scanning calorimeter (DSC).	
	Applications of thermal methods in analytical chemistry .	
Unit – III	Advanced Electrochemistry:	
	Coulometric Analysis: Constant current coulometric analysis, controlled potential	
	coulometric analysis, characterization of coulometric analysis, constant current	
	conformetric titrations, cens for conformetric titrations, apparatus and methods, external generation of reagants, application of conformation titrations	
	precipitation and complex formation titrations	
In:t IV	Separation Techniques:	
$U \Pi I - I V$	Jon Exchange chromatography: Basic principles ion exchange equilibria types of ion	
	exchange resins (strongly acidic, strongly basic, weakly acidic, weakly basic), jon	
	exchange capacity.	
	Gas Chromatography	
	Introduction, instrumentation, types of column (packed, open tubular etc.), types of	
	detector (TCD, ID, FID, ECD, element selective detectors), programme temperature gas	
	chromatography, applications of GC for quantitative analysis. Internal standard method	
	and standard addition method.	
	High performance liquid chromatography	
	chromatography and instrumentation derivatization quantitative analysis	
	Liquid –liquid extraction	
	Distribution coefficient, distribution ratio, solvent extraction of metals, analytical	
	separations, multiple batch extractions, countercurrent distribution, multiple extractions.	
	Books Suggested	
	1. Gary D.Christian, Analytical Chemistry, John-Wiley	
	2. H.A.Willard, L.L.Merrit, and J.A.Dean, Instrumental Methods of Analysis, Van	
	Nostrand, New York, 1986.	
	3. D.A.Skoog & D.M.West Principles of Instrumental Analysis. Holt Rinahart	
	Winston, New York, 1988.	
	4. K A Robinsons Chemical Analysis, Harper Collins Publishers, NewYork.	
	5. A.J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and	
	Applications, John Wiley & Sons: New York.	

M.Sc. Chemistry

SEMESTER IV MCH-402: ENVIRONMENTAL CHEMISTRY

Unit-I	Environment
	Introduction. Composition of atmosphere, vertical temperature, temperature inversion, heat budget of the earth, atmospheric system, vertical stability atmosphere, Biochemical cycles of C, N, P, S and O. Biodistribution of elements.
	Chemical composition of water bodies-lakes, streams, rivers and wet
	lands etc. Hydrological cycle
	Aquatic pollution – Inorganic, organic, pesticide, agriculture, industrial and sewage, detergents, oil spills and oil pollutants. Water quality parameters – dissolved
	oxygen, biochemical oxygen demand, solids, metals, content of chloride,
	sulphate, phosphate, nitrate and microorganisms. Water quality standards.
	Analytical methods of measuring BOD, DO, COD, F, Oils, metals (As, Cd, Cr,
	Hg, Pb, Se etc.),residual chloride and chlorine demand.
IInit-II	Soils
	Composition, micro and macro nutrients, pollution – fertilizers, pesticides, plastics and
	metals. Waste treatment.
	Atmosphere
	Chemical composition of atmosphere – particles, ions and radicals and their formation.
	Chemical and photochemical reactions in atmosphere, smog formation, oxides of N, C, S,
	O and their effect, pollution by chemicals, petroleum, minerals, chlorofluorohydrocarbons.
	Green nouse effect, acid rain, air pollution controls and their chemistry.
	Urban Air Pollution
	Exhaust emissions, damaging effects of carbon monoxide. Monitoring of CO. Control
	strategies.
Unit-III	Industrial Pollution
	Cement, sugar, distillery, drug, paper and pulp, thermal power plants, nuclear
	power plants, metallurgy. Polymers, drugs etc.
	disasters Japan tsunami
Unit-IV	Environmental Toxicology
	Toxic heavy metals : Mercury, lead, arsenic and cadmium. Causes of toxicity.
	Bioaccumulation, sources of heavy metals. Chemical speciation of Hg, Pb, As, and Cd.
	Biochemical and damaging effects.
	Toxic Organic Compound : Pesticides, classification, properties and uses of
	organochlorine and ionospheres pesticides detection and damaging effects.

Books Suggested 1. Environmental Chemistry, S.E. Mahan, Lewis Publishers. 2. Environmental Chemistry, Sharma & Kaur, Krishna Publishers. 3. Environmental Chemistry, A.K. De, Wiley Eastern 4. Environmental Pollution Analysis, S.M. Khopkar, Wiley Eastern 5. Standard Method of Chemical Analysis, F.J. Welcher Vol. III, Van Nostrand Reinhold Co. 6. Environmental Toxicology, Ed. S. Landsberger and M. Creatchman, Gordon and Breach Science Publication.

7. Environmental Chemistry, C. Baird, W.H. Freeman.

M.Sc. Chemistry

SEMESTER IV

MCH-403: SOLID STATE CHEMISTRY & NANOSCIENCE

Unit- I	Solid State Reactions
	General Principles, Experimental procedure, Coprecipitation as a procedure to solid
	state reactions, Crystallization of solutions and gels (zeolite synthesis), melts, and
	glasses, Vapor phase transport methods, Modification of existing structures by
	intercalation and Ion exchange reactions, preparation of thin films - electrochemical
	methods, chemical vapour deposition; Growth of single Crystals - Czochralski
	method, Bridgman & Stokbarger methods, zone melting.
Unit -II	Crystal defects and Non- stoichiometry Stoichiometric Defects: Perfect and imperfect crystals, Types of defects, Point defects Schottky defect, Frenkel defects, The concentration of defects: Law of Mass action and statistical thermodynamic approaches, Numericals Non-Stoichiometric Defects: Origin of non-stoichiometry, Colour centers: F-centre H-centre V-centre
Unit- III	
	Superconductivity: occurrence of superconductivity, destruction of superconductivity by magnetic fields (Meissner effect), BCS theory of superconductivity,
	Organic Superconductors: Brief introduction, Types, Examples and their
	Applications
	Optical properties : Luminescence and phosphors; Configurational coordinate model, Antistoke phosphors, Lasers — ruby and neodymium
Unit- IV	Nanotechnology & Nanomaterials
	Basic concepts of Nanoscience -nanotechnology and their role in various fields,
	Synthesis of nanoparticles (Top-down -Nanolithography, CVD; Bottom-up -Sol-get
	processing, chemical synthesis), Chemistry involved in the synthesis of inorganic
	(metal oxides, metals, quantum-dots) nanostructured materials, and then characterization techniques. Properties of nanostructured materials: optical
	magnetic and chemical properties Applications in the multiple domains of
	nanotechnology (environment, energy, medical, optics, lab-on-chip)
	Nanometerials: Introduction, Carbon-based materials-Fullerenes, Carbon
	nanotubes, Quantum well, Quantum wires, Quantum dots, Dendrimers

Book	s Suggested
1.	Solid state chemistry and its applications, A.R. West. Plenum
2.	Principles of the Solid State, H.V. Keer, Wiley Eastern
3.	Solid State Chemistry, N.B. Hannay
4.	Solid State Chemistry, D.K. Chakrabarty, New Wiley Eastern.
5.	Introduction to nanotechnology: Charles P.Poole, Jr. Frank, J. Owens: Wiley India
6.	Chemistry of Advanced Materials: An overview, L.V. Interrate, M.J. Hampden-Smith Wiley-VCH
7.	Nanomaterials : A.K. Bandyopadhyay; New Age International Publishers
8.	Nanotechnology by Mark Ratner and Daniel Ratner, Pearson Education

M.Sc. Chemistry

SEMESTER IV MCH-404: BIOORGANIC CHEMISTRY

Unit-I	Introduction : Basic Consideration, Proximity effects and molecular adoption.
	Enzymes: Introduction, Chemical and Biological catalysis, remarkable properties of
	enzymes, Nomenclature and classification, concept and identification of active site
	by use of inhibitors, reversible & irreversible inhibition.
Unit-II	Kinds of Reactions Catalyzed by Enzymes: B-cleavage and consideration, some
	isomerization and rearrangement reactions. Enzyme catalyzed carboxylation and
	decarboxylation. Mechanism of Enzyme action: Transition state theory, Orientation
	and steric effect, acid-base catalysis, covalent catalysis.
	Co-Enzyme Chemistry: Cofactors as derived from vitamins, coenzymes,
	prosthetic groups, apoenzymes, Structure and biological functions of coenzyme A.
Unit-III	Enzyme Models : Host guest chemistry, Chiral recognition and catalysis, molecular
	recognition, molecular asymmetry and prochirality, Biomimetic chemistry, crown
	ethers, cryptates, cyclodextrins, cyclodextrin based enzyme models, Calixarenes,
	ionophores, micelles synthetic enzyme or synzymes.
Unit-IV	Biotechnological Application of enzymes: Large scale production and purification of
	enzymes, techniques and methods of immobilization of enzyme activity, application of
	immobilized enzymes, effect of immobilization on Enzyme activity, application of
	immobilized enzymes. Clinical uses of enzymes, enzyme therapy, enzymes and recombinant DNA technology
	Books Suggested
	1 Biographic chamistry: A Chamical Approach to Enzyma action Harmann
	Dugas and C Penny, Springer-Verag
	2 Understanding Enzymes Trevor Palmer Prentice Hall
	3 Enzyme Chemistry: Impact and applications. Ed Collin J Suckling, Chapman
	and Hall
	4. Enzyme mechanism a Ed. M.I.Page and A. Williams, Royal society of
	chemistry
	5. Fundamentals of Enzymology, N.C. Price and L. Stevens, Oxford University
	Press.
	6. Enzymattic Reaction Mechanism C. Walsh, W.H. Freeman.
	7. Enzyme Structure and Mechanism A Fersht, W.H.Freeman.
	8. Biochemistry : The Chemical reaction of leaving cells, D.E.Metzler, Academic
	Press. Dependencietary (4 th edge) Starver, L.W., H.Enserger, R. C., (1005)
	9. Biochemistry(4" edn.) Stryer, L.W.; H.Freeman & CO.(1995) 10. Understanding Enzymes Palmer, T : Prantice Hall (1995)
	10. Chorstanding Enzymes Famer, 1., Francice Han (1993).
1	

M.Sc. Chemistry

SEMESTER IV MCH-405: ORGANOMETALLIC CHEMISTRY

Unit-I	Main Group Organometallics
	Synthesis and reactions of organolithium compounds; Synthesis and reactions of
	organomagnesium compounds; Organometallics of zinc and mercury: preparation,
	structure, bonding and reactions of aluminum organyls; Thallium(I) organyls (synthesis of
	TlCp); Organyls of sodium, synthesis of NaCp; Silicon and tin organyls of coordination
	number 4.
Unit-II	Transition Metal-Carbon Bond
	Transition Metal–Carbon σ -Bond: Brief review of metal alkyl compounds; transition
	metalcarbene and transition metal-carbyne compounds; transition metal vinylidene and
	transition metal allenylidene compounds. Cyclopropenyl cation $(C_3R_3^+)$ as a ligand; C_4R_4
	as a ligand
	(R = H, Me, Ph)
Unit-III	Syntheses of Cyclopentadienyl and Arene Metal Analogues
	Synthesis and reactions of cyclopentadienyl metal carbonyls, cyclopentadienyl metal
	hydrides, cyclopentadienyl metal halides, arene metal carbonyls, η6-arene-chromium
	tricarbonyl in organic synthesis.
Init_IV	Applications to Organic Synthesis and Homogonoous Catalysis
0111-1 V	(a) In Organic Synthesis: Hydrozirconation of alkenes and alkynes: reagent: n4-diene
	iron-tricarbonyls in organic synthesis
	(b) In Catalysis: Asymmetric hydrogenation: synthesis of acetic acid and glycol
	(Monsanto acetic acid process); Arylation/vinylation of olefins (Heck reaction);
	Wacker process (olefin oxidation); Asymmetric epoxidation.
	Books Suggested
	1. C. Elschenbroich. Organometallics (3rd edn.), Wiley-VCH Publication (2006).
	2. C. Elschenbroich & A. Salzer. Organometallics – A Concise Introduction (2nd
	edn.),VCH Publication (1992).
	3. F. Mathey & A. Sevin. <i>Molecular Chemistry of the Transition Elements</i> , John
	Wiley (1996).
	4. F. A. COUOII & G. WIIKINSON. Aavancea Inorganic Chemistry (5th edn.), John Wiley (1988)
	5 R C Mehrotra & A Singh Organometallic Chemistry: A Unified Approach (2nd
	or an or monora a re ongli or ganometante onemistry. ri onifica ripproach (2nd

M.Sc. Chemistry

SEMESTER IV MCH-406: CHEMISTRY OF NATURAL PRODUCTS

IInit-I	Terpenoids
CIIIt-I	Structure determination, stereochemistry, biosynthesis and synthesis of some common
	terpenopids Citral <i>a</i> -Terpeneol Farnesol Zingiberence Santonin Phytol and Abjetic
	acid.
Unit-II	Alkaloids
0 0	Structure, stereochemistry, synthesis and biosynthesis of some common alkaloids
	Ephedrine, Nicotine, Atropine, (+) Conin, Quinine and Morphine.
Unit-III	[a] Steroids: Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and
	stereochemistry, Isolation, Structure determination and synthesis of: Cholesterol, Bile
	acids. Harmons: Androsterone, Testosterone, Ostrone, Progesterone, Aldosterone,
	Biosynthesis of Steroids.
	[B] Prostaglandis
	Occurrence, nomenclature, classification, biogenesis and physiological
	effects. Synthesis of PGE2 and PGF2a.
Unit-IV	[A] Plant Pigments
	Occurrence, nomenclature and general methods of structure determination. Isolation and
	synthesis of Apigenin, Luteolin Quercetin, Myrcetin, Vitexin, Diadzein, Aureusin,
	Cyanidin, Hirsutidin, Biosynthesis of flavonoids: Acetate pathway and Shikimic acid
	pathway. Prophyrins: Structure and synthesis of Haemoglobin and Chlorophyll.
	[b] Pyreurous and Rotenones
	(For structure elucidation, emphasis is to be placed on the use of spectral parameters
	(For structure encluation, emphasis is to be placed on the use of spectral parameters wherever possible)
	Books Suggested
	1. Organic Chemistry : Vol. 1 and 2. I. L. Finar, ELBS
	2. Organic Chemistry of Natural Products Vol. I and Vol. II, Gurdeep
	R. Chatwal, Himalaya Publishing House
	3. Stereoselective Synthesis: A Practical Approach, M. Norgradi, VCH.
	4. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey,
	Elsevier. Introduction to Flavonoids, B.A. Bohm. Harwood
	Academic Publishers.
	5. New Trends in Natural Product chemistry, Ataaur Rahman and M.L.
	Choudhary, Harwood Academic Publishers.
	6 Insecticides of Natural Origin Sukh Dev. Harwood Academic
	Dublishense

M.Sc. Chemistry

SEMESTER IV MCH-407: HETEROCYCLIC CHEMISTRY

Unit-I	Nomenclature of Heterocycles
	Replacement and systematic nomenclature (Hantzsch-Widman system) for monocyclic,
	fused, bridged and spiro heterocycles
	Aromatic Heterocycles
	General chemical behaviour of aromatic heterocycles, classification, criteria of
	aromaticity(bond lengths,ring current and chemical shifts in ¹ HNMR,empirical resonance
	energy, delocalization energy, and Dewar resonance energy, Diamagnetic susceptibility
	exaltations)
Unit-II	Non- Aromatic Heterocycles
	Strain-Bond angle and Torsional strains and their consequences in small ring heterocycles
	Conformation of six membered heterocycles with reference to molecular geometry, barrier
	to ring inversion, pyramidal inversion and 1,3-diaxial interaction
	Heterocyclic Synthesis
	Principles of heterocyclic synthesis involving cyclization and cycloaddition reactions
Unit-III	Small Ring Heterocycles
	Three- membered and four- membered Heterocycles- synthesis and reactions of aziridines,
	oxiranes, thiranes, azetidines, and oxetanes
	Benzo Fused Five- membered Heterocycles
	Synthesis and reactions of benzopyrroles, benzofurans and benzothiophenes
Unit-IV	Meso-ionic Heterocycles
	General classification, chemistry of some important meso-ionic heterocycles of type-A
	and B and their applications.
	Six- membered Heterocycles with one Heteroatom
	Synthesis and reactions of coumarins, chromones
	Six- membered Heterocycles with two or more Heteroatoms
	Synthesis and reactions of diazines and triazines
	Seven- membered Heterocycles
	Synthesis and reactions of azepines, oxepines, unepines, and diazepines
	1 D M A L A L A L A CL A CL A CL A CL A CL
	1. R. M. Acheson : An Introduction to Chemistry of Heterocyclic Compounds
	(Interscience)
	2. R. K. Bansal: Heterocyclic Chemistry (wiley E).
	5. L. A. Paquille: Principles of Modern Helefocyclic Chemistry.
	4. A. R. Katritzky: Advances in Helerocyclic Chemistry (A.P.).
	5. K. K. Gupta, M. Kumar and V. Gupta: Heterocyclic Chemistry, Vol-1-5, Springer
	Venag.
	6. I. Elcher and S. Haupimann: The Chemistry of Helerocycles, Theme 7. J. A. Joyle, K. Mills and C. E. Smith: Heterocyclic Chemistry, Chemmon and Hell
	7. J. A. Joule, K. Mills and G. F. Smith: Helerocyclic Chemistry, Chapman and Hall

M.Sc. Chemistry

SEMESTER IV

Credits 4

MCH-406: CHEMISTRY OF NATURAL PRODUCTS

Unit-I	Terpenoids
	Structure determination, stereochemistry, biosynthesis and synthesis of some common
	terpenopids Citral, α-Terpeneol, Farnesol, Zingiberence, Santonin, Phytol and Abietic
	acid.
Unit-II	Alkaloids
	Structure, stereochemistry, synthesis and biosynthesis of some common alkaloids
Un:4 III	Epiderine, Nicotine, Atropine, (+) Conin , Quinine and Morphine.
01111-111	[a] Steroids: Occurrence, nonnenciature, basic skeleton, Diers nydrocarbon and
	stereochemistry, Isolation, Structure determination and synthesis of: Cholesterol, Bile
	acids. Harmons: Androsterone, Testosterone, Ostrone, Progesterone, Aldosterone,
	Biosynthesis of Steroids.
	[B] Prostaglandis
	Occurrence, nomenclature, classification, biogenesis and physiological
	effects. Synthesis of PGE2 and PGF2a.
Unit-IV	[A] Plant Pigments
	Occurrence, nomenclature and general methods of structure determination. Isolation and
	Cyanidin Hirsutidin Biosynthesis of flavonoids: A cetate pathway and Shikimic acid
	pathway Prophyrins: Structure and synthesis of Haemoglobin and Chlorophyll
	[B] Pyrethroids and Rotenones
	Synthesis and reactions of Pyrethroids and Rotenones.
	(For structure elucidation, emphasis is to be placed on the use of spectral parameters
	wherever possible).
	Books Suggested
	1. Organic Chemistry : Vol. 1 and 2, I. L. Finar, ELBS
	2. Organic Chemistry of Natural Products Vol. I and Vol. II, Gurdeep
	R. Chatwal, Himalaya Publishing House
	5. Steleoselective Synthesis. A Flactical Apploach, M. Norgraul, VCH.
	4. Road's Chemistry of Carbon Compounds, Ed. S. Concy, Elsevier Introduction to Elsevonoids B A Bohm Harwood
	Academic Publishers
	5 New Trends in Natural Product chemistry Ataaur Rahman and M L
	Choudhary, Harwood Academic Publishers.
	6. Insecticides of Natural Origin, Sukh Dev, Harwood Academic
	Publishers