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ABSTRACT: 
Diabetes is the most prevailing disease worldwide and emerged as the fourth leading cause of mortality. 

Inhibition of intestinal α-Glucosidase enzyme is an effective approach for controlling post prandial 

hyperglycemia. α-Glucosidase inhibitors are known to be very effective in decreasing post-prandial 

hyperglycemia but the existing drugs are weak inhibitors of α-Glucosidase and also have side effects. Hence it 

needs for new therapeutic candidate which can effectively inhibit the activity of α-Glucosidase. Flavones 

recognized as the potential lead structure for many pharmacological activities. In the present research work 3D 

QSAR (comparative molecular field analysis and comparative molecular similarity indices analysis) was carried 

out on a series of flavones to identify structural requirement for effective inhibition of α-Glucosidase enzyme. 

The QSAR results shows that the LOO cross-validated q2 values of  CoMFA and CoMSIA models are 0.742 and 

0.759, respectively. The outcome of this research work could be effectively utilized for design of better α-

Glucosidase inhibitors. 
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INTRODUCTION: 
Diabetes mellitus (DM) is one of the most prevalent 

metabolic diseases in the world causes due to defects in 

insulin secretion and action. This is due to the increase 

of level of glucose in the blood (hyperglycemia) and 

causes impairment of functioning to important organs 

like blood vessels and nerves. It remains fourth leading 

cause of death among all the existing non-communicable 

diseases and study showed that the figure of diabetes 

mellitus patients increases every year. According to 

World Health Organization report 2020, In 2014, 

worldwide 8.5% of people of age 18 years and older 

living diabetes. International Diabetes Federation 

estimated that there are 415 million people living with 

diabetes, possibly will reach up to 642 million in 

2040.Among these, 80% of people live in low and 

middle-income countries.1 The availability of treatment 

for both Type-1 and Type-2 diabetes is either limited or 

the development of resistance and toxicity is causing 

serious concern in this field.2  
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Therefore, the discovery of novel effective therapeutic 

agents for diabetes with minimum side effects and 

toxicity is essentially important. Type-2 diabetes 

mellitus can be efficiently managed by inhibiting the 

absorption of carbohydrates after a meal, thus 

controlling the post-prandial hyperglycemia, α-

Glucosidase is a characteristic exo-type glycosidase 

enzyme that catalyzes the liberation of α-glucosides 

from the non-reducing end of the carbohydrates.3 It is 

the key enzyme involved in intestinal glucose 

absorption.  
 

In DM hyperglycemia can leads to chronic dysfunctions 

of various organ system.4,5 Hence, management of blood 

glucose level is an important approach to decrease 

diabetes related disorders. Recently, the α-glucosidase 

inhibitors have gained immense pharmaceutical interest 

due to their abilities to effectively reduce the dietary 

carbohydrate uptake and suppress postprandial 

hyperglycemic condition. Hence, the α-glucosidase 

inhibitors remain superior therapy for type-2 diabetes6. 

Most of the α-glucosidase inhibitors developed till date 

namely acarbose, voglibose, and miglitol are widely 

used oral drugs since the early 1990s for the treatment of 

type-2 diabetes. Though they cause various side effects, 

such as flatulence, diarrhea and abdominal discomfort.8 
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They all three also have low efficacy against enzymes 

with high IC50 values9. Owing to the vital role of this 

enzyme in hyperglycemia and side effects of the existing 

drugs, the discovery of non-carbohydrate based small 

organic molecules as α-glucosidase inhibitors would be 

of greatest help in finding a pharmacokinetically 

valuable molecule for diabetes. Huge amount of 

literature is mounting in support of natural products such 

as polyphenolic compounds, flavonoids, flavanols, and 

terpenoids as α-glucosidase inhibitors. Finding a 

synthetic equivalent to above natural products will 

provide a bioavailable lead compound. Flavone is an 

important scaffold present in various pharmacologically 

active compounds. They possess structural diversity and 

different biological activity10-17. Because of this reason 

the attention of researchers has been increasing to 

further study flavones as lead compounds to cure several 

diseases. Various studies revealed that flavonoids could 

decrease hyperglycemia, increase sensitivity and 

improve the secretion of insulin13, hence flavones could 

be utilized as lead structure for further drug discovery. 
 

Now a days Quantitative Structure Activity relationship 

(QSAR) analysis and other computational techniques 

have been most popular in designing new drugs18-24. In 

present research work we have been employed 

comparative molecular field analysis (CoMFA) and 

comparative molecular similarity indices analysis 

(CoMSIA)25-29methodologies for investigating structural 

constraint in the vicinity of flavones which may be 

useful in designing new flavones class of anti-diabetic 

drug. 
 

MATERIALS AND METHODS: 
Materials: 

SYBYL-X 2.1software was used to perform 

comparative molecular field analysis (CoMFA), and 

comparative molecular similarity indices analysis 

(CoMSIA) 
 

Data set: 

The data set composed of forty-one flavone derivatives 

possessing anti-diabetic activity30,31. were utilized to 

develop 3D QSAR models. The IC50 values i.e., the 

concentration (μM) of compound that gives 50% 

inhibition were changed into pIC50 (-log IC50) values and 

utilized as a dependent variable in CoMFA and 

CoMSIA analysis. Forty-one flavone derivatives were 

randomly segregated into the training set (27 

compounds) and test sets (14 compounds). The test 

compounds were chosen on the basis of structural 

diversity and broad range of activity within data set. 

Chemical structures of flavones derivatives and their 

biological activities are showed in Table 1. 
 

Table 1: Structures and experimental pIC50 values of the training and test set. 
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Comp. R1 R2 R3 R4 R5 X pIC50 Comp. R1 R2 R3 R4 R5 X pIC50 

01 H OH OH OH H O 4.2839 23* H OCH3 H OCH3 H O 3.2055 

02 H OH OH OH H NH 4.3467 24 Br H OH H H O 3.2310 

03* H OH OH OH H O 4.1023 25 Me H H H H O 3.3121 

04 OH OH OH OH H O 3.8153 26 H Me H H H O 3.3032 

05* Ben OH OH OH H O 3.1938 27 H H Me H H O 3.4348 

06 Hydroxybenzene OH OH OH H O 3.2048 28 Cl H H H H O 4.5287 

07 H OH H2N OH H O 5.6197 29 H Cl H H H O 4.1904 

08 H H H2N OH H O 3.8696 30* H H Cl H H O 4.4168 

09* H OH H2N OH NH2 O 4.0861 31 NO2 H H H H O 3.9086 

10  COOH H H H H O 3.0958 32* H NO2 H H H O 4.0087 

11* 

N
H

O

NH2

 

H H H H O 3.1366 33 H H NO2 H H O 4.0535 

12 OH H OH H OH O 4.8124 34 fl H H H H O 4.7670 

13* OH OH H H H O 4.7721 35 H fl H H H O 4.6420 

14* OH H OH H H O 4.5638 36 H H fl H H O 4.7121 

15 OH H H OH H O 4.4225 37 H OCH3 H H H O 3.1671 

16* H OH OH H H O 4.7644 38 H H OCH3 H H O 3.1609 

17* OH H H H H O 4.4271 39 Pyr H H H H O 3.3121 

18 H OH H H H O 4.0639 40 H Pyr H H H O 3.2834 

19 H H OH H H O 4.5622 41 H H Pyr H H O 3.3663 

20* OH H OCH3 H H O 4.5316         

21* H OH OCH3 H H O 4.4634         
 *Test set 
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Molecular modeling: 

The three-dimensional (3D) structure of flavones were 

constructed by means of sketch module of the SYBYL- 

X 2.1 and the energy is minimized by MMFF94 (Merck 

molecular force field 94) and then the addition of  

Gasteiger–Huckle charge iscarried out by SYBYL-X 

2.1. 

 

Molecular alignment for CoMFA and CoMSIA 

analysis: 

It is observed that molecular alignment is one of the 

most significant and subtle parameters in 3D-QSAR. To 

develop  reliable 3D-QSAR models, the CoMFA and 

CoMSIA techniques need appropriate alignment of 

compounds32. For aligning all the compounds of data set 

maximum common substructure technique was 

employed. The most active compound 07 (IC50=1.0 

μM, pIC50 = 5.697) of dataset was set as template for 

aligning test and training set compounds. The 

DATABASE ALIGN option of SYBYL-X 2.1 was used 

to align all the compounds above template molecule by 

rotation and translation so as to minimize the RMSD 

between atoms in the template and the corresponding 

atoms in the analogues. The template compound 07 with 

maximum common substructure (bold stick) and aligned 

molecules are shown in figure 1. 
 

 
(a) 

 
(b) 

Figure 1: (a) Structure of most active compound 07 (template) and 

maximum common substructure in bold stick; (b) molecular 

alignment of all molecules over template molecule 

 

Calculation of comparative molecular field analysis 

descriptors: 

The CoMFA and CoMSIA models were analyzed  

through SYBYL-X 2.1 molecular modeling software28. 

For CoMFA calculations, steric and electrostatic 

interactions were calculated  through an sp3 hybridized 

carbon atom with a Van der Waals radius of 1.52Å and a 

+1 charge as steric and electrostatic probes, respectively, 

and Tripos force field with a distance-dependent 

dielectric constant at all intersections in a regularly 

spaced grid (2 Å).The maximum steric and electrostatic 

energy cut off was taken as 30kcal/mol. The lowest 

column filtering was set to 2.0kcal/mol to enhance the 

signal-to-noise ratio by neglecting those lattice points 

whose energy difference was lower than this threshold. 

 

Calculation of comparative molecular Similarity 

indices analysis descriptors: 

Five CoMSIA similarity index fields (steric, 

electrostatic, hydrophobic, H-bond donor and H-bond 

acceptor) were evaluated using the sp3 hybridized 

carbon probe atom with a radius of 1 Å and a +1 charge 

placed at the lattice points of the same area of grid as it 

was used for the CoMFA calculations. A distance-

dependent Gaussian type was employed between the 

grid point and each atom of the molecule. The default 

value of 0.3 was employed as the attenuation factor. The 

least column filtering was set to 1.0kcal/mol.  

 

Partial least square analysis: 

The regression analysis was performed by means of the 

partial least square analysis method33-41. The cross-

validation analysis was accomplished by the LOO 

technique, wherein one compound is taken out from the 

dataset and its activity is predicted through the model 

developed from the rest of the data set.A final non-

cross-validated analysis was carried in sequence with the 

optimal number of components received from the LOO 

method and was then utilized to evaluate the results.The 

cross-validated correlation coefficient (q2) that bring out 

the optimum number of components and lowest SEE 

was take in to consideration for further analysis and 

calculated using the following formula. 
 

             Ʃ(γpred – γpred)
2 

q2 = ––––––––––––––––––– 

             Ʃ(γactual – γmean)
2 

 

where, γpred, γactualand γmeanare predicted, actual, and 

mean values of the target property (pIC50) respectively. 

Equal weights for CoMFA were given to steric and 

electrostatic fields using CoMFA_STD scaling option. 

To develop 3D-QSAR models CoMFA and CoMSIA 

descriptors were utilized as an independent variable and 

pIC50 activity value as dependent variable.  

 

Predictive correlation coefficient: 

The predictive capability of developed QSAR models 

were validated by means of a test set of fourteen 

compounds that were leave out during model generation. 

The energy minimization and geometry optimization of 

these fourteen molecules is similar as that of the training 

set compounds explained above, and their activity was 

calculated utilizing the model obtained from the training 
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set. The predictive coefficient of determination (r2pred), 

which is based on the test set molecules, is calculated 

using the formula.35 

 

              (SD – PRESS) 

r2
pred = –––––––––––––––– 

                       SD 
 

where SD is the sum of the squared deviation between 

the biological activity of the test setmolecules and the 

mean activity of the training set molecules. Predictive 

residual sum of square (PRESS) is computed by taking 

the difference in predicted and actual activity of the test 

set molecules. For all conventional analysis (non-cross-

validation) the ‘minimum sigma’ standard deviation 

threshold was set to 2.0kcal/mol. 
 

RESULTS: 
CoMFA analyses: 

The steric and electrostatic CoMFA fields produced a 

cross-validated q2 = 0.742 with six components, non-

cross-validated r 2 of 0.923, SEE = 0.154 and F value of 

36.36. The contribution of the steric and electrostatic 

fields is 70.30% and 29.70%, respectively.  

 

CoMSIA analyses: 

Overall, twelve CoMSIA models were developed 

through various combinations of molecular fields. 

Models together with the combination of steric, 

hydrophobic, hydrogen-bond donor and acceptor fields 

produced the highest q2 (0.759) with six components, 

and r2 (0.961) with a SEE of 0.105. The contributions of 

steric, electrostatic, hydrophobic, hydrogen-bond donor 

and acceptor fields were 22.50%, 17.90%, 20.10%, 

17.30% and 22.20%, respectively. The statistical 

parameters for CoMSIA and CoMFA are presented in 

Tables 2 and 3. 

 

Validation of QSAR models: 

The predictive ability of the CoMFA (r2pred = 0.901) 

and CoMSIA (r 2 pred = 0.900) models were found 

acceptable and the results are shown in Table 3. results 

confirmed the robustness of generated QSAR model, 

and it expressed good conformity between the 

experimental and predicted pIC50 values (Table 4). The 

plots of predicted versus actual activity values for 

training and test set molecules for CoMFA and CoMSIA 

are shown in figure 2(a) and (b). 

Table 2: Summary of CoMSIA results.  

S.No. CoMSIA 

Field 

q2 r2 SEE F N S.No. CoMSIA 

Field 

q2 r2 SEE F N 

01 S/E/H/D/A 0.759 0.961 0.105 109.40 06 07 S/E/H 0.523 0.848 0.155 79.47 06 

02 S/E/H/D 0.628 0.843 0.126 51.48 05 08 S/E/D 0.551 0.840 0.119 66.89 06 

03 S/E/H/A 0.686 0.851 0.156 83.44 05 09 E/H/D 0.517 0.816 0.157 73.61 05 

04 S/H/D/A 0.672 0.881 0.159 61.50 05 10 E/H/A 0.579 0.871 0.171 69.22 05 

05 S/E/D/A 0.665 0.889 0.161 57.58 06 11 S/H/D 0.621 0.844 0.167 81.49 05 

06 E/H/D/A 0.650 0.821 0.121 59.26 06 12 S/H/A 0.626 0.841 0.152 61.14 05 

S, Steric field; E, Electrostatic field; H, Hydrophobic field; D, Donor field; A, Acceptor field; q2, LOO cross-validated correlation coefficient; r2, 
non-cross-validated correlation coefficient; N, number of components used in the PLS analysis; SEE: standard error of estimate; F value, F-

statistic for the analysis. 

 
Table 3: Summary of CoMFA and CoMSIA models. 

Components  CoMFA CoMSIA Components  CoMFA CoMSIA 

q2 0.742 0.759 Steric 0.703 0.225 

r2 0.923 0.961 Electrostatic 0.297 0.179 

r2
pred 0.901 0.900 Hydrophobic - 0.201 

F value 36.36 118.40 Donor - 0.173 

SEE 0.154 0.105 Acceptor - 0.222 

q2, LOO cross-validated correlation coefficient; r2, non-cross-validated coefficient of determination; r2
pred, non-cross-validated correlation 

coefficient; N, number of components used in the PLS analysis; SEE, standard error of estimate; F value, F-statistic for the analysis. 

 
Table 4: Experimental and predicted pIC50 values of training and test set.  

Comp. Experimental COMFA COMSIA Comp. Experimental COMFA COMSIA 

Predicted Residual Predicted Residual Predicted Residual Predicted Residual 

1 4.283 4.238 0.045 4.222 0.061 22* 4.427 4.637 -0.21 4.397 0.030 

2 4.346 4.171 0.175 4.364 -0.018 23* 3.205 3.163 0.042 3.197 0.008 

3* 4.102 4.163 -0.061 4.154 -0.052 24 3.231 3.303 -0.072 3.329 -0.098 

4 3.815 3.795 0.020 3.755 0.060 25 3.312 3.34 -0.028 3.29  0.022 

5* 3.193 3.415 -0.222 3.300 -0.107 26 3.303 3.333 -0.03 3.377 -0.074 

6 3.204 2.955 0.249 2.954 0.250 27 3.434 3.524 -0.09 3.506 -0.072 

7 5.619 5.623 -0.004 5.666 -0.047 28 4.528 4.538 -0.01 4.396  0.132 

8 3.869 3.741 0.128 3.741 0.128 29 4.190 4.145 0.045 4.106 0.084 

9* 4.086 4.122 -0.036 4.051 0.035 30* 4.416 4.449 -0.033 4.337 0.079 

10 3.095 3.200 -0.105 3.193 -0.098 31 3.908 3.774 0.134 3.775 0.133 

11* 3.136 3.180 -0.044 3.172 -0.036 32* 4.008 4.064 -0.056 4.053 -0.045 

12 4.812 4.676 0.136 4.654 0.158 33 4.053 3.973 0.08 4.028 0.025 
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13* 4.772 4.880 -0.108 4.836 -0.064 34 4.767 4.749 0.018 4.771 -0.004 

14* 4.563 4.478 0.085 4.547 0.016 35 4.642 4.604 0.038 4.616 0.026 

15 4.422 4.576 -0.154 4.430 -0.008 36 4.712 4.648 0.064 4.687 0.025 

16* 4.764 4.800 -0.036 4.908 -0.144 37 3.167 3.279 -0.112 3.215 -0.048 

17* 4.427 4.407 0.02 4.436 -0.009 38 3.16 3.208 -0.048 3.132 0.028 

18 4.063 4.131 -0.068 4.185 -0.122 39 3.312 3.386 -0.074 3.413 -0.101 

19 4.562 4.602 -0.04 4.428 0.134 40 3.283 3.393 -0.11 3.199 0.084 

20* 4.531 4.503 0.028 4.601 -0.070 41 3.366 3.468 -0.102 3.43 -0.064 

21* 4.463 4.517 -0.054 4.501 -0.038       

*Test Set Compounds 

 

      
(a)                                                                                                                   (b) 

Figure 2: Graph of predicted versus actual pIC50 values from analyses for the training and test set compounds. (a) CoMFA (b) CoMSIA 

 

DISCUSSION: 
CoMFA contour map analyses: 

In CoMFA steric contour map of most active compound 

07(figure 3a), sterically favored regions are denoted by 

the green contour while the yellow contour represented 

sterically disfavoured region. However, in the 

electrostatic contour map, the blue contour indicates 

electron donating group favored areas and electron 

withdrawing group favored regions are designated by 

the red contour. In the CoMFA steric map, there is a 

large green contour covering the ring A, B and C 

showed the suitability of all the three rings for the 

antidiabetic activity. The green color contour around 

ring A and C indicates that the substitution of bulky 

group in this region is favorable for antidiabetic activity. 

In the CoMFA electrostatic map (figure 3b), blue 

contours appeared in the vicinity of ring A and C 

implies that the presence of electron donating group 

around ring A and C favors the antidiabetic activity.  

 

     
(a)                                                     (b) 

Figure 3: CoMFA STDEV* COEFF contour maps. (a) Steric fields 

(b)Electrostatic fields 

CoMSIA contour map analyses: 

The CoMSIA steric contour map is showed in figure 

4(a). Green contours of the CoMSIA steric map around 

ring A, B and C can be well matched with the CoMFA 

steric contour map (figure 3a). In the same way, the 

CoMSIA electrostatic contour map (Figure 4b) is almost 

similar to the CoMFA electrostatic contour map (figure 

3b). The CoMSIA steric and electrostatic contour maps 

are comparable to those of CoMFA, hence only the 

hydrophobic interaction and hydrogen-bond fields are 

described as follows. In the hydrophobic contour map 

(figure 4c), yellow contours specify the area where 

hydrophobic substituent can improve antidiabetic 

activity. The presence of yellow contours behind the 

ring A and B showed its suitability for antidiabetic 

activity. The yellow contours around the ring B also 

implies that the substitution of hydrophobic group at 

ring B can improve antidiabetic activity. However, white 

contour in the upper and lower side of hydrophilic ring 

C suggested that presence of ring C is also important for 

the antidiabetic activity. The presence of white contours 

near to R3 and R4 position in compound 07 suggested 

that hydrophilic groups at this position is favorable for 

antidiabetic activity. In the hydrogen-bond donor 

contour map (figure 5a), cyan contours appeared near to 

R3 and R4 position of ring A stipulated that substitution 

of hydrogen bond donor group at R3 and R4 position is 

favorable for antidiabetic activity of the compound. The 

presence of cyan contour in the neighborhood of ring B 

denoted that the substitution of hydrogen bond donor 

group at ring B may improve the biological activity of 
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the compound. whereas in the hydrogen bond acceptor 

map (Figure 5b), one magenta contour appeared near to 

oxo group of ring C, suggested that hydrogen bond 

acceptor oxo group at this position favors antidiabetic 

activity. 

 

       
Figure 5: CoMSIA STDEV* COEFF contour maps. (a) Steric fields.(b) Electrostatic fields.(c) Hydrophobic fields 

 

A big magenta contour developed in the vicinity of ring 

B denoted that substitution of hydrogen bond acceptor 

group on ring B may improve antidiabetic activity of the 

compounds. It signifies that at ring B substitution of 

both a hydrogen bond donor as well as hydrogen bond 

acceptor group is favorable for the enhancement of 

antidiabetic activity of compounds.  

 

   
(a)                                                     (b) 

Figure 6: (a) H-bond donor contour map: cyan contour indicates 

regions where hydrogen-bond donor groups increase activity. (b) 

H-bond acceptor contour map: magenta contour indicates regions 

where hydrogen-bond acceptor groups increase activity 

 

CONCLUSION: 
In summary, we have effectively utilized CoMFA and 

CoMSIA techniques to develop very predictive 3D-

QSAR models for forty-one structurally diverse flavone 

derivatives. The good relationship between experimental 

and predicted activity for test and training set 

compounds ascertained the reliability of these QSAR 

models. In this research work, the QSAR models were 

also validated by internal LOO cross-validation methods 

and external test set methods. It is concluded that 

modifications in the structure of flavones according to 

the information obtained from 3D-QSAR analyses could 

lead to new flavones with effective antidiabetic activity. 

The results showed here may be considered useful when 

designing novel and potential antidiabetic agents.  
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