

A Decentralized Polling System Using Ethereum Technology

Samarth Shakya*

*Corresponding Author, MSc in Information Security, Department of Information Technology,

Institute of Engineering Technology Devi Ahilya University, Indore 452017, India. E-mail:

samarthshakya@gmail.com

Vivek Kapoor

Assistant Professor, Department of Information Technology, Institute of Engineering Technology

Devi Ahilya University, Indore 452017, India. E-mail: vkapoor@ietdavv.edu.in

Abstract

Polling system is not trusted everywhere around the world it is very important in this modern

world to replace the traditional polling system with the new technology. Some countries like

United States, Japan, and India suffer from corrupted polling system. Major issues are faced

by current polling systems like system hacking, vote rigging, vote manipulation, distributed

denial of service attack, and online polling booth capturing. This paper will lead to the

problems faced by the traditional polling system and how the new technology will provide the

solution to that problem. Also, our purpose is to check the feasibility of the system by

recording the transaction fees and evaluate the right way to spend the amount of gas in the

transaction. This will highlight blockchain frameworks including blockchain as a service and

polling system which is on blockchain that addresses all constraint introducing ethereum

which is a blockchain-based distributed computing platform. Ethereum is open source, and

publicly available with a system featuring smart contracts. It provides the cryptocurrency

wallets that let you make cheap, instant payments with gas in the form of ethers. The

ethereum community is the most active and largest blockchain community in the world. There

is no centralized organization that controls ethereum.

Keywords: Blockchain; Ethereum; Decentralization; Gas; Distributed System; Metamask

DOI: https://10.22059/jitm.2022.85645 Manuscript Type: Research Paper University of Tehran, Faculty of Management

Received: January 12, 2021 Accepted: March 25, 2020

https://10.0.86.43/jitm.2022.85645

A Decentralized Polling System Using Ethereum Technology 2

Introduction

Blockchain is relatively new technology, as we see the earlier work in Blockchain some of

research is extended from side to side in the last ten years. The area of investigation are

security and privacy check on blockchain and usage of blockchain in various ways with

digital ledger techniques, their challenges and application. Many countries are seeking the

opportunity and have taken some initiative to improve their existing voting system by making

it a decentralized voting system with peer-to-peer network. The first country in the world to

use blockchain technology is Sierra Leone to verify votes in an election in March, 2018.

Blockchain is the best technology for polling systems because it provides the failure to

modify or remove information from blocks makes the polling system immutable. Blockchain

technology consists of a large number of interconnected nodes is supported by a distributed

network. Nodes have their own copy of distributed ledger which have the record of all the

transactions processed by the network. There will be no single authority that controls the

network. This network allows users to vote anonymously. It is making e-voting acceptable as

our modern democracies are built up on voting system. The Increase of voter lack of

enthusiasm in recent years, especially among the younger generation which is more into

computers and technology the e-voting is a potential solution to attract voters specially the

young one. A robust polling scheme requires distribution of authority which is provided in

blockchain. A great decentralized application utilizing blockchain technology allows you

perform the same actions without a third party. Since a blockchain is a permanent record of

transactions(votes) that are distributed on every node making votes immutable. Introducing a

secured and customizable voting application made for everyday use built on the Ethereum

blockchain, a 100% decentralized platform customizable and simple, so that you can remove

your focus from security and focus on what matters.

Rationale

Polling system focuses on voting techniques which can be applied concomitantly to business

purposes. The main objective of this is to bring together the seemingly disparate fields, such

as Decentralized applications, Ethereum, Smart contracts, Blockchain and Knowledge

discovery.

The problem with existing e-voting system is:

1. Centralized Architecture

2. Hacking of the centralized voting systems.

3. Election Manipulation.

4. Vote casting: Votes should be anonymous to everyone including the administrators.

5. Security problems: The DDoS attacks are well known attack in voting systems.

6. No transparency and trust: People usually do not trust when everything is online.

Journal of Information Technology Management, 2022, Special Issue 3

All these are the reasons which seeks and motivates to develop a decentralized system.

There are some of the objectives to which we have focus while developing a

decentralized ethereum polling system. To make any transaction in ethereum based system we

have to pay some transaction fee that is also known as gas. This gas is variable with the

transaction and the words used by user in the transaction.

This research focuses on the feasibility of the polling system as we are going to use a

large number of transactions. It also defines the proportion in which the transaction being

processed. The agenda behind developing a polling system is to give people a right to vote on

particular scenarios rather than electing a particular candidate to do so. People can also give

the topics to get the votes from the people anonymously.

Background

The solution to the voting problem is to use ethereum technology. It serves the property of

distribution, immutability, irreversibility, provides data-security and more importantly it is

decentralized. The background working of ethereum blockchain technology can be classified

in five main features:

a) Smart Contract: Developer creates a decentralized application while using the Ethereum

technology with creation of a self-enforcing piece that managed by peer to peer network

of computer according to the need. This smart contract can contain the business logic or

agreement between the two or more people directly written in the lines of code. Smart

contracts are created with a help of open source solidity programming platform like

remix.ethereum and tested and deployed with the help of truffle framework.

b) Publishing: After the creation, that smart contract is published on ethereum blockchain

and to publish it some amount of ether is deducted from the connected blockchain

account. The publishing of smart contract can be done with truffle framework by a

command truffle migrate.

c) User: To use the decentralized application user has to pay some amount of ether. To do so

user/client must have an active ethereum account with a private key. The user account

must contain some amount of gas to process the transaction. Transaction for each allowed

feature can be processed only once. This feature gives the quality of uniqueness to the

system. To pay ether user should have metamask extension in systems browser.

d) Miners: They verify or validate the transactions and add it to a new block these blocks

together forms a ledger which is distributed among all the nodes. Based on a

cryptographic hash algorithm they compete to solve a difficult mathematical problem and

the solution is called the Proof-Of-Work. They are also rewarded with ether for each

successful block.

e) Nodes: A infrastructure of blockchain is formed by nodes. They check a newly formed

A Decentralized Polling System Using Ethereum Technology 4

block and add it to the blockchain. Any proposed “new block” to the ledger must

reference the previous version of the ledger, which creates a chain possess immutability.

Figure 1. Background flow of ethereum blockchain.

Proposed System

In this section we introduce our proposed polling system that aims at solving the existing

barriers.

System Components

The proposed platform consists of the various following components:

1) Smart Contract: There is only one type of smart contract present in our system that is

polling contract. This contract serves purpose to authenticate the voters and start the

voting process. Polling contract increment the count of votes immediately when voted. It

ensure the feature that only one vote is given with the private key. Appendices A list the

code of our polling contract.

2) Ganache: It acts as a public blockchain dependency. Ganache is a personal blockchain

deployed locally. We are going to use the ganache for the deployment of our polling

contract and running tests. Appendices B list the free accounts provided by ganache to test

out smart contract on local blockchain bases.

3) Truffle Framework: Truffle is a tool used to develop ethereum blockchain while using the

solidity programming language. Truffle also provides various functionalities like

automated testing, client side development, network and smart contract management.

Appendices C shows the test result using truffle framework.

4) Metamask: If we want to use a user interface of any application our browser should

support the connection to blockchain network. Metamask is the browser extension or

Journal of Information Technology Management, 2022, Special Issue 5

plugin used to connect to the required blockchain network. We can also manage our

personal accounts in Metamask. We can install it in Chrome, Firefox and Opera.

Appendices D shows the Metamask account in chrome browser.

Experiment

If we begin using polling application we will get to know that the amount of gas we are

paying while using metamask is not constant. There is an option in metamask to choose the

amount of gas we have to pay like slow, average and fast time transaction cost. To know how

it is varying we had recorded the number of letters used to provide the topic to vote and the

amount of gas which is in ETH required for them to complete the transaction as shown in

Table 1.

Table 1. Experiment Data Record

Results

With the recorded table we can conclude that the amount as gas is variable with number of

letters used as well as the time required to complete the transaction. These can be easily

understandable by the following recorded graphs.

Analysing the number of letters with amount of gas required.

Considering the Fast Cost (ETH) from the Table 1 we can see that the amount of ETH

required is slightly increasing as we increase the number of letters in our transaction. That

means if we want to create a block with a long phrase we need to pay the higher amount of

gas for the transaction.

A Decentralized Polling System Using Ethereum Technology 6

Figure 2. Number of letters vs amount of gas required.

Analysing the number of letters with time required to complete the transaction

Considering the Fast Time (seconds) from Table 1 we can conclude that the time required to

complete the transaction is directly proportional to the number of letters in the phrase. More

the number of letters in the phrase more time it will take to complete the transaction.

Figure 3. Number of letters vs time required.

Analysing the Efficient way to choose the transaction type.

We can see that Fast transaction type is better than any other type as there is only a slight

change in the ETH but the time difference is very high in all other transaction as shown in

Table 1. All the transaction type are showing the similar property as compare to the amount of

gas which is a direct proportion.

Journal of Information Technology Management, 2022, Special Issue 7

Figure 4. Number of letters vs Fast-Average-Slow Cost (ETH)

Conclusion

The paper analyzes the polling system on real world scenarios and implemented it using the

ethereum technology. It also gives the experiment regarding the variability of amount of gas

which we pay during transaction using metamask by finding the efficient way to do so. It also

gives a brief idea about tools used for the developing an ethereum blockchain based

application. By reading this paper carefully one can develop an ethereum blockchain

application of their own by following the steps given. This polling system integrates the

election voting to a new form where one can vote on real world scenario or one can clears

their confusion regarding to any topic with the opinions of people.

Conflict of interest

The authors declare no potential conflict of interest regarding the publication of this work. In

addition, the ethical issues including plagiarism, informed consent, misconduct, data

fabrication and, or falsification, double publication and, or submission, and redundancy have

been completely witnessed by the authors.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of

this article

A Decentralized Polling System Using Ethereum Technology 8

References

Ben Ayed, A. (2017). A Conceptual Secure Blockchain- Based Electronic Voting System. International Journal

of Network Security & Its Applications (IJNSA), 9 (3).

Bhosale, K.; Akbarabbas, K.; Deepak, J. & Sankhe, A. (2019). Blockchain based Secure Data Storage.

International Research Journal of Engineering and Technology (IRJET), 6 (3).

Bulut, R.; Kantarcı, A.; Keskin, S.; Bahtiyar, S. (2018). Blockchain-Based Electronic Voting System for

Elections in Turkey. Istanbul Technical University Istanbul, Turkey.

Chan Zheng Wei, Clement; Chai Wen Chuah (2018): Blockchain-Based Electronic Voting Protocol.

International Journal On Informatics Visualization, 2 (4).

H. Bergquist, Jonatan (2017): Blockchain Technology and Smart Contracts. Uppsala Universitet Examensarbete

30 hp .

Hatiskar, Vaibhav; G. Pai, Archana (2018): Blockchain and it’s Integration with Supply Chain. International

Journal of Computer Applications (0975 – 8887), 179 (52).

 aan o , Ali; avu , mre; Can abuk, mut; alkılı , G khan (2018): Towards Secure E-Voting Using

Ethereum Blockchain. researchgate.net/publication/323318041.

McCorry, Patrick; F. Shahandashti Siamak; Hao Feng (2017): A Smart Contract for Boardroom Voting with

Maximum Voter Privacy. School of Computing Science, Newcastle University UK.

Khan, Tayyab, Karan Singh, Mohamed Abdel-Basset, Hoang Viet Long, Satya P. Singh, and Manisha Manjul.

"A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor

networks." IEEE Access 7 (2019): 58221-58240.

Pareek, Shubham; Upadhyay, Anuj; Doulani, Satya; Tyagi, Siddarth; Varma, Aditya(2018): E-Voting using

Ethereum Blockchain. International Journal for Research Trends and Innovation, 3 (11).

Shrinivas, Manoj; S.Chandan; Farhan Shamail, Mohammed; K, Ramyashree (2019): A Decentralized Voting

Application using Blockchain Technology. International Research Journal of Engineering and

Technology (IRJET), 6 (4).

Tso, Raylin; Liu, Zi-Yuan; Hsiao, Jen-Ho(2019): Distributed E-Voting and E-Bidding Systems Based on Smart

Contract. Multidisciplinary Digital Publishing Institute.

V. Arun; Dutta, Aditya; Rajeev, Sourav; Mathew Varghese, Rohan (2019): E-Voting using a Decentralized

Ethereum Application. International Journal of Engineering and Advanced Technology (IJEAT) ISSN:

2249-8958, 8 (4).

www.dappuniversity.com/articles/the-ultimate-ethereum-dapp-tutorial (Building an Ethereum Decentralized

Application)

Bibliographic information of this paper for citing:

Shakya, Samarth, & Kapoor, Samarth (2022). A Decentralized Polling System Using Ethereum

Technology. Journal of Information Technology Management, Special Issue, 1-8.

Copyright © 2022, Samarth Shakya and Vivek Kapoor

IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Analysis of Effects of Change of Gear Parameter
Module on Transmission Error in Spur Gear using
Interference Volume Method
To cite this article: V Karma et al 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1225 012036

View the article online for updates and enhancements.

You may also like
Research on the Methods to Improve
RFSS Accuracy
Qingze Yuan

-

Multi-antenna GNSS tight combination
attitude determination in the urban
environment
Wenhao Zhao, Genyou Liu, Ming Gao et
al.

-

A manufacturing error measurement
methodology for a rotary vector reducer
cycloidal gear based on a gear measuring
center
Tianxing Li, Junxiang Zhou, Xiaozhong
Deng et al.

-

This content was downloaded from IP address 14.139.240.232 on 25/03/2022 at 09:05

https://doi.org/10.1088/1757-899X/1225/1/012036
/article/10.1088/1742-6596/2189/1/012028
/article/10.1088/1742-6596/2189/1/012028
/article/10.1088/1361-6501/ac55a9
/article/10.1088/1361-6501/ac55a9
/article/10.1088/1361-6501/ac55a9
/article/10.1088/1361-6501/aac00a
/article/10.1088/1361-6501/aac00a
/article/10.1088/1361-6501/aac00a
/article/10.1088/1361-6501/aac00a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv2D4PFOiumOFokCjknVuAqVFjI0Q0zC52Pl26jH2CQegyLdgUHoOdgQCJiT9A0DV8Hd3_3GaefXeYjOWiBqw2DSlmGlKj8zyyYdkkBw_k_ewMdOSMYa714k_l_6QagbNQH8PcMSkKJURAKR23-i_KxL7lfKfZJFFaWe9SR7AmWealDgw07Z1RqJVJoiV7xXwlPBIGBIFEDVDlZ58y2LGrpgZJNv705zeqHWCHs2OfafYqYQplhb6hERM8lCrTC3tYxQOsdx5hwEWq39XVtbboz38CQbbCI2Eg&sig=Cg0ArKJSzDcCSDBia1ny&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/242/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DBanner%26utm_campaign%3D242Abstract%26utm_id%3D242Abstract

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

1

Analysis of Effects of Change of Gear Parameter Module on

Transmission Error in Spur Gear using Interference Volume

Method

V Karma 1, 4, G Maheshwari 2 and S K Somani 3

1,2 Mechanical Engineering Department, Institute of Engineering & Technology, Devi

Ahilya University, Indore, Madhya Pradesh, 452001, India 3 Vice Chancellor,

Oriental University, Indore, Madhya Pradesh, India

vkarma@ietdavv.edu.in

Abstract. Gear drives are the most used elements in power transmission systems. Any defect

in the gear of these drives leads to noise and vibrations, which affect power/torque

transmission. Transmission Error (TE) is one of the critical causes that arises due to the tooth

geometry error, cracks in gear, profile error etc. Our work demonstrates, the consequences

occurring due to the changes in gear parameter module on TE for spur gear pair of 1:1 gear

ratio with pitch error, using the interference volume method. The spur gear without pitch error

and with pitch error having the involute profile of standard tooth dimension system and stub

tooth dimension system are modelled and assembled in CAD software SOLIDWORKS. The

interference volume values obtained from the gear pairs are recorded for one mesh cycle.

Various graphs plotted between the angle of rotation and interference volume values for one

mesh cycle. It is found from the analysis that as the module and pitch error increase TE also

increases. The effect of variation of module and pitch error is more in the standard tooth

dimension system than the stub tooth dimension system.

Keywords: CAD, Gear Ratio, Pitch Error, No of Teeth, SOLIDWORKS, Geometry Error

1. Introduction

Gears drives are the most used elements employed to transfer power/torque. The condition to

accurately transfer power/torque is that the drive elements such as gears should be free from any error

else it could lead to noise and vibrations, which results in the development of Transmission Error (TE)

despite of availability of world class manufacturing and design facilities. TE is a show of reading

measured of angular or linear displacement by the side of activity on the base circle [1]. Hotait and

Kahraman [2] demonstrated experimentally the association connecting dynamic factor and

transmission error measurement. The values were obtained from unabated and adapted spur gears

using a gear dynamic test set-up. Kohler and Regan [3] concluded that TE has harmonic components

of significant amplitude at tooth contact frequency spectrum. Chang and Tang [4] conducted

theoretical analysis under the influence of single and cumulative pitch error to investigate the

nonlinear vibration response in a double-helical gear set. Velex et al [5] established theoretically a

relationship in the middle of active mesh agitation and transmission errors using 3D analysis modal of

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

2

multi mesh gears. They demonstrated that the local confined TE is analogous with each individual

mesh controls the dynamic mesh forces and provided a design criterion to minimize dynamic tooth

loads by defining tooth shape modifications. Nina [6] developed equations of motion based on time

varying mesh stiffness function, loaded quasistatic TE, and no-load or kinematic TE. Studied the

effect of tooth pitch error and load on dynamic behavior of gear transmission. She also investigated

the relationship between dynamic TE and mesh force or root stress. Sánchez et al [7] work is done to

study the contact conditions of modified teeth under load. They widely explained the results by seeing

the changes of various parameters of profile modification on actual load sharing quotient and TE.

Palermo et al [8] in their work tried to calculate TE in comparison to the direct process which uses

low-cost digital encoders, which are embedded on an accuracy gear pair test. Shweiki et al [9] does

work to find the change in conduct when a quality and light weight cylindrical gear meshes. An elastic

multi body expressions which has hybrid approach in FE method in the background representation is

used by them. Zhiying and Pengfei [10] proposed and validated, analytical mesh stiffness and quasi

static TE models with finite element method to find the inner working of spur gear meshing pairs.

Pleguezuelos et al [11] found out the effect of changes in symmetric long on high contact ratio spur.

The change is represented empirically in the optimum length as a function of the contact ratio. Oswald

[12] works found out the efficacy in modification of profile in ever changing reduced loads in gears

having spacing errors. The analysis considers the modifications of both linear and parabolic profiles.

Bruyere et al [13] presented a closed-form analytical formula of TE for helical and solid spur gears for

minimizing time varying amplitudes of TE amalgamation of lead crouch and profile relief. They

showed that the optimum tooth modifications depend on ratio of profile Vs face contact, the

normalized depth and number of modifications in profile in continuation with the normalized lead

crown amplitude. Handschuh [14] experimentally, empirically, and mathematically find out the

consequences of tooth spacing error on TE and root stresses in spur gear pairs. Bartosova et al [15]

uses finite element analysis to find out TE at variety of combination of load states, axial distant

variation, and tooth shape elevation modification. Park [16] find out friction in tooth and TE in spur

gears which occurs due to result of friction sliding in quasi static condition. Somani [17] worked in his

doctorate thesis on studying the effect of changing the various gear parameters on TE in spur gear.

Transmission through gears is used in every area of industry to convey power coming from shaft. A lot

of research work is there in public domain in this area. Bruzzone et al [18] constructed model using

multi-layered process in quasi-static state to find degree of deflection, tooth deformation and stiffness.

Experiments results in terms of STE with different parameters has been found. TE is the main cause of

vibration in gear box. Duan et al [19] established a test rig and made comparison between the result

obtained theoretically and experimentally. Results shows that under heavy load conditions TE

increases, but with the use of thin-walled housing it decreases considerably. A lot of study about the

TE in gears is being done. Benaicha et al [20] in his work tries to develop a model which gives the

insight efficient inaccurate working of gear TE. Results were compared with the earlier results

obtained from classical techniques. Superiority of the model which is made was confirmed in his

work. Backlash is also a type of TE which occurs due to the gap between the teeth at the pitch circles.

This error is unavoidable as the time passes by. Ambaye et al [21] uses a Gear Trax software to model

a gear with backlash with different degrees. In his experiments he uses plane strain analysis and finite

element analysis to find mesh convergence for different contact pressure and stress. In this process he

was able to predict backlash with a high degree of accuracy. Gearbox is used to transmit power from

shaft to rotor in various machines. In case of wind turbine, it is important link to transmit power. Tao

et al [22] uses Flank Pitch Error model to find gear faults. He proposed time varying meshing stiffness

model to simulate meshing frequency and find severity of gear box vibration. Delay in drive which is

popularly known as loaded TE is caused due to tooth deflection, manufacturing defects and assembly

error in spur gear. Miguel et al [23] proposed a mathematical model to consider of meshing stiffness,

load sharing ratio and TE for spur gears under minimal or varying load conditions. Gear TE causes

vibration in moving parts. Chin et al [24] in his work find TE. His work is validated by readings

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

3

obtained from encoder and tachometer from a drive gear wear experimental setup. Model prepared by

him prove to be very robust under sever conditions also.

From the available literature, it is observed that the researchers are working towards the determination

of TE analytically, experimentally and or using finite element analysis for the gears having defects due

to manufacturing, geometry error, crack, tooth breakage etc., in the standard tooth dimension system.

In today’s scenario there is an urgent need of more simplified methods/procedure using CAD software

to analyze the various manufacturing defects, geometry errors etc., in spur gears. A lot of work is to be

done by considering the gears in both standard and stub tooth dimension system. Hence, the objective

of the current work is to analyze the TE using interference volume method in stub tooth dimension

system and standard tooth dimension system for spur gear having pitch error in a simplified procedure.

The gears are modelled in SOLIDWORKS software. Various gear parameters used are the modules 3,

3.5, 4, 4.5, and 5 mm, pressure angle 20°, and the number of teeth 18. The pitch error of magnitudes

1% and 2% is deliberately introduced in all the teeth of gear. The gear without pitch error is meshed

with a gear having pitch error using the assembly module of SOLIDWORKS software. The

interference volume values are then recorded for one mesh angle of the gear pair. The graphs are

plotted between angles turned vs. interference volume values, and for each change in module and pitch

error, the effect on the TE is predicted for both standard as well as stub tooth dimension system. It is

observed that TE is affected when module and pitch error magnitude is change but the effect is more

in case of standard tooth dimension system than in stub tooth dimension system. The analysis is done

using the procedure as described by the authors in [25]. The work of the paper/outcomes are in line

with the work of researchers presented in [3, 4, 6, 12, 14, 17].

2. Modelling of Master Gear and Erred Gear

The spur gears are modelled with true involute curve from mathematical equation of involute curve in

CAD software SOLIDWORKS. The following spur gears are modelled for the analysis. The

designation of gears and their pairs are described below.

a) Spur Gear of standard tooth dimension system and stub tooth dimension system without any

defect or error are designated as Master Gear [MG] and Stub Master Gear [SMG] respectively.

b) Spur Gear of standard tooth dimension system and stub tooth dimension system with pitch error

are designated as Erred Gear [E] and Stub Erred Gear [SE] respectively. Gear with 1% and 2%

pitch error are designated as E1 and E2 in standard tooth dimension system, SE1 and SE2 in

stub tooth dimension system, respectively.

After modelling of the master gear, erred gears are modelled by inducing pitch error of 1% and 2%

magnitude. The pitch error is created by increasing the tooth thickness to 1% and 2% of its original

value. These deviations are sufficient deviation from the original value in manufacturing of any gear.

A nominal face width of 10 mm is considered for the gears. The gears with and without pitch error in

standard tooth dimension system and stub tooth dimension system of module 3, 3.5, 4, 4.5 and 5 mm,

number of teeth 18 and pressure angle 20° are designated in table 1.

For example as in table1, a gear of module 3 mm, number of teeth 18, pressure angle 20°, and without

pitch error in standard tooth dimension system is designated as MG_m3_z18_phi20, and with pitch

error of 1% and 2% is designated as E1_m3_z18_phi20 and E2_m3_z18_phi20 respectively (where

MG is Master Gear, E1 is Erred Gear (1% pitch error), E2 is Erred Gear (2% pitch error), m is module,

z is number of teeth and phi is pressure angle). Similarly a gear of module 3 mm, number of teeth 18,

pressure angle 20°, and without pitch error in stub tooth dimension system is designated as

SMG_m3_z18_phi20, and with pitch error of 1% and 2% is designated as SE1_m3_z18_phi20 and

SE2_m3_z18_phi20 respectively (where SMG is Master Gear, SE1 is Erred Gear (1% pitch error),

SE2 is Erred Gear (2% pitch error), m is module, z is number of teeth and phi is pressure angle). The

various values of the spur gear parameters for the two tooth dimension systems are given in table 2

and table 3.

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

4

Table 1. Designation of various spur gears in two tooth dimension systems

Standard Tooth Dimension System Stub Tooth Dimension System

Master Gear / Gear

without Pitch Error

Erred Gear / Gear with

Pitch Error of 1% & 2%)

Master Gear / Gear

without Pitch Error

Erred Gear / Gear with

Pitch Error of 1% & 2%)

MG_m3_z18_phi20

MG_m3.5_z18_phi20

MG_m4_z18_phi20

MG_m4.5_z18_phi20

MG_m5_z18_phi20

E1_m3_z18_phi20

E2_m3_z18_phi20

E1_m3.5_z18_phi20

E2_m3.5_z18_phi20

E1_m4_z18_phi20

E2_m4_z18_phi20

E1_m4.5_z18_phi20

E2_m4.5_z18_phi20

E1_m5_z18_phi20

E2_m5_z18_phi20

SMG_m3_z18_phi20

SMG_m3.5_z18_phi20

SMG_m4_z18_phi20

SMG_m4.5_z18_phi20

SMG_m5_z18_phi20

SE1_m3_z18_phi20

SE2_m3_z18_phi20

SE1_m3.5_z18_phi20

SE2_m3.5_z18_phi20

SE1_m4_z18_phi20

SE2_m4_z18_phi20

SE1_m4.5_z18_phi20

SE2_m4.5_z18_phi20

SE1_m5_z18_phi20

SE2_m5_z18_phi20

3. Meshing and Analysis of Gear Pair of Standard Tooth Dimension System

After modelling of various gears, it is required to form assemblies/pairs (meshing of Master and

Master or Master and Erred Gear) for doing the analysis. The various assemblies or combinations

formed, and their designations are shown in table 4. Each of these assemblies or combinations are

taken one by one for determining the TE. The interference volume is determined for all these gear

pairs/assemblies. From the values of the interference volume obtained, the TE variation is determined

for all these spur gear pairs. The methodology to determine the TE is verified from the pair of master

gear with master gear and then the master gear and erred gear pair is taken for the analysis. The two

gears are meshed using the assembly module of SOLIDWORKS and interference volume between the

two gears in mesh is checked for initial meshed position by invoking the command of finding

interference volume and then the value of interference volume is recorded.

Table 2. Values of Spur Gear parameters in Standard Tooth dimension System

Paramet

ers [26]

Module,

mm

(m)

No. of

Teeth

(z)

Pitch

Circle

Diamete

r, mm

(m*z)

Pressure

Angle, °

(Phi)

Addend

um, mm

(1*m)

Dedend

um, mm

(1.25*m

)

Base

Circle

Diamete

r, mm

(m*z*co

s(phi))

Circular

pitch,

mm

(πm)

Tooth

Thick-

ness,

mm

(πm/2)

Master

Gear

(MG)

3.0 18 54 20 3.0 3.750 50.7434 9.4248 4.7124

3.5 18 63 20 3.5 4.375 59.2006 10.9956 5.4978

4.0 18 72 20 4.0 5.000 67.6578 12.5664 6.2832

4.5 18 81 20 4.5 5.625 76.1151 14.1372 7.0686

5.0 18 90 20 5.0 6.250 84.5723 15.7080 7.8540

Erred

Gear

(E1)

3.0 18 54 20 3.0 3.750 50.7434 9.5190 4.7595

3.5 18 63 20 3.5 4.375 59.2006 11.1055 5.5528

4.0 18 72 20 4.0 5.000 67.6578 12.6920 6.3460

4.5 18 81 20 4.5 5.625 76.1151 14.2785 7.1393

5.0 18 90 20 5.0 6.250 84.5723 15.8650 7.9325

Erred

Gear

(E2)

3.0 18 54 20 3.0 3.750 50.7434 9.6133 4.8066

3.5 18 63 20 3.5 4.375 59.2006 11.2155 5.6077

4.0 18 72 20 4.0 5.000 67.6578 12.8177 6.4088

4.5 18 81 20 4.5 5.625 76.1151 14.4199 7.2100

5.0 18 90 20 5.0 6.250 84.5723 16.0221 8.0111

For obtaining the next value of interference volume, one of the gears of gear pair is rotated by 1° and

due to the meshing, the other gear is also rotated by 1° in opposite direction. The interference volume

between the two gears is checked again and the value is noted. In this way for 21 such positions the

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

5

two gears are rotated and at every instance the interference volume is checked and noted (The

interference volume cycle repeats after 20° of rotation for 18 number of teeth). All the interference

volume values are recorded in table 5. Figure 1 shows one of the gear pair of master gear and erred

gear 1 (MG_E1_m3.5_z18_phi20).

Table 3. Dimensions of Spur Gear in Stub Tooth dimension System

Paramet

ers [26]

Module,

mm

(m)

No. of

Teeth

(z)

Pitch

Circle

Diamete

r, mm

(m*z)

Pressure

Angle, °

(Phi)

Addend

um, mm

(0.8*m)

Dedend

um, mm

(1.0*m)

Base

Circle

Diamete

r, mm

(m*z*co

s(phi))

Circular

pitch,

mm

(πm)

Tooth

Thick-

ness,

mm

(πm/2)

Master

Gear

(SMG)

3.0 18 54 20 2.4 3.0 50.7434 9.4248 4.7124

3.5 18 63 20 2.8 3.5 59.2006 10.9956 5.4978

4.0 18 72 20 3.2 4.0 67.6578 12.5664 6.2832

4.5 18 81 20 3.6 4.5 76.1151 14.1372 7.0686

5.0 18 90 20 4.0 5.0 84.5723 15.7080 7.8540

Erred

Gear

(SE1)

3.0 18 54 20 2.4 3.0 50.7434 9.5190 4.7595

3.5 18 63 20 2.8 3.5 59.2006 11.1055 5.5528

4.0 18 72 20 3.2 4.0 67.6578 12.6920 6.3460

4.5 18 81 20 3.6 4.5 76.1151 14.2785 7.1393

5.0 18 90 20 4.0 5.0 84.5723 15.8650 7.9325

Erred

Gear

(SE2)

3.0 18 54 20 2.4 3.0 50.7434 9.6133 4.8066

3.5 18 63 20 2.8 3.5 59.2006 11.2155 5.6077

4.0 18 72 20 3.2 4.0 67.6578 12.8177 6.4088

4.5 18 81 20 3.6 4.5 76.1151 14.4199 7.2100

5.0 18 90 20 4.0 5.0 84.5723 16.0221 8.0111

Table 4. Combinations/Assemblies of Various Gears (Standard Tooth Dimension System)

Modul

e, mm

(m)

No. of

Teeth,

(z)

Pressure

Angle, °

(phi)

Meshing of Master Gear

with Master Gear

Meshing of Master

Gear with Erred Gear 1

Meshing of Master

Gear with Erred Gear 2

3

3.5

4

4.5

5

18

20

MG_MG_m3_z18_phi20

MG_MG_m3.5_z18_phi20

MG_MG_m4_z18_phi20

MG_MG_m4.5_z18_phi20

MG_MG_m5_z18_phi20

MG_E1_m3_z18_phi20

MG_E1_m3.5_z18_phi20

MG_E1_m4_z18_phi20

MG_E1_m4.5_z18_phi20

MG_E1_m5_z18_phi20

MG_E2_m3_z18_phi20

MG_E2_m3.5_z18_phi20

MG_E2_m4_z18_phi20

MG_E2_m4.5_z18_phi20

MG_E2_m5_z18_phi20

The detailed procedure for determining the TE for all the combinations is explained in the sections

from 3.1 to 3.3

Figure 1. Assembly/Meshing of Master Gear and Erred Gear 1 of standard tooth dimension system

having module 3.5 mm, number of teeth 18 and pressure angle 20° (MG_E1_m3.5_z18_phi20).

3.1. Meshing of Master Gear with Master Gear (MG_MG)

Two gears forming a pair with combinations as shown in table 4 are taken one by one for analysis. The

two gears are meshed and for this initial position interference between them is checked. Then gear

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

6

pairs are rotated for contact angle (20° in case of 18 number of teeth). It is observed that the two gears

are just touching each other, indicating that there is no interference occurring between them and hence

the interference volume is zero. This also confirm the correctness of procedure.

3.2. Meshing of Master Gear with Erred Gear 1 (MG_E1)

In this case master gear is meshed with erred gear 1 (gear with 1% pitch error). The various

combinations formed are represented in table 4. The same procedure as discussed in section 3.1 above

is followed to determine the interference volume. Here it is observed that there is interference

occurring in the two gears in mesh during rotation of contact angle (20° in case of 18 number of teeth).

The values of interference volume are noted and tabulated in table 5 for plotting graph between

interference volume vs rotation angle.

3.3. Meshing of Master Gear with Erred Gear 2 (MG_E2)

Now finally the master gear is meshed with erred gear 2 (gear with 2% pitch error). The various

combinations are given in table 4. Here also similar procedure as discussed in section 3.1 is used to

check the interference between the gears. It is again observed that there is an interference occurring in

gears in mesh. The interference volume values for contact angle of 20° rotation is noted in table 5.

Based on the interference volume values of table 5, various graphs are plotted between angle of

rotation and interference volume values. These graphs are shown in the figure 2 and figure 3,

respectively.

Table 5. Interference Volume values (mm3) when Master Gear meshes with the Master Gear, Erred Gear 1,

and Erred Gear 2 for Standard Tooth Dimension System

Angle

of

Rotation

(°)

Master

Gears

[MG]

MG_

E1_

m3_

z18_

phi 20

MG_

E1_

m3.5_

z18_

phi 20

MG_

E1_

m4_

z18_

phi 20

MG_

E1_

m4.5_

z18_

phi 20

MG_

E1_

m5_

z18_

phi 20

MG_

E2_

m3_

z18_

phi 20

MG_

E2_

m3.5_

z18_

phi 20

MG_

E2_

m4_

z18_

phi 20

MG_

E2_

m4.5_

z18_

phi 20

MG_

E2_

m5_

z18_

phi 20

0 0 0.4000 0.5400 0.7000 0.8800 1.1000 1.1000 1.4800 1.9400 2.4400 3.0200

1 0 0.3700 0.5000 0.6500 0.8200 1.0000 1.0500 1.4300 1.8700 2.3600 2.9300

2 0 0.3600 0.5000 0.6300 0.8100 1.0000 1.0100 1.3800 1.8000 2.2900 2.8200

3 0 0.3600 0.4900 0.6500 0.8200 1.0100 1.0300 1.3900 1.8200 2.3000 2.8300

4 0 0.3600 0.5000 0.6500 0.8200 1.0100 1.0300 1.4000 1.8300 2.3100 2.8600

5 0 0.3700 0.4900 0.6600 0.8200 1.0100 1.0400 1.4000 1.8300 2.3200 2.8700

6 0 0.3600 0.5000 0.6500 0.8200 1.0100 1.0300 1.4000 1.8300 2.3200 2.8600

7 0 0.3600 0.4900 0.6500 0.8200 1.0100 1.0200 1.3900 1.8200 2.3000 2.8400

8 0 0.3600 0.4900 0.6300 0.8100 1.0000 1.0100 1.3800 1.8000 2.2900 2.8200

9 0 0.3700 0.5000 0.6500 0.8200 1.0100 1.0600 1.4500 1.9000 2.3900 2.9700

10 0 0.4000 0.5500 0.7000 0.9000 1.1000 1.1000 1.5200 1.9800 2.5000 3.0800

11 0 0.3700 0.5000 0.6500 0.8200 1.0100 1.0600 1.4500 1.9000 2.3900 2.9700

12 0 0.3600 0.4900 0.6300 0.8100 1.0000 1.0100 1.3800 1.8000 2.2900 2.8200

13 0 0.3600 0.5000 0.6500 0.8200 1.0100 1.0200 1.3900 1.8200 2.3000 2.8400

14 0 0.3600 0.4900 0.6500 0.8200 1.0100 1.0300 1.4000 1.8300 2.3200 2.8600

15 0 0.3700 0.5000 0.6600 0.8200 1.0100 1.0400 1.4000 1.8300 2.3200 2.8700

16 0 0.3600 0.4900 0.6500 0.8200 1.0100 1.0300 1.4000 1.8300 2.3100 2.8600

17 0 0.3600 0.5000 0.6500 0.8200 1.0100 1.0300 1.3900 1.8200 2.3000 2.8300

18 0 0.3600 0.4900 0.6300 0.8100 1.0000 1.0100 1.3800 1.8000 2.2900 2.8200

19 0 0.3700 0.4900 0.6500 0.8200 1.0000 1.0500 1.4300 1.8700 2.3600 2.9300

20 0 0.4000 0.5400 0.7000 0.8800 1.1000 1.1000 1.4800 1.9400 2.4400 3.0200

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

7

4. Meshing and Analysis of Gear Pair of Stub Tooth Dimension System

In this case the various gear pairs formed are listed in table 6. First the master gear is meshed with the

master gear and the interference volume values obtained by rotation of gear pair for one mesh cycle is

listed in table 7. Next using the same procedure, the interference volume values are obtained for

master gear - erred gear 1 and master gear - erred gear 2 pair. All these values are listed in Table 7.

Using these values various graphs are plotted between the interference volume values and angle of

rotation. These are represented in figure 4 and figure 5 respectively.

Table 6. Combinations/Assemblies of Gears (Stub Tooth Dimension System)

Module,

mm

(m)

No. of

Teeth,

(z)

Pressure

Angle, °

(phi)

Meshing of Master Gear

with Master Gear

Meshing of Master Gear

with Erred Gear 1

Meshing of Master Gear

with Erred Gear 2

3

3.5

4

4.5

5

18

20

SMG_SMG_m3_z18_phi20

SMG_SMG_m3.5_z18_phi20

SMG_SMG_m4_z18_phi20

SMG_SMG_m4.5_z18_phi20

SMG_SMG_m5_z18_phi20

SMG_SE1_m3_z18_phi20

SMG_SE1_m3.5_z18_phi20

SMG_SE1_m4_z18_phi20

SMG_SE1_m4.5_z18_phi20

SMG_SE1_m5_z18_phi20

SMG_SE2_m3_z18_phi20

SMG_SE2_m3.5_z18_phi20

SMG_SE2_m4_z18_phi20

SMG_SE2_m4.5_z18_phi20

SMG_SE2_m5_z18_phi20

Table 7. Interference Volume values (mm3) when Master Gear meshes with Master Gear, Erred Gear 1, and

Erred Gear 2 for Stub Tooth Dimension System

Angle

of

Rotatio

n (°)

Maste

r

Gears

[SMG

]

SMG_

SE1_

m3_

z18_

phi 20

SMG_

SE1_

m3.5_

z18_

phi 20

SMG_

SE1_

m4_

z18_

phi 20

SMG_

SE1_

m4.5_

z18_

phi 20

SMG_

SE1_

m5_

z18_

phi 20

SMG_

SE2_

m3_

z18_

phi 20

SMG_

SE2_

m3.5_

z18_

phi 20

SMG_

SE2_

m4_

z18_

phi 20

SMG_

SE2_

m4.5_

z18_

phi 20

SMG_

SE2_

m5_

z18_

phi 20

0 0 0.2590 0.3526 0.4604 0.5828 0.7194 0.7310 0.9950 1.2994 1.6446 2.0304

1 0 0.2583 0.3517 0.4594 0.5814 0.7178 0.7495 1.0202 1.3324 1.6864 2.0819

2 0 0.2935 0.3995 0.5219 0.6605 0.8154 0.8449 1.1499 1.5020 1.9009 2.3468

3 0 0.3476 0.4731 0.6181 0.7822 0.9658 0.9557 1.2989 1.6992 2.1506 2.6550

4 0 0.3651 0.4969 0.6492 0.8215 1.0143 1.0238 1.3937 1.8201 2.3036 2.8439

5 0 0.3665 0.4988 0.6516 0.8246 1.0181 1.0306 1.4028 1.8323 2.3189 2.8629

6 0 0.3651 0.4971 0.6492 0.8217 1.0144 1.0261 1.3965 1.8242 2.3087 2.8504

7 0 0.3497 0.4759 0.6216 0.7867 0.9713 0.9646 1.3124 1.7150 2.1705 2.6796

8 0 0.2963 0.4032 0.5267 0.6666 0.8229 0.8558 1.1641 1.5215 1.9256 2.3774

9 0 0.2585 0.3518 0.4592 0.5816 0.7181 0.7556 1.0279 1.3433 1.7001 2.0989

10 0 0.2588 0.3522 0.4602 0.5824 0.7190 0.7300 0.9936 1.2978 1.6426 2.0638

11 0 0.2585 0.3518 0.4624 0.5816 0.7181 0.7556 1.0289 1.3677 1.7001 2.0989

12 0 0.2963 0.4032 0.5402 0.6666 0.8229 0.8558 1.1656 1.5215 1.9256 2.3774

13 0 0.3497 0.4759 0.6303 0.7867 0.9713 0.9646 1.3137 1.7150 2.1705 2.6796

14 0 0.3650 0.4971 0.6495 0.8217 1.0144 1.0261 1.3968 1.8242 2.3087 2.8504

15 0 0.3664 0.4988 0.6514 0.8246 1.0181 1.0306 1.4029 1.8323 2.3189 2.8629

16 0 0.3655 0.4969 0.6490 0.8215 1.0143 1.0238 1.3934 1.8201 2.3036 2.8439

17 0 0.3548 0.4731 0.6074 0.7832 0.9658 0.9557 1.3003 1.6992 2.1506 2.6550

18 0 0.3043 0.3995 0.5090 0.6605 0.8154 0.8449 1.1493 1.5020 1.9009 2.3468

19 0 0.2602 0.3517 0.4595 0.5814 0.7178 0.7495 1.0198 1.3324 1.6864 2.0819

20 0 0.2590 0.3526 0.4604 0.5828 0.7195 0.7310 0.9950 1.2994 1.6446 2.0304

5. Result and Discussions

Based on the values of interference volume values for different cases of change of module and pitch

error as reported in table 5 and table 7 for standard tooth dimension system and stub tooth dimension

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

8

system respectively, various graphs are plotted between the angle of rotation on x axis and the

interference volume values on y axis, respectively.

a. Figure 2 and Figure 3 shows the graph between interference volume values and rotation

angle of gear pair for 1% and 2% pitch error cases with module changes from 3 to 5 mm

respectively for standard tooth dimension system. The x axis contains the rotation angle in

degree (°) and the y axis represents the interference volume values in cubic mm.

b. Similarly, the graph between interference volume values and rotation angle of gear pair for

1% and 2% pitch error cases with module changes from 3 to 5 mm for stub tooth

dimension system is shown in Figure 4 and Figure 5, respectively. The x axis contains the

rotation angle in degree (°) and the y axis represents the interference volume values in

cubic mm. The angle of rotation is 20° since the curve repeats after 20° for 18 number of

teeth.

c. In this paper the effects of variation of module on TE along with pitch error in gear is

considered for the analysis purpose.

Figure 2. Graph between interference volume in cu. mm and angle of rotation (°)
for analysing the effects of change of Module (3, 3.5, 4, 4.5 and 5) on TE with pitch

error of 1% (Master Gear & Erred Gear 1). [Standard Tooth Dimension System]

Figure 3. Graph between interference volume in cu. mm and angle of rotation (°)
for analysing the effect of change of Module (3, 3.5, 4, 4.5 and 5) on TE with pitch

error of 2% (Master Gear & Erred Gear 2). [Standard Tooth Dimension System]

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

9

Figure 4. Graph between interference volume in cu. mm and angle of rotation (°)
for analysing the effects of change of Module (3, 3.5, 4, 4.5 and 5) on TE with pitch

error of 1% (Master Gear & Erred Gear 1). [Stub Tooth Dimension System]

Figure 5. Graph between interference volume in cu. mm and angle of rotation (°)
for analysing the effects of change of Module (3, 3.5, 4, 4.5 and 5) on TE with pitch

error of 2% (Master Gear & Erred Gear 2). [Stub Tooth Dimension System]

Following are the observations drawn from the graphs of interference volume values and angle of

rotation (figure 2 to figure 5)

1. There is a fluctuation in the values of interference volume, when angle of rotation changes from 0

to 20° (start and end of mesh cycle), there are some points having peak values of interference

volume. This means that the TE is not constant for angle of rotation. The points having peak values

are the point of concerned for the noise and vibrations in gears. This is observed for both the tooth

dimension system i.e., standard tooth dimension system and stub tooth dimension system.

2. As the module changes from 3 to 5 mm, the interference volume values increases and hence the TE

increases in standard as well as in stub tooth dimension system.

3. The interference volume values are found to be more in case of 2% pitch error than 1% pitch error

and consequently the TE is more in 2% pitch error case. This is also observed in both tooth

dimension system.

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

10

4. The graph is identical about its mid-point. i.e., it repeats after 10° for 18 number of teeth for both

standard tooth dimension and stub tooth dimension system.

5. It is also observed that the interference volume or TE is more in standard tooth dimension system

than stub tooth dimension system.

The work of the paper/outcomes are in line with the work of researchers presented in [3, 4, 6, 12, 14,

17]

6. Conclusions

In this work the consequences occurring due to the changes in gear parameter module on TE for spur

gear pair with pitch error, using the interference volume method is presented. The spur gear without

pitch error and with pitch error consisting of involute profile for standard tooth dimension and stub

tooth dimension systems are modelled and meshed/assembled in SOLIDWORKS software. The

interference volume values obtained from the meshing of gear pairs are recorded for one mesh cycle.

Various graphs were plotted between the angle of rotation and interference volume values. It is found

from the analysis that, as the module increases the TE also increases, TE also increases as the pitch

error increase from 0 (no pitch error) to 2%. The effect of variation of module and pitch error is more

in the standard tooth dimension system than that in the stub tooth dimension system.

References

[1] Beghini M, Presicce F and Santus C 2004 A method to define profile modification of spur gear

and minimize the transmission error Technical Paper American Gear Manufacturers

Association (Alexandria, Virginia) pp 1-9

[2] Hotait M A and Kahraman A 2013 Experiments on the relationship between the dynamic

transmission error and the dynamic stress factor of spur gear pairs Mech Mach Theory 70

116–128

[3] Kohler H and Regan R 1985 The Derivation of Gear Transmission Error from Pitch Error

Records Proc. Inst. Mech. Eng. Part C 199 195-01.

[4] Siyu C. and Jinyuan T. 2017. Effects of staggering and pitch error on the dynamic response of a

double-helical gear set J. Vib. Control 23 1844-56.

[5] Velex Ph, Chapron M, Fakhfakh H, Bruyère J and Becquerelle S 2016 On transmission errors

and profile modifications minimising dynamic tooth loads in multi-mesh gears J. Sound Vib.

379 28–52.

[6] Nina Sainte-Marie 2016 A transmission-error-based gear dynamic model: Applications to

single- and multi-mesh transmissions (Doctoral dissertation, Université de Lyon)

[7] Sánchez Miryam B, Pleguezuelos M and Pedrero J 2019 Influence of profile modifications on

meshing stiffness, load sharing, and transmission error of involute spur gears Mech Mach

Theory 139 506–25

[8] Palermo A, Britte L, Janssens K, Mundo D and Desmet W 2018 The measurement of Gear

Transmission Error as an NVH indicator: Theoretical discussion and industrial application

via low-cost digital encoders to an all-electric vehicle gearbox Mech Syst Signal Process 110

368–89

[9] Shweiki S, Rezayat A, Tamarozzi T and Mundo D 2019 Transmission Error and strain analysis

of lightweight gears by using a hybrid FE-analytical gear contact model Mech Syst Signal

Process 123 573–90

[10] Zhiying C and Pengfei J 2020 Research on the variation of mesh stiffness and transmission error

for spur gear with tooth profile modification and wear fault Eng. Fail. Anal. 122 2020

105184

[11] Pleguezuelos M, Sánchez Miryam B, and Pedrero JoséI 2020 Control of transmission error of

high contact ratio spur gears with symmetric profile modifications Mech Mach Theory 149

103839

IC-MAME 2021
IOP Conf. Series: Materials Science and Engineering 1225 (2022) 012036

IOP Publishing
doi:10.1088/1757-899X/1225/1/012036

11

[12] Padmasolala G., Lin H.H., Oswald F.B. 2000 Influence of tooth spacing error on gears with

and without profile modifications (NASA/TM-2000-210061 PTG14436)

[13] Bruyere J, Velex P, Guilbert B, and Houser D R 2019 An analytical study on the combination of

profile relief and lead crown minimizing transmission error in narrow-faced helical gears

Mech Mach Theory 136 224-43

[14] Handschuh M J 2013 An Investigation into the impact of random spacing errors on static

transmission error and root stresses of spur gear pairs (Master of Science Thesis, The Ohio

State University)

[15] Bartosova D, Otipka V and Rehak K 2018 Determination of transmission error in spur gear by

numerical approach Vib. Proced. 19 284-88

[16] Park C I 2019 Tooth friction force and transmission error of spur gears due to sliding friction J.

Mech. Sci. Technol 33 1311-19

[17] Somani S K 2004 Transmission Error in Spur Gear (PhD Thesis, Institute of Engineering &

Technology, Devi Ahilya University, Indore)

[18] Bruzzone F, Maggi T, Marcellini C and Rosso C 2021 2D nonlinear and non-Hertzian gear teeth

deflection model for static transmission error calculation Mech Mach Theory 166 104471

[19] Duan T, Wei J, Zhang A, Xu Z and Lim T C 2021 Transmission error investigation of gearbox

using rigid-flexible coupling dynamic model: Theoretical analysis and experiments Mech

Mach Theory 157 104213

[20] Benaïcha Y, Joël P-L, Beley J-D, Rigaud E, Thouverez F 2021 On a flexible multibody

modelling approach using FE-based contact formulation for describing gear transmission

Mech Mach Theory 167 104505.

[21] Ambaye, G.A. and Lemu, H.G. 2020 Effect of backlash on transmission error and time varying

mesh stiffness Proc. Int. Work. of Advanced Manufacturing and Automation (Springer,

Singapore) pp18-28.

[22] Tao L, Tian D, Tang S, Wu X and Li B 2021 Dynamical modelling and simulation of spur gears

with flank pitch error Res. Sq. 1 (Preprint rs.3.rs-534359/v1)

[23] Pleguezuelos M, Sánchez M B and Pedrero J I 2021 Analytical model for meshing stiffness,

load sharing, and transmission error for spur gears with profile modification under non-

nominal load conditions Appl. Math. Model. 97 344–65

[24] Chin Z Y, Smith W A, Borghesani P, Randall R B and Peng Z 2021 Absolute transmission

error: A simple new tool for assessing gear wear Mech Syst Signal Process 146 107070

[25] Karma V K, Maheshwari G and Somani S K 2020 Analysis of effects of pressure angle and

pitch error variation on transmission error in spur gear using interference volume method Int.

J. Adv. Eng. Sci. Technol.15-22

[26] Maitra Gitin M 2001 Handbook of Gear Design 2nd Edn (Tata McGraw Hill Publishing

Company Limited New Delhi)

Automated Software Engineering

Source Code Change Analysis with Deep learning based programming model
--Manuscript Draft--

Manuscript Number: AUSE-D-21-00066R1

Full Title: Source Code Change Analysis with Deep learning based programming model

Article Type: S.I. : Software Engineering for Parallel Programming

Keywords: Change Impact Analysis, Abstract syntax tree, Path2Vec, Deep learning, word
embedding, distance metrics, attention, un-parsing.

Corresponding Author: Babita Pathik, Phd Scholar
DAVV: Devi Ahilya Vishwavidyalaya
Indore, INDIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: DAVV: Devi Ahilya Vishwavidyalaya

Corresponding Author's Secondary
Institution:

First Author: Babita Pathik, Phd Scholar

First Author Secondary Information:

Order of Authors: Babita Pathik, Phd Scholar

Meena Sharma, PhD

Order of Authors Secondary Information:

Funding Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Reviewer #1:

1. In section 4, paragraph 3, the authors explained the flow of their process in four

parts. Instead of writing steps as 'one', 'two' etc., they should give a number or can

write step 1, step 2, etc., for clarity.

Response: Done

2. In figure 4, two parts (a) and (b) are there, but the authors did not consider them

separately in the paragraph. It is suggested to mention them in the text.

Response: Done

3. ALGORITHM 1 and ALGORITHM 2 caption is missing. Give proper caption

based on the task of these algorithms.

Response: Captions are added

4. Some references are not in the prescribed format. The formatting of all the

references should be uniformed.

Response: Reference formatting is Done

5. The author should add some latest works of literature in the paragraphs of the

introduction section, especially from 2019-20.

Response: Latest research papers are added.

6. Sub-heading 5.2 'Results' should be renamed according to the experimental

evaluation like the other paragraph's heading. That looks appealing.

Response: Done

7. I recommend the authors to proofread the manuscript with a native English

speaker.

Response: Done

8. Discuss the comparison of the accuracy of the relevant studies

Response: A comparative table is added.

Review #2:

1. Add some more references in support of the work in the literature review section.

Briefly explain these references in that section that will show the novelty of your

work.

Response: Latest references are added along with the limitations of existing work in

tabular form.

2. The meaning of variables is not clear. Readers will be confused. The authors

should explain them properly.

Response: Detailed explanation is added.

3. Write the caption and number separately for figure 11, as it seems the caption is

missing.

Response: Done

Response to Reviewer Comments

4. Authors have used abbreviations in some places and their full form somewhere.

Once the abbreviation is declared, use it throughout the paper where it is required.

Response: Correction is done.

5. Discriminate the use of LSTM and Bi-LSTM for the proposed approach.

Response: Done

6. In figure 3, a very small code segment has been taken; why? Give reason for that.

Response: The proposed model is also applicable to large program code, but we

portray results on small code segments due to the large space requirement for graphical

representation of ASTs.

7. The conclusion part should include result-specific data or focus on the outcome of

work done.

Response: The results are included in the conclusion part.

Review #3:

1. The drawbacks of conventional techniques should be described clearly. The

authors should emphasize the difference with other methods to clarify the

position of this work further. The author can prepare a table that will help to

understand.

Response: Information is added in a tabular form. Refer Table 1.

2. The attention mechanism should be explained in more detail, supporting your

work. A separate sub-section can be added in the main section.

Response: A separate section is added explaining the Attention mechanism (section.

4.6.1)

3. What are the values for tuning Hyperparameter? Specify the values for the

parameters that are mentioned in the last paragraph of section 5?

Response: Hyperparameter values are mentioned in the new paragraph.

4. In figure 6, the description of the node's type is missing. It will better to use a

table in place of the figure to describe the nodes. For example, ClassDef → ?????.

Response: The description of Figure 6 is shown in the form of a table. (refer Table 2)

5. In section 3, subsection 3.1 abbreviation EIS is not described before. Although

before using the abbreviation, its description must be written.

Response: Done

6. The term IABLSTM is missing from the abstract or title. If it is significant in this

paper, it should be added in the abstract part. The authors should write its

expanded form also for more clarity.

Response: Done

7. Authors are advised to present a discussion on the accuracy of similar studies.

Response: A detailed description is added in the form of a table. (refer Table 5)

Reviewer #4:

1. In this manuscript, the contributor has not emphasized how the Deep Learning

Framework is utilized to handle industrial manufacturing. A deep learning

framework is provided in diagram 1, but its incorporation with the testing and its

relevant information is missing.

Response: Thanks for your suggestion. Deep Learning Framework is fit for industrial

manufacturing for a reason dealing and manufacturing substantial data. This is useful

where these data are used efficiently. As far as our paper is concerned, the results of

the framework can be considered for regression testing, but we have not extended it in

this article. We have focused on finding code changes and their impacts.

2. How the two purposes achieve it with the loss function is completely loaded with

the equations. Therefore, it is not easy to follow. Applying the operational flow of

approach Path2Vec provided in a diagram appears well, but its implementation

in this manuscript and its functional description are not justified.

Response: Done

3. Moreover, the usage of the algorithm along with the data by several processes they

are general information storage, implementation of the user interface, privacy

design, and support design and its necessary information, are not presented well.

Response: The proposed algorithm is specifically covering the methodology to achieve

our objective of change detection. We have not covered the above mentioned area of

software products in this article.

4. Besides, there is no clear description provided for how the Effective Inspection

System for the smart manufacturing industry and its discussions are not

considered in this manuscript; therefore, it deficits in studying the central theme

of this work.

Response: The idea presented in this article will facilitate the software maintenance

process in the information technology industry. Software engineers and developers also

take help for regression testing.

5. In the result analysis, how the Receiver Path2Vec is used to evaluate the rate and

its necessary information is not provided. Furthermore, how the blob, edge,

corner, and spots are depicted in diagram 8 are not elucidated.

Response: As two additional diagrams are added as per review, so Diagram 8 has

become diagram 10. It is updated with the necessary information. In this presented

work, IABLSTM is evaluated as a whole on accuracy rather than Path2Vec separately.

Rate is not considered as evaluation.

6. The conclusion does not summarize how the images are captured to analyze the

manufacturing system's deficits efficiently.

Response: This review seems to be irrelevant with respect to the presented work as we

have neither captured any images and nor analyzed any manufacturing system.

Review #6

1. To support the novelty of the presented work, a clear comparative study is

required for a crisp conclusion. Need to refer to more recent papers to fulfill the

said task.

Response: Recent papers are added (2019, 2020). A table is added showing the

limitations of various existing methods.

2. Hyper-parameter tuning is specifically not mentioned. A detailed description is

equired for more clarity.

Response: Detailed description about Hyper-parameter tuning is added.

3. A comparative analysis based on the performance of the proposed model must be

provided by the authors.

Response: A table is added for comparative analysis of presented work with existing

methods based on performance.

4. In fig.2 LSTM network is missing from the overall working flow, even though it is

a part of the proposed approach, that should be included in the given figure.

Response: Figure 2 is modified with said content.

5. The description of variables or the meaning is not given properly. The description

gives a better understanding and authors must focus on this point.

Response: All the considered variables are described for understanding.

6. Authors have given Figure 1 for the LSTM network. However, the given figure

seems to be a standard figure. Authors are required to give an explanation about

the figure in the interest of the readers of the journal. As many parameters are

given in the figure, authors are required to give a short explanation about them.

Response: The explanation of Figure 1 with all parameters and variables is done.

7. In the text authors have mentioned "Figure 1 depicts the overall architecture of

the LSTM network". However, this representation could be better in reference to

the author's work.

Response: We have replaced the text with a better statement.

8. Authors have used multiple abbreviations. Either authors should prepare the

table of abbreviations or each abbreviation must be written in full form at its first

instance.

Response: All the abbreviations have been elaborated before their use.

9. Figure 2 has a caption as "Figure 2. Overall working flow of our approach

IABLSTM". I recommend that this caption can be more comprehensive to

enlighten the details.

Response: We have updated the caption in detail in Figure 2.

10. There are divisions of Figure 4 (a) and Figure 4 (b) and a separate caption is given.

However, I recommend that there should be only one caption for Figure 4 where

both the captions can be referred using (a) and (b) and similarly figures can be

referred through (a) and (b). This is similar to the Figure 3 used in the manuscript.

Response: Only one caption is written for Figure 4(a) and (b)

11. Equation 10 is used in the text. But what about other equations? Other equations

should also be used in the text.

Response: All the equations (1-13) are used and cited in the text.

12. Authors are required to discuss what is BOW, TF, or TF-IDF and how these are

used?

Response: We have not evaluated the considered program and dataset on above said

technique. We have applied the concept of Word2Vec to proposed a new concept of

Path2Vec in this article. We have mentioned the background of all of these

terminologies in section 3, 2nd paragraph.

13. The authors are required to discuss the available relevant methods.

Response: Done in the form of tables. (refer Table 1)

14. The authors are required to compare their results with the current state-of-the-

art methods.

Response: Done in the form of tables. (refer Table 5)

15. Include more relevant work in the related work section.

Response: Done

16. Overall recommendation is to improve the language to increase the readability of

the paper.

Response: Done

Review #7

1. The difficulties faced in the existing system based on object-oriented based parallel

programming source code have not depicted along with their constraints.

Response: Done (refer section 7).

2. When compared to Path2Vec, how much accuracy is achieved by the conventional

models despite of generating abstract syntax tree?

Response: Done (refer Table 5).

3. What are the characteristics of change impact analysis (CIA) software involved in

identifying the changes?

Response: Static Code analysis is performed on object-oriented method as granularity

level.

4. If the software change is implemented after the maintenance, then how do the

change impacts the backend and frontend source code and what are the

drawbacks that occur due to the impact made on source code?

Response: As we have proposed a methodology for change detection if it occurred and

applied it to small code segments. We have also applied our approach to the AST

dataset to verify the correctness of the model proposed, but we have not considered or

coordinated with backend and frontend source code. Source code change impact

analysis is part of the maintenance process, and it definitely affects the related modules

(backend and frontend). Added this point in section 8 as future work.

5. lack of information concerning the structure of source code tree illustration

utilized by the Abstract syntax tree (AST).

Response: Done

6. While representing about the contribution of this paper related to the change

detection in source code Bi-LSTM is suggested but in abstract section only

Path2Vec approach is described what about the Bi-LSTM method?

Response: Done

7. The author did not state whether the proposed Word2vec word embedding

technique is either a supervised or unsupervised model.

Response: Done

Although word embeddings are considered unsupervised, they are trained using a

fictitious supervised learning problem.

8. There is no sufficient information provided for the existing system LSTM and

MLP architecture for processing abstract syntax tree.

Response: Done

9. How does the tokens sequence is generated for the input data and how does it maps

into vector through embedding layer?

Response: Done

10. Comparative data between several word embedding techniques BOW, TF-IDF,

Word2Vec have not elucidated in this paper.

Response: We have not evaluated above said technique on considered data. We have

applied the concept of Word2Vec to proposed a new concept of Path2Vec in this article.

11. Working procedure of Bi-LSTM neural network approach is not explained well

and seems to be difficult to understand without testimonials. The function of

softmax activation layer and its benefits is not represented in this paper.

Response: Explained with separate section.

[Type here]

Source Code Change Analysis with Deep learning based programming model

Babita Pathik ∙ Meena Sharma

Abstract Analyzing the change in source code is a very crucial activity for object-oriented parallel

programming software. This paper suggested an Impact analysis method with Attention BiLSTM

(IABLSTM) for detecting the changes and their affected part in the object-oriented software system.

Classical approaches based on control flow graph, program dependence analysis, latent dirichlet allocation,

and data mining have been used for change impact analysis. A Path2Vec approach is presented in the paper,

combining a deep learning technique with word embedding to analyze and identify the change. The paper

considers two versions of a python program for experiment and generates the abstract syntax tree (AST).

Then extract the path to produce a token sequence. Next, convert the token sequence into unique vectors

by applying a word embedding layer. The BiLSTM network encodes the sequence into a vector

representation. After that, compare the embedded output with the use of cosine distance metrics. We trained

the neural network model with the embedded outcome. Then decode the resultant token sequence into a

path of AST. Finally, convert the AST path back to code using the un-parsing technique. To strengthen the

parallel programming based proposed model, we combined the attention mechanism to emphasize and

detect the differences in the code. The model is detecting the change of code efficiently. The experimental

results show that our proposed model's change detection accuracy increases significantly compared with

other conventional models for change impact analysis. The proposed method can also be applied for impact

analysis on object-oriented based parallel programming. The empirical evaluation shows that the model

outperforms change detection with approximately 85% validation accuracy.

Keywords: Change Impact Analysis, Abstract syntax tree, Path2Vec, Deep learning, word embedding,

distance metrics, attention, un-parsing.

Babita Pathik (✉)

IT, Institute of Engineering & Technology, DAVV, India

e-mail: babitapathik@gmail.com

Meena Sharma

Department of Computer Engineering, Institute of Engineering & Technology, DAVV, India

e-mail: msharma@ietdavv.edu.in

Revised Manuscript Click here to
access/download;Manuscript;Revised_Paper_290821_AUSE.do

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/ause/download.aspx?id=49681&guid=6eff381c-ab98-4fc5-97cb-8e712a442eb3&scheme=1
https://www.editorialmanager.com/ause/download.aspx?id=49681&guid=6eff381c-ab98-4fc5-97cb-8e712a442eb3&scheme=1
https://www.editorialmanager.com/ause/viewRCResults.aspx?pdf=1&docID=2332&rev=1&fileID=49681&msid=af6bb36d-2ffa-4f42-97eb-77505eeb7d10

[Type here]

1 Introduction

Due to the continuous growth of computer based applications and usage, the maintenance of the software

has become a crucial task. For reducing the maintenance cost and effort, it is necessary to find the changes

and their impact on any part of the code very efficiently. Software change impact analysis enables testers

to reduce the maintenance cost by identifying changes and their impact on the code. Once the change is

implemented in code, it can affect anywhere any part of the code. This effect is commonly known as the

ripple effect. The change in software may cause many side effects. Sometimes it may cause errors too. The

object-oriented program comprises influential behavior. The object-oriented paradigms have programming

concepts, e.g., polymorphism, inheritance, abstraction and encapsulation. The change analysis techniques

take these concrete features of object-oriented programs into account and generate potentially impacted

classes, class methods or class fields. In order to help testers and developers, it is reasonably necessary to

analyze the changes and their impact on code efficiently and accurately. It may reduce testing costs up to

some extent. Change Impact Analysis(CIA) of software is a process of finding changes and their potential

impacts on the part of the software system (Bohner et al. 1996).

This paper focuses on finding all the changes in the revised version of the software by evaluating both

versions using a parallel programming model. The presented work will facilitate the software maintenance

process in the information technology and software industries. The model framework is useful for software

engineers to perform regression testing. The granularity of a program may be file level, code level, function

level, change level. We choose the code level of the program for an experiment in this paper. The CIA

technique suggested by various researchers for static code analysis gives the approximate result. Metrics

like McCabe and CK are not sufficient to analyze the basic structure of the code. Traditional methods like

software edit history (Kitsu et al. 2013), repositories mining (Moldrez et al. 2017), Control call graph (Badri

et al. 2005), Program Dependence Graph (PDG) (Baah et al. 2010), Aspect-Oriented Dependence Flow

Graph (Ahmad et al. 2014) considered syntax structure and its relationship among function and classes like

elements. But these methods did not consider semantic information instead.

There are some more techniques used by various researchers, such as LDA (Thomas et al. 2010),

Latent Semantic Indexing (LSI) (Gethers M. et al. 2011). These improved the performance of code change

analysis up to some extent. A deep learning model with a framework of encoder-decoder is applicable in

source code generation and its modeling, according to Le TH et al. (2020). Meng and Liu (2020) present a

BiLSTM network with a self-attention layer to detect source code.

The syntactic and semantic information are the features that contain such structural and semantic

information that may advance the performance of impact analysis. An AST of every program has detailed

semantic information and conceives its syntactic structure (Alon et al., 2018, Wang W et al., 2020). A

neural network based on AST has been developed (Zhang J. et al., 2019). The change and change impact

can be searched and analyzed more accurately with the help of the AST of the program code. The semantic

information helps to find the difference between two different versions of the code. Some change does not

affect other code. Those set of change is termed as the actual impact set (AIS). That can be traceable by

semantic information. Extract all the paths from the generated AST for further process. The paths are

extracted as a whole then each of which is separated by splitting them. Each path is converted in vector

representation.

Following are the significant contributions in this paper:

(1) We suggest a BiLSTM based change detection that learns useful features related to the source code's

semantic and syntactic information. BiLSTM with attention is used for training and named IABLSTM.

(2) We do parsing on a program to evaluate the syntax tree and follow the path of the tree in a depth-first

traversal manner. Split the path to generating the tokens.

(3) We apply Path2Vec that uses the Word2vec word embedding technique to convert code’s ASTs into

high dimensional real-valued vectors taken as input to the LSTM based model for training.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The rest of the paper is organized as section two briefly summarizes the work achieved by various

researchers in CIA and software code analysis. The background of our work is mentioned in section three.

The fourth section describes the proposed methodology. The fifth section contains the experimental setup

with results, and finally, the sixth section concludes the paper with expected future work.

2 Literature Review

The motivation behind this work is that if changes and their consequences can be detected efficiently, the

testing and maintenance costs can be reduced proportionally. It is always a thrust area of research due to

the industry's need. Here we brief the work presented by the author, which we have referred to in our work.

Table 1 briefs the approaches and threats studied from the above articles. Angerer et al. (2019) presented a

CIA approach, which determines the source code's impacted element. They used to control flow and data

flow analysis for their approach. Goknil A et al. (2016) utilize semantics of requirements relations, change

requests and traces between requirements and architecture to improve CIA in software architecture. Musco

V et al. (2016) present LCIP, a learning system that uses historical data to forecast future impacts. The

artifacts investigated for CIA are object-oriented software methods. A multi-level word and character

embedding were adapted to record the semantics of code modifications and reviews. The embeddings are

trained using a suggested attentional deep learning model (Siow JK et al., 2019). Tiwang et al. (2019)

suggested a deep learning model for source code generation and completion. AST is processed for structure

evaluation of source code. They utilize LSTM, deep learning, and MLP architectures to generate the model.

 A learning-based approach is presented for detecting code clones. Code analysis enables the automatic

connection at lexical and syntactic levels of patterns mined with a system based on deep learning (White

M et al., 2016). Using source code analysis techniques, Eid S et al. (2020) proposes a novel approach to

automatically identify probable code changes that result in performance degradation between system

versions. A deep learning method is combined with word embedding in a framework for predicting the

program's defect (Liang et al. 2019). Token sequence extracted from the generated AST. These tokens are

mapped with a real-valued vector using a mapping table. They provided unsupervised training using the

word embedding model and LSTM network using vector sequences and labels.

Table 1. Proposed approach and limitations

Author Proposed Approach Limitations

Goknil A. et al.

(2016)

To identify architectural aspects for the change

impacts in architecture requirements, employ the

formal semantic of requirement relations and traces

between Requirement & Architecture.

Returns the impact on new requirement only if an

existing requirement relating to a new requirement

exists.

Angerer et al.

(2019)

Configuration-aware CIA and interprocedural

approach using conditional system dependence

graph

The assessment is based on a less customizable

code base; some alternative functionalities are not

included. It could not be applied to full code.

Musco V et al.

(2016)

CIA for object-oriented methods artifacts presented

by considering Class-Hierarchy-Analysis call graph
Valid only for Java software, even only for the

studied projects.

Siow JK et

al.(2019)

Developed a multi-level word and character

embedding technique to express the semantics of

code modifications and reviews.

Negative data may exist in the training set, while

actual positive data is available in the test set. The

model is learning some sections of the test set in

the training phase.

Eid S et al.

(2020)

Identify probable code changes for test cases with a

genetic algorithm-based performance tool.

The approach has one basic problem: it cannot

identify newly added, instead of updated, source

code performance regressions.

 Dam HK et al. (2018) designed a prediction model capable of automatically learning and utilizing

attributes for representing and predicting defects in source code. The approach is based on a sophisticated

deep learning, tree-structured LSTM that corresponds directly to the source code's AST representation.

LSTM with an attention mechanism based intelligent model proposed by Rahman et al. (2020) for source

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

code completion. The model classifies the erroneous source code and clean code. The goal of the work is

to detect the error in code line by line. Meng and Liu (2020) presented a unique model for detecting source

code with a self-attention layer based on a BiLSTM network. The model encodes the series of statement

vectors using the model, which is a well-known deep learning framework. The model maintains both the

syntactic and semantic properties of the source code during the encoding process.

 From the briefing of the literature survey, we can conclude that syntactic and semantic features help

source code analysis. The method proposed here is generalized and applicable in any source code except

parsing of the code. In this work, we get an AST to extract both the features information. Our model, unlike

others, is using BiLSTM with self-attention for detecting the change code.

3 Background

3.1 Change Impact Analysis

Change Impact Analysis is a crucial activity in the software development process due to software evolution.

There are so many changes that emerge in software during maintenance. The conception of the CIA is to

recognize the changes and their side effects. The impacted part needs to be analyzed effectively to reduce

maintenance costs. For large scale software, the CIA is a rigorous task. Assessment of Estimated Impact

Set (EIS) is the CIA's primary goal, and it must be as close to AIS. Several researchers suggest various

methods to detect impacted parts in source code, including the control call graph and other CIA techniques.

3.2 Abstract Syntax Tree

Abstract Syntax Tree (Büch et al. 2019) is a mode of representing the source code in graphical notations.

AST is used by compilers, which reads the code by parsing it and generate the object binaries. It is a tree

that represents the abstract syntactic structure of a selected source code. AST completely restores the

structural information of the given source code. Each node of the tree corresponds to the essential elements

of the code. It efficiently characterizes the programs with any source code and is widely adopted in the

software engineering field. AST holds syntactic and semantic information in an exemplary manner and is

frequently used by researchers and IT industries. The purpose is to extract hidden information from the

code. In this paper, we traverse the tree to process the path.

3.3 Word Embedding

Word embedding is a broadly accepted technique for text in the field of natural language processing. (Hoang

et al. 2020). It is a vector representation of words of given documents. Word embedding is mainly a feature

extraction technique used in text processing (Hameed et al. 2020). A vector of real value represents each

word of the document. We use embedding to encode the token sequence and map it into a vector. Then

these vectors are required as input for our model. There is various embedding technique we have gone

through, such as BOW, TF-IDF, Word2Vec. We add an embedding layer to our network to extract features.

 The BOW model is often employed in the categorization of documents, and each word is used as a

training feature for a classifier. BOW doesn't work very well if statements have the same meaning but only

with different terms. TF-IDF is a statistic that reflects the importance of a word in a corpus of documents.

Word2Vec model is used for vector representations of words known as word embedding. This is done in a

preprocessing phase through which the acquired vectors are put into a NN model for predictions and some

other task. This model utilizes the semantics of words. We extend the working of the Word2Vec model for

our method accordingly.

The purpose of this training is to drag the semantic difference between paths. Embedding layer added

as part of a neural network model. The layer is usually built for dealing with natural language processing

tasks, specifically classification, language modeling. The document should be preprocessed for encoding.

The vector size is specified with a particular dimension such as 50, 100, or 300 and becomes part of the

model. One-hot encoded word is mapped to the word vectors through mapping. The network takes the

encoded input sequentially.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The widely used embedding method is Word2Vec, an efficient statistical method (Meng and Liu,

2020). Refer the program to as a text document. Skip-gram and Continuous Bag of words (CBOW) are the

two architectures on which Word2Vec works. The word wp is predicted in CBOW, if wp-2, wp-1, wp+1,

wp+2 are given context or words. In this work, a token is a path sequence that is a combination of nodes.

We adopt the Word2Vec word embedding technique to encode the targeted token. The basic reason for

selecting this technique is to retain the order of the words intact. It is the way we can maintain the sequence

of the token

3.4 LSTM Network

LSTM is a gated version of RNN (Liang et al., 2019). It is well suitable to process sequential data. LSTM

clenches mainly three gates as input gate (it), forget gate (ft), and output gate (ot). The working of the cell

state is transmitting relevant data through a sequence forming a chain. The cell state remembers the material

that comes out of the previous time step during the processing in sequences. Data is collected or erased into

the cell state via gates as far as the cell state comes into the movement. The neural network-integrated gates

determine which cell state data is enabled.

The first gate is the "forget gate," which decides which information should store and discard. The

current state input and information from the previously hidden state pass by the sigmoid function. The

function returns the value between 0 and 1. If the value it returns is nearer to 0 means inhibiting the

information, and if the value is closer to 1, keep and pass all information. We get the value by equation (2).

We've got the input gate to modify the cell state by equation (1). To further control the network,

transfer the current input and hidden state output through the tanh function, which ranges the output values

from -1 to 1. Then the sigmoid result is multiplied with the tanh output. To calculate cell state, we received

sufficient information. First, the pointwise multiplication is held between the cell state and forgot vector. If

values compound it near 0, it drops values in the cell state. Next, take the input gate’s output, and pointwise

addition is applied, which upgrades the cell state with new values found appropriate by the considered

neural network. The state is our new cell state and evaluated using equations (4) and (5).

The output gate is appropriate to determine the next hidden state using equation (3). For predicting the

value, the hidden state is having information about previous inputs. First, new input and the previously

hidden state transfer into the sigmoid function. Then transfer the recently changed cell state to the tanh

function. The sigmoid output is multiplied with tanh output to determine hidden state data with equation

(6). The hidden cell and new cell state are then passing to the subsequent stage. Fig. 1 depicts an internal

architecture of the LSTM cell.

Fig. 1 Internal working of an LSTM cell

The equations for the gates in LSTM are:

h
t

C
t-1

 C
t

h
t-1

 h
t

it

x
t

ft C’t

ot

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Input gate 𝑖𝑡 = 𝜎 (𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1)

Forget gate 𝑓𝑡 = 𝜎 (𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

Output gate 𝑜𝑡 = 𝜎 (𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3)

σ = Sigmoid function

𝑤𝑖/ 𝑤𝑓 / 𝑤𝑜 = Weight for the input/forget/ output gate neuron

ℎ𝑡−1 = Output of the previous hidden state is at time t-1

𝑥𝑡 = Current state input, i.e., at time-stamp t

𝑏𝑖/ 𝑏𝑓/𝑏𝑜 = Biases for the input/forget/ output gates

 New Candidate for cell state at time t : 𝐶’𝑡 = 𝑡𝑎𝑛ℎ (𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4)

Cell state at time t : 𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶’𝑡 (5)

Final output at t : ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (6)

𝐶𝑡−1 = Cell state at time t-1

𝑤𝑐 = weight for a new candidate

𝑏𝑐 = Bias for a new candidate

With cell state and the gates mentioned above, gratuitous information is automatically dropped by

LSTM cell as the time step grows. LSTMs are widely used in software engineering problems (Liang et al.,

2019, Meng and Liu, 2020) and natural language processing (Hameed and Garcia, 2020), where semantic

relation is essential. In the paper, we train the model using BiLSTM to learn source code.

3.5 BiLSTM

BiLSTM is an advanced form of RNN. These can significantly increase model performance when used to

solve sequence classification issues. The model consists of two LSTMs: one that takes the input in one

direction and the other in the opposite direction (forward and backward direction). BiLSTM significantly

improves the quantity of data presented to the network, which benefits the algorithm's context.

The BiLSTM is designed to achieve the objective of long term dependence at the moment around t.
Source code comprises contextual information that is important to spot potential issues. Each program has

its own context-sensitive syntax and semantics. The emergence of a different code segment is normally

relevant to both preceding or succeeding code. In the implementation of BiLSTM, bidirectional processing

runs given inputs in two directions; forward direction leads from past to future, and backward is from future

to past. We use this model two combined hidden states; one can preserve information from both the past

and future at any point in time.

3.6 Attention Mechanism

We can obtain hidden features of all time nodes in a series from the output of the BiLSTM network. We

insert an attention layer after the Bi-LSTM layer in order to improve the influence of crucial nodes. When

the attention mechanism is applied, critical nodes that are important for the sequence are aggregated

together to produce a sequence vector.

4 Proposed Approach

This section of the paper describes the overall working of our proposed approach. Multiple version of source

code is taken for experiment purpose to analyze the change. Our proposed IABLSTM is a system that

automatically traces syntactic features and semantic information from the source code through parsing to

extract key features to find change code.

Very first, we apply preprocessing on input source codes which involve the removal of comment lines.

Our target is to train the model with a different version of the same program with or without error and, after

that, successfully use it to detect changes by giving another version of the same program. Fig. 2

demonstrates the proposed method of IABLSTM.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The LSTM based approach has two working parts. The first one is the representative part, and the

second is the discriminative part. In the first part, we represent the code in dimensionality vector, which is

achieved with the following steps:

Step 1: Both versions' selected python source code is presented into ASTs by utilizing available AST tools.

These ASTs generate at the statement level.

Step 2: We perform pre-order traversal on the tree to extract path sequence with a granularity of statement.

Now we split the sequence path up to the leaf nodes.

Step 3: According to the deep-first traversal technique, each split path sequence is converted into a real-

valued vector with an LSTM encoder's help. All path fragment is transformed into an ordered set

of path vectors.

Step 4: The proposed model generates a final characteristic vector from a path vectors sequence through a

bidirectional LSTM (BiLSTM) encoder with the self-attention layer. A set of code vectors

calculated by applying cosine distance using this model is further loaded into the designated model.

The model predicts the probability of change for the pair of codes.

Fig. 2 A process diagram for the proposed IABLSTM approach with AST.

4.1 Code Preprocessing

Before training the model, we filtered raw source codes by removing unnecessary items. First, all irrelevant

elements have been eliminated from the code, such as new lines, comments (#), and tabs (\t). Then, every

remaining code element like keywords, numbers, functions, variables, classes, and characters have been

translated into sequences of terms. The filtered code was parsed through the parser.

4.2 Source Code Parsing

AST is a syntactical structure representation of a code as a tree. It is an intermediate representation of a

program during the construction of a compiler. The construction of AST is a part of parsing that is a

syntactic analyzer.

Fig. 3 Python programs for charging vehicle (a) first version (b) revised version

Multi Version

Source Code

AST

a

b c d e

f g h i

Invocation

and
Extracting

tree path

Splitting

path and

tokenizing

Processing AST

Vector

representation

Measuring

Distance

Transform

into path

Un-parsing

AST

Change

set

BiLSTM with Attention (IABLSTM)

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

(a)

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

 def charg(self):

 self.chrg_lvl = 100

 print('charged')

(b)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

We generate AST for a different version of a program to extract the various existing path. The semantic

analyzer utilizes the information provided by the AST. Every path ends with a leaf node. The leaf node or

terminal node contains tokens of the program code.

There are two small python codes given in Fig. 3(a) and 3(b) for the first and second versions,

respectively. Fig. 4(a) and 4(b) depict the AST of code given in Fig. 3(a) and 3(b), respectively. The

proposed model is also applicable to large program code, but we portray results on small code segments

due to the large space requirement for graphical representation of ASTs.

In Fig. 4(a) and 4(b), the nodes of the tree comprise keywords, characters. These fundamental elements

of the source code are tokens. The parent-child node pair can also be extracted from AST. A parent-child

relationship is valuable when it is required to trace back for analysis. There are various types of nodes that

emerged in AST. Each node shows either a code component or a specific characteristic of code. Every tree

starts with a module as a root node.

(a)

(b)

Fig. 4 AST for (a) first version (b) revised version

Name

ClassDef

“EleVehicl” Name

“Vehicl” Load

FunctionDef FunctionDef

“_init_” arguments Assign

“self” “make” “model

”

“type”

Attribute Constant

Name “chrg_lvl” Store 0

“self” Load

“charg” arguments Assign Expr

arg arg arg arg arg

“self”

Attribute

Name Constant

Constant

“chrg_lvl” Store

“self” Load

100

Call

“print” Load “charged”

ClassDef

“EleVehicl” Name

“Vehicl” Load

FunctionDef

“_init_” arguments Assign

“self” “make” “model

”

“type”

Attribute Constant

Name “chrg_lvl” Store 0

“self” Load

arg arg arg arg

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Fig. 5 enlisted the character hold by the nodes of a tree. The list may vary, here we include

some of them.

4.3 Processing of AST

Path extracted from AST is considered for further processing. Visit every node of the tree through pre-

order. We traverse the nodes of the tree in the depth-first traversal technique. After traversing, the path is

extracted as shown in Figures 6 and 7 for source codes shown in figures 3(a) and 3(b), respectively. It shows

the output as a complete string. To convert this string into words, we need to break it down to generate

tokens. The paths are separated by splitting with the terminal node, which is having variable path length.

These separated paths are tokens that construct a sequence vector. All the nodes, including the terminal

node of each truncated path, show the program code's characteristics or code elements. Algorithm 1 in

Figure 8 explains the generating and parsing of the source code.

Fig. 5 Types of nodes in AST

4.4 Path2Vec

All the separate paths transform into a vector representation. Paths are tokens and in the form of strings that

cannot be used as input directly. So, first of all, the tokens are converted into the token id. Then the token

ids are transformed into a vector. Vectors are of varying length of n number of tokens. The token ids are

unique integer values. Vectorization is achieved through the encoding technique by using word embedding.

Fig. 6 Extracted path for code in Fig. 3(a)

ClassDef Module Alias Store Store

NameConstant comprehension ListComp Return Num

FunctionDef Assign Slice Constant Tuple

Name Call For statement Mult NotEq

Arguments str While statement AugAssign Eq

Print Expr If statement List Mod

BinOp True Gt Attribute LtE

Load Subscript GtE Sub Add

Compare arg Lt Div Index

["ClassDef(name='EleVehicl', bases=[Name(id='Vehicl', ctx=Load())],"

 "keywords=[], body=[FunctionDef(name='__init__',"

 "args=arguments(args=[arg(arg='self', annotation=None), arg(arg='make',"

 "annotation=None), arg(arg='model', annotation=None), arg(arg='type',"

 'annotation=None)], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None,'

 "defaults=[]), body=[Assign(targets=[Attribute(value=Name(id='self',"

 "ctx=Load()), attr='charg_level', ctx=Store())], value=Num(n=0))],"

 'decorator_list=[], returns=None)], decorator_list=[])']

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Fig. 7 Extracted path for code in Fig. 3(b)

The description of the tree component as nodes are given in Table 2.

Table 2. Description about tree components

Nodes Description

ClassDef Class definition

args arguments

FunctionDef Function definition

vararg Variable argument

attr attribute

kwonlyargs lists of arg nodes

kw_defaults Default keywords

Expr Expression

Str String

kwarg passed arguments by keyword

ctx Store an assignment

Fun function

Fig. 8 Algorithm 1 for Parsing the files and vector representation of AST

["ClassDef(name='EleVehicl', bases=[Name(id='Vehicl', ctx=Load())],"

 "keywords=[], body=[FunctionDef(name='__init__',"

 "args=arguments(args=[arg(arg='self', annotation=None), arg(arg='make',"

 "annotation=None), arg(arg='model', annotation=None), arg(arg='type',"

 'annotation=None)], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, '

 "defaults=[]), body=[Assign(targets=[Attribute(value=Name(id='self',"

 "ctx=Load()), attr='charg_level', ctx=Store())], value=Num(n=0))],"

 "decorator_list=[], returns=None), FunctionDef(name='charg',"

 "args=arguments(args=[arg(arg='self', annotation=None)], vararg=None, "

 'kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[]),'

 "body=[Assign(targets=[Attribute(value=Name(id='self', ctx=Load()),"

 "attr='charg_level', ctx=Store())], value=Num(n=100)),"

 "Expr(value=Call(func=Name(id='print', ctx=Load()), args = [Str (s = 'charged')],"

 'keywords=[]))], decorator_list=[], returns=None)], decorator_list=[])']

Algorithm 1:
Input: Two Version Source Codes S = {Si, Si+1}

 Set of featuring nodes F = {f1, f2, f3, ...fn}

Output: Path List P = {Pi, Pi+1}

 Vector V = {Vi, Vi+1}for {Si, Si+1}

for all source files do

 for i = 1 to n do

 ASTi = Generating AST from Si

 Visiting ASTs each node F by depth first manner

 Accumulate Pi = {fi1, fi2, fi3, ...fin }

 end for

 end for

 for each P do

 Splitting Pi as Tokens → {Pi1, Pi2, Pi3, . . ., Pin}

 Adding each Token to V

 return V

end for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The token id is represented in a real-valued vector through the Word2Vec embedding technique.

Dealing with the paths and converting them into a vector is termed as Path2Vec. For example, ‘ctx=Load()’

is a token mapped to some integer value and emerged in an array of vector Vp. In this way, the vector

sequence is generated as v1, v2, v3, v4,........vn and given as input to the network. Vp and Vc are the vectors of

previous code and current code, respectively. The hidden state outcome to form a new state as:

 ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑉𝑝), 𝑡 = {1. . 𝑛} (7)

 ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑉𝑐), 𝑡 = {1. . 𝑛} (8)

𝑉𝑝 = Vector for previous code

𝑉𝑐 = Vector for current code

ℎ𝑡 = hidden state outcome for both code

4.5 Change Detection

We apply the cosine distance metric for searching the changes that occurred in the revised version of the

code. The cosine distance metric formula is the dot product of two attributes. It is the measurement of the

cosine angle of two vectors. The outcome of the equation is a normalized value. Resultant values of the

metric laid between 0 to 1. The idea comes from determining the angle between the two objects. Researchers

extensively use the cosine distance metric to search for the similarities between two components. In this

paper, we use the metric to observe the dissimilar part of a program to detect the imposed changes. Cosine

similarity is widespread because it is efficiently evaluated on vectors, significantly on sparse vectors. It

determines how much two vectors are similar or dissimilar irrespective of their size. The vectors are path

sequence embedded vectors in our context. Cosine similarity is much helpful for cases when there are

duplicate data matters. Analyzing text similarity is an NLP-based application of the metric. The formula

for cosine metric is given as equation (9).

dis(𝑉, 𝑉′)= cos(𝜃) =
𝑉 ∙ 𝑉′

‖𝑉‖‖𝑉′‖
 =

∑ 𝑉𝑖 𝑉𝑖
′𝑛

𝑖=1

√∑ 𝑉𝑖
2 𝑛

𝑖=1 √∑ 𝑉𝑖
′2𝑛

𝑖=1

 (9)

where 𝑣 ∙ 𝑣′ = ∑ 𝑣𝑖 ∙ 𝑣𝑖
′𝑛

1 = 𝑣1𝑣1
′ + 𝑣2𝑣2

′ + 𝑣3𝑣3
′ … +𝑣𝑛𝑣𝑛

′ = two vector’s dot product.

In equation (9), dis (V, V’) is the difference between two vectors. Here V and V’ are path vectors of the

program's previous version and the current version.

dis (V, V’) = 1 if V = V’

dis (V, V’) = 0 or < 1 if V ≠ V’

Algorithm 2 in Figure. 9 describes the pseudo convention for vectorization and difference measurement of

ASTs. The Pi and Pi+1 are the two path tokens of some length m we get from Algorithm 1. These vectors

held the unique ID of the tokens such as:

Pi = {𝑡𝑖
1, 𝑡𝑖

2 , 𝑡𝑖
3, ……… 𝑡𝑖

𝑚}

Pi+1 = {𝑡𝑖+1
1 , 𝑡𝑖+1

2 , 𝑡𝑖+1
3 , ………𝑡𝑖+1

𝑚 }

𝑡𝑖
𝑚 = mth token of ith path

𝑡𝑖+1
𝑚 = mth token of (i+1)th path

4.6 Neural Network Model for Difference Measurement

After completing the embedding and tokenization process, we trained our proposed models and other

associated, cutting-edge models with the past versions of source codes for Vehicle problems. The next move

is to review the model's output on the code variant detection task at the end of the training process. How

correctly do the differences are identified, and changes are predicted?

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Our proposed model is trained with BiLSTM. Supervised learning gives better performance than

unsupervised learning.

4.6.1 Attention with BiLSTM

The attention mechanism with BiLSTM enhances the hidden feature of nodes in sequence. Figure 10

depicts the process of attention mechanism. The intention of incorporating the attention mechanism into

BiLSTM is to strengthen our model and predict long sequences of source codes. So an attention layer is

embedded with the BiLSTM layer. The attention layer aggregates all sequences and from a sequence vector.

Merging all the hidden layer output and giving the attention function improves the performance of the

model. The BiLSTM is used here to generate a sequence of annotations (h1, h2, ….., hn) for each input

sentence. All the vectors h1, h2, .., etc., used in work are mainly the interconnection of forward and backward

hidden states in the network as given in equation (10).

 ℎ𝑗 = ⌈ℎ⃗ 𝑗
𝑇 ; ℎ⃗⃖𝑗

𝑇⌉
𝑇
 (10)

ℎ𝑗 = annotation sequence

Fig. 9 Algorithm 2 for vectorization and difference measurement

Algorithm 2:

Input: ASTs’ path vectors 𝑃𝑖 , 𝑃𝑖+1, the fixed length of each vector is m;

Output: distance vector (diff_list), sent;

Initialize a list V, dictionary tokenID;

for i=1 to n do

 for j = 1 to 𝑙𝑒𝑛(𝑃𝑖) do

 if 𝑠𝑝𝑙𝑖𝑡(𝑃𝑖) is TRUE

 𝑡𝑜𝑘𝑒𝑛𝐼𝐷 = 𝑖𝑛𝑡_𝑣𝑎𝑙𝑢𝑒(𝑝𝑖
𝑗
) ;

 𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑜𝑘𝑒𝑛𝐼𝐷);
 end if

 end for

end for

//Creating a list of tokens for both program separately on the basis of term frequency:

𝑃𝑣𝑒𝑐𝑡1 and 𝑃𝑣𝑒𝑐𝑡2

for i = 1 to 𝑙𝑒𝑛(𝑃𝑣𝑒𝑐𝑡1[1 .. 𝑙𝑒𝑛(𝑃𝑖)]) & 𝑙𝑒𝑛(𝑃𝑣𝑒𝑐𝑡2[1. . 𝑙𝑒𝑛(𝑃𝑖+1)]) do

 for j = 1 to i do

for k= 𝑙𝑒𝑛(𝑗) 𝑡𝑜 𝑙𝑒𝑛(𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ) do //max_length is for adjusting the max dimension

𝑃𝑣𝑒𝑐𝑡1 [k] = 0;

end for

end for

end for

for i = 1 to 𝑙𝑒𝑛(𝑃𝑖) & 𝑙𝑒𝑛(𝑃𝑖+1) do

 𝑐𝑜𝑠𝑖𝑛𝑒(𝑃𝑣𝑒𝑐𝑡1, 𝑃𝑣𝑒𝑐𝑡2)

 if 𝑐𝑜𝑠𝑖𝑛𝑒 == 1

 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
 else

 𝑎𝑝𝑝𝑒𝑛𝑑(𝑑𝑖𝑓𝑓_𝑙𝑖𝑠𝑡[𝑃𝑣𝑒𝑐𝑡2])

 end if

end for

for i = 1 to 𝑙𝑒𝑛(𝑑𝑖𝑓𝑓_𝑙𝑖𝑠𝑡) do

 𝑜𝑢𝑡 = 𝑖𝑛𝑣𝑒𝑟𝑡_𝑑𝑒𝑐𝑜𝑑𝑒(𝑖)
 𝑠𝑒𝑛𝑡 = 𝑢𝑛𝑝𝑎𝑟𝑠𝑒(𝑜𝑢𝑡)
end for

return diff_list, sent

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

We input the annotation ℎ𝑗 to the multilayer perceptron to generate a hidden representation 𝑎𝑡 by the

equation (11) and depicted in Figure 10.

𝑎𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑛 ℎ𝑗 + 𝑏𝑛) (11)

Here 𝑊𝑛 is new weight and 𝑏𝑛 is a new bias.

Furthermore, we measured cross-entropy at the softmax layer for every epoch to evaluate the model

loss function. The difference between the actual and predicted results is referred to as cross-entropy. The

softmax function is used to normalized the weight at attention. Softmax is typically used as the final layer

of neural networks. The softmax function's performance range is between 0 and 1.

Fig. 10 BiLSTM Model with self-attention

The input to the softmax layer is context vector 𝑥 = [𝑥1, 𝑥2, 𝑥3, …… . . 𝑥𝑛] multiplied with the output

𝑎𝑡 and returned normalized weights 𝑝 = [𝑝1, 𝑝2, 𝑝3, …… . 𝑝𝑛], that can be defined as in equation(12) :

𝑝𝑖 =
𝑒𝑥𝑝 (𝑎𝑡𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑎𝑡𝑥𝑗)
𝑘
𝑗=1

 (12)

Finally, we construct the sequence vector by summing all the nodes with corresponding weights using

equation (13). The context vector at the node level is randomly initialized and updated during training.

𝑠𝑖 = ∑ 𝑝𝑖 ℎ𝑗𝑗 (13)

𝑠𝑖 = weighted sum

5 Experimental Setup and Results

5.1 Dataset and System Selection

There are barely any datasets available for code change detection, which gives specifications related to our

concern, and it's quite challenging to identify change sets. The empirical setup is done on 150k Python

Dataset [sri.inf.ethz.ch/py150]. We select an AST file python100k_train for around 2GB in size and JSON

format for training and python100k_test for testing. The file contains AST of 100,000 python programs.

Tree pathn

Tree path2

Tree path3

ℎ1
⃖⃗⃗⃗⃗ ℎ1

⃗⃗⃗⃗ Tree path1

W
o

rd
 E

m
b

ed
d
in

g
s

 v1

 v2

 v3

 vn

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ2
⃗⃗⃗⃗ ℎ2

⃖⃗ ⃗⃗⃗

ℎ3
⃗⃗⃗⃗ ℎ3

⃖⃗ ⃗⃗⃗

ℎ𝑛
⃗⃗⃗⃗ ℎ𝑛

⃖⃗ ⃗⃗⃗

C

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

Input Vector Bi-LSTM Attention

tanh sigmoid

Features generation Features extraction Prediction Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

These python programs are gathered from the GitHub repository. The programs those AST have a

maximum of 30,000 nodes are included in these repositories. According to the system’s capacity, we further

divide this big-sized JSON file into small chunks with the help of a JSON splitter. Tensorflow with Keras

using Python development environment on google cloud. Windows 10, 8GB RAM, Intel Core i7,4690T

central processing unit, 2.50GHz, 64-bit OS, x64 based processor.

5.2 AST Encoding

ASTs are capable of storing both the structural as well as semantic information about a program module.

Because the vector is composed of path tokens, it cannot be used directly as an input to IABLSTM. As a

result, we create a dictionary for mapping tokens to integers. If there are m tokens and each token relates to

a distinct integer, the mapping range is 1 to m. To begin, we count the tokens' frequency and then arrange

them according to their frequency. Next, we create an indexed dictionary for the ordered tokens, with the

most often occurring tokens at the top. Afterward, in the mapping stage, we equalize the length of these

numeric vectors. A length of the vector should be chosen with a size less than the required length is denoted

by 0 because 0 has no meaning when tokens are mapped starting at 1. If the length of a vector exceeds the

required length, the additional component is truncated. Since the tokens with a greater frequency are

translated to a smaller integer, the tokens with a lower frequency are mapped to the largest integer. As a

result, we find the index of the largest integer in the vector and remove it one by one until the vector length

equals the set length. Figure 11 describes the processing of the AST.

Fig. 11 Processing of AST with embedding layer

Finally, we apply word embedding for high-dimensional vector representation of each token using a

trainable word dictionary embedded in the network. Although word embeddings are considered

unsupervised, they are trained using a fictitious supervised learning problem.

5.3 Path Extraction and Vectorization

The experiment is initially performed on a small dataset with various python codes with multiple entries,

e.g., the category of program, type of file, file name, and program's status. The program's status has entries

regarding the change or no change and the program itself. We first fetched the program its status according

to the program category and file type. In the next step, we preprocessed all these programs and removed

the comment lines. Next, we generated an AST and then got a path with pre-order traversal from it. Table

3 briefs the various kinds of tokens extracted from the tree's path and their corresponding integer value. We

have enlisted some of them in the table. The table with the tokens column contains various parts of the tree

Abstract Syntax Tree

Path Tokens

[825, 617, 753, 993, 667, 993]

Embedding layer

[-0.003, 0.012, 0.045, 0.021, 0.043, 0.046,

-0.032, -0.002, 0.013, -0.0179]

Path String

“attr='charg_level', ctx=Store())],

value=Num(n=100))”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

we got by traversing the pre-ordered manner and tokenizing it. Another column of the table includes the

token id of these tokens.

Figure 12 portrays an example code for this paper, then we extracted the abstract tree and got the

sequence path. Next, we tokenize the path sequence and generate tokens, and then we converted these

tokens into identifiers and got token IDs. Every token itself has various tokens.

Table 3 Tokens and its corresponding ID

Tokens Integer value

ctx=Load()

body=[FunctionDef(name='__init__')]

ctx=Store()

keywords=[]

annotation=None

vararg=None

decorator_list=[]

kwonlyargs=[]

returns=None

kw_defaults=[]

kwarg=None

defaults=[]

[709, 667]

[825, 617, 753, 993, 667, 993]

[709, 338]

[958]

[693, 444]

[168, 444]

[206, 370]

[994]

[786, 444]

[634, 636]

[334, 444]

[636]

Fig. 12 Example python code and Tokenization and Encoding Process

5.4 Distance Measurement

We calculated the cosine distance and found the dissimilar part of the code. The cosine metrics give better

results on a sequence of the vector. Cosine metrics take the total length of the vectors. These vectors are

prepared from BOW, TF, or TF-IDF. Through Figure 13(b), the probable changes are marked in a different

color that has been integrated into the code given in 13(a). This python code is for showing the charging

level of a vehicle. We have taken the code just for demonstration purposes. In the first code, there is a class

defined for an electric vehicle with an initialization function. The revised version has one new charg

function added to it, and the rest of the code is as same as the previous one. The function sets the charging

level to 100. The code from keyword ‘def’ to the symbol ‘)’ is newly included syntax into the same existing

program. The model identified these codes with the highest probability.

Encoded path sequence IDs Extracted path sequence

class EleVehicl(Vehicl):

def _init_(self, make,
model,

type):

 self.chrg_lvl = 0

"ClassDef(name='EleVehicl',",

"bases=[Name(id='Vehicl',",

'ctx=Load())],',
"body=[FunctionDef(name='__init__',",

"args=arguments(args=[arg(arg='self',",

"arg(arg='make',",

"arg(arg='model',",

"arg(arg='type',",

'vararg=None,',
'kwonlyargs=[],',

'kw_defaults=[],',

'kwarg=None,',
"body=[Assign(targets=[Attribute(value=Name(id='self',",

'ctx=Load()),',

"attr='chrg_lvl',",
'ctx=Store()),',

'value=Num(n=0)),',

'returns=None),',

[63, 753, 45],

[50, 753, 565, 595],

[709, 667],
[825, 617, 753, 993, 667, 993],

[5, 777, 5, 904, 904, 291],

[904, 904, 802],

[904, 904, 80],

[904, 904, 989],

[168, 444],
[994],

[634, 636],

[334, 444],
[825, 788, 856, 737, 277, 753, 565, 291],

[709, 667],
[698, 448, 886],

[709, 338],

[277, 912, 661, 225],
[786, 444],

Python Source Code

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

5.5 Training and Validation

We evaluated both the model BiLSTM and IABLSTM on the chosen python program of charging the

vehicle's battery and Python 150k dataset. The model accuracy and cross-entropy are portrayed with the

help of the pyplot library.

Fig. 13 Previous version (a) current version with change part (b)

The following figures are showing the results of empirical evaluation sequentially. The accuracy and

cross-entropy are evaluated on the selected AST dataset for the BiLSTM model, as depicted in Figure 14

and Figure 15, respectively. The training accuracy goes up to 85%, and validation accuracy has grown up

to 75%. Likewise, training cross-entropy is down to 35%, whereas validation cross-entropy goes down to

56%.

Fig. 14 Accuracy plot for Python150k using BiLSTM

(b)

Fig. 15 Cross-entropy plot for Python150k using BiLSTM

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 1 0

ac
cu

ra
cy

epoch

Training Validation

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 1 0

cr
o

ss
-e

n
tr

o
p

y

epoch

Training Validation

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

(a)

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

 def charg(self):

 self.chrg_lvl = 100

 print('charged')

(b)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

epoch

Figures 16(a) and (b) showing the accuracy and cross-entropy evaluated on the same dataset for our

model IABLSTM. The training accuracy uplifted to 97%, and validation improved up to 85%. The model

training loss comes down to 8%, and validation loss goes down to 40%.

(a)

(b)

Fig. 16 Change detection Model for Python150k using IABLSTM (a) accuracy (b) cross-entropy

The accuracy analysis of both the model is shown in Figure 17.

Fig. 17 Epochs wise accuracy analysis of both models on Python 150k

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 1 0

ac
cu

ra
cy

epoch

Training Validation

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 1 0

cr
o

ss
-e

n
tr

p
y

epoch

Training Validation

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Bi-LSTM

IABLSTM

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

5.6 Hyperparameter

We specified numerous hyperparameter for the experimental purpose to improve our results in this study.

To avoid overfitting, we proposed a dropout ratio of 0.25 for our proposed model. Adam optimizer is used

in the LSTM network. The learning rate is critical for the training of neural networks since it may be used

to modify the model's learning speed. The learning of the network becomes slower or faster as the value of

the learning rate decreases or increases. This work determines the learning rate (l) 0.002, and during

training, the network weights are updated with the value of l. We take input length 100, the number of

epoch 20 and the number of hidden units 200.

6 Results and Discussion

Table 4. gives a comparative analysis among the various neural network based LSTM, BiLSTM,

IABLSTM models. We applied all these models on considered example code, EleVehicl and Python 150k

dataset.

Table 4. Accuracy and cross-entropy comparison on different NN models on example source code

 EleVehicl Python 150k

Model Cross-entropy Accuracy Cross-entropy Accuracy

LSTM 0.6772 0.5434 0.6810 0.5682

BiLSTM 0.5459 0.6597 0.3459 0.8497

IABLSTM 0.2693 0.8056 0.0859 0.9721

We have compared cross-entropies of all the models by evaluating them on different data and shown in

Figure 18.

Fig. 18 Comparison on cross-entropies of various models for codes

Figure 19 displays the chart for training accuracy observed on various models, which we mentioned in the

paper.

Fig. 19 Comparison on accuracies of various models for example codes

0

0.2

0.4

0.6

0.8

LSTM Bi-LSTM IABLSTM

C
ro

ss
-e

n
tr

o
p

y

EleVehicl

Python150k

0

0.2

0.4

0.6

0.8

1

LSTM Bi-LSTM IABLSTM

A
cc

u
ra

cy

EleVehicl

Python150k

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The figure showing the comparative analysis of BiLSTM and IABLSTM that stated using BiLSTM

with self-attention improves the accuracy up to 11% to detect the code change compared to simple BiLSTM.

Our IABLSTM model outperforms other state-of-art that uses AST. Table 5 enlisted the results in terms

of accuracy. The comparative analysis is performed based on the objective achieved, and the method opted

by the authors.

Table 5. Comparison on Accuracy

Objective Methods
Results(Accuracy/

Precision)

Change impact prediction LCIP 74%

Code change extraction CC2Vec 90.7%

Defect prediction AST+LSTM 90%

Code clone detection AST+GMMN 96%

Learning program properties AST path+Word2Vec(JavaScript) 69.1%

Code clone detection and classification ASTNN 98.2%

Code clone detection AST+ Attention BiLSTM 96.8%

Code change detection Path2Vec + IABLSTM 97.2%

The methods included in given Table 5. have considered AST as source code parsing in most of the

works. We also generated AST and processed it through Path2Vec, achieving 28% better performance than

the Word2Vec approach.

7 Threats to validity

There are some threats to validity stated here. The Python150k dataset taken for experimental purposes is

easily downloadable but not easy to handle completely due to its length. The dataset can be breakdown into

small sizes for its usefulness. Another threat we faced is system configuration constraints while evaluating

object-oriented based parallel programming code. The exact amount of change is hard to find, although we

have achieved accuracy up to the mark.

8 Conclusion and Future Work

In this work, we have presented an approach for source code change detection using deep learning

based BiLSTM with self-attention IABLSTM. BiLSTM with attention is used to acquire the semantic as

well as syntactic information together of the input code in the encoding process. The results improved up

to 85% in terms of accuracy to find the actual impact set compared to other models. The implemented

model gives 11% more accuracy than the BiLSTM model. We generated the syntax tree and traversed the

tree to extract the said information using a novel approach of parallel programming for change detection.

Then the path is transformed into the vector using a vectorization approach and applied distance metrics to

analyze all changes. We could see that our model outperforms existing neural network based models. Here

we suggested the model that is experimented on small scale software. In the future, the work can be

extended to detect the change and its impact on large-scale industry level software with backend and

frontend software modules.

Conflicts of Interest

The authors declared no conflict of interest.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

References

Ahmad, S., Ghani, A. A. A., Sani, F. M.: Dependence flow graph for analysis of aspect oriented programs.

International Journal of Software Engineering & Applications, 5(6), 125 (2014)

Alon, U., Zilberstein, M., Levy, O., Yahav, E.: A general path-based representation for predicting program

properties. ACM SIGPLAN Notices. 53(4), 404-419 (2018)

Angerer, F., Grimmer, A., Prähofer, H., Grünbacher, P.: Change impact analysis for maintenance and

evolution of variable software systems. Automated Software Engineering. 26(2), 417-461 (2019)

Baah, G. K., Podgurski, A., Harrold, M. J.: The probabilistic program dependence graph and its application

to fault diagnosis. IEEE Transactions on Software Engineering. 36(4), 528-545 (2010)

Badri, L., Badri, M., St-Yves, D.: Supporting predictive change impact analysis: a control call graph based

technique. In Proceedings of Asia-Pacific Software Engineering Conference, IEEE. 9 (2005)

Bohner, S. A.: Impact analysis in the software change process: a year 2000 perspective. In icsm. 96, 42-51

(1996)

Büch, L., Andrzejak, A.: Learning-based recursive aggregation of abstract syntax trees for code clone

detection. In Proceedings of International Conference on Software Analysis, Evolution and Reengineering.

95-104 (2019)

Gethers, M., Kagdi, H., Dit, B., Poshyvanyk, D.: An adaptive approach to impact analysis from change

requests to source code. In Proceedings of IEEE/ACM International Conference on Automated Software

Engineering. 540-543 (2011)

Hameed, Z., Garcia-Zapirain, B.: Sentiment classification using a single-layered BiLSTM model. IEEE

Access. 8, 73992-74001 (2020)

Hoang, T., Kang, H. J., Lo, D., Lawall, J.: CC2Vec: Distributed representations of code changes. In

Proceedings of ACM/IEEE International Conference on Software Engineering. 518-529 (2020)

Kitsu, E., Omori, T., Maruyama, K.: Detecting program changes from edit history of source code. In

Proceedings of Asia-Pacific Software Engineering Conference, IEEE. 1, 299-306 (2013)

Liang, H., Yu, Y., Jiang, L., Xie, Z. Seml: A semantic LSTM model for software defect prediction. IEEE

Access, 7, 83812-83824 (2019)

Meng, Y., Liu, L.: A Deep Learning Approach for a Source Code Detection Model Using Self-Attention.

Complexity. (2020)

Molderez, T., Stevens, R., De Roover, C.: Mining change histories for unknown systematic edits. In

Proceedings of International Conference on Mining Software Repositories, IEEE. 248-256 (2017)

Rahman, M., Watanobe, Y., Nakamura, K.: A Neural Network Based Intelligent Support Model for

Program Code Completion. Scientific Programming. (2020)

Thomas, S. W., Adams, B., Hassan, A. E., Blostein, D.: Validating the use of topic models for software

evolution. In Proceeding of IEEE working conference on source code analysis and manipulation. 55-64

(2010)

Tiwang, R., Oladunni, T., Xu, W.: A Deep Learning Model for Source Code Generation. In SoutheastCon,

IEEE. 1-7 (2019)

Le TH, Chen H, Babar MA.: Deep learning for source code modeling and generation: Models, applications,

and challenges. ACM Computing Surveys (CSUR). 53(3),1-38 (2020)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X.: A novel neural source code representation based on

abstract syntax tree. In Proceedings of IEEE/ACM International Conference on Software Engineering

(ICSE). 783-794 (2019)

Wang W, Li G, Ma B, Xia X, Jin Z.: Detecting code clones with graph neural network and flow-augmented

abstract syntax tree. In Proceedings of International Conference on Software Analysis, Evolution and

Reengineering, IEEE. 261-271 (2020)

White M, Tufano M, Vendome C, Poshyvanyk D.: Deep learning code fragments for code clone detection.

In Proceedings of the International Conference on Automated Software Engineering (ASE), IEEE. 87-98

(2016)

Eid S, Makady S, Ismail M.: Detecting software performance problems using source code analysis

techniques. Egyptian Informatics Journal. 21(4), 219-29 (2020)

Goknil A, Kurtev I, Berg KV.: A rule-based change impact analysis approach in software architecture for

requirements changes. arXiv preprint arXiv. 1608.02757 (2016)

Musco V, Carette A, Monperrus M, Preux P.: A learning algorithm for change impact prediction. In

Proceedings of the International Workshop on Realizing Artificial Intelligence Synergies in Software

Engineering, IEEE. 8-14 (2016)

Siow JK, Gao C, Fan L, Chen S, Liu Y. Core: Automating review recommendation for code changes. In

Proceedings of the International Conference on Software Analysis, Evolution and Reengineering, IEEE.

284-295 (2020)

Dam HK, Pham T, Ng SW, Tran T, Grundy J, Ghose A, Kim T, Kim CJ.: A deep tree-based model for

software defect prediction. arXiv preprint arXiv. 1802.00921 (2018)

https://www.sri.inf.ethz.ch/py150

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Crow Search Algorithm with Improved Objective Function for Test Case
Generation and Optimization

Meena Sharma and Babita Pathik*

Institute of Engineering & Technology, Devi Ahilya Vishwavidyalaya, Indore, 452001, India
*Corresponding Author: Babita Pathik. Email: babitapathik@gmail.com

Received: 04 August 2021; Accepted: 07 September 2021

Abstract: Test case generation and optimization is the foremost requirement of
software evolution and test automation. In this paper, a bio-inspired Crow Search
Algorithm (CSA) is suggested with an improved objective function to fulfill this
requirement. CSA is a nature-inspired optimization method. The improved objec-
tive function combines branch distance and predicate distance to cover the critical
path on the control flow graph. CSA is a search-based technique that uses heur-
istic information for automation testing, and CSA optimizers minimize test cases
generated by satisfying the objective function. This paper focuses on generating
test cases for all paths, including critical paths. The control flow graph covers
the information flow among all the classes, functions, and conditional statements
and provides test paths. The number of test cases examined through graph path
coverage analysis. The minimum number of test paths is counted through com-
plexity metrics using the cyclomatic complexity of the constructed graph. The
proposed method is evaluated as mathematical optimization functions to validate
their effectiveness in locating optimal solutions. The python codes are considered
for evaluation and revealed that our approach is time-efficient and outperforms
various optimization algorithms. The proposed approach achieved 100% path
coverage, and the algorithm executes and gives optimum results in approximately
0.2745 seconds.

Keywords: Test case generation; Crow Search Algorithm; improved objective
function; control flow graph; branch distance; predicate distance

1 Introduction

The generation or selection of test cases is critical for software testing to ensure its eminence as a
product. Software testing is a process of ensuring that the actual result matches the desired result. It also
ensures that the software is free from any kind of bugs or defects. There are various testing methods,
such as manual testing or automation testing. Manual testing consumes 40%–70% of the time and
expense associated with software development. The testing team performs software testing by examining
the structure of the code deeply. It passes through each line of code to generate a test case suite and test
data. Software testing determines the critical errors in the software products optimally so that error
detection should be maximum. Simultaneously testing cost and time should be minimal [1,2]. Testing

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.022335

Article

echT PressScience

mailto:babitapathik@gmail.com
http://dx.doi.org/10.32604/iasc.2022.022335
http://dx.doi.org/10.32604/iasc.2022.022335

required some effort in terms of time and cost. Estimation is the process of approximating the needful value
for business and industry purposes, even if there is any type of inconsistent data. Test estimation is a
maintenance activity that predicts how long such a task would take to complete.

Numerous approaches for selecting test cases have been suggested to address the time constraint
inherent in conventional testing. For developing test cases automatically, Search-Based Testing (SBT) is
considered. There have been meta-heuristic techniques effectively utilized in the development of test data,
including Genetic Algorithms (GA) [3,4], Ant Colony Optimization(ACO) [5,6], Particle Swarm
Optimization (PSO) [7,8], Artificial Bee Colony (ABC) [9,10], hybrid Genetic Algorithm [11], Bat
Algorithm [12,13]. Fitness functions (FF) drive a metaheuristic algorithm search process. The FF is
measured through a mathematical equation that evaluates the feasibility of every solution in the search
space by assigning a value. In SBT, FFs are primarily defined in terms of coverage criteria. A metric that
determines how fine the generated test cases exercise the software under test is named as coverage
criteria [14]. Path coverage, statement coverage, decision coverage, and branch coverage are all
frequently used criteria [15]. For covering the target path, many researchers [10,16] employ a FF based
on branch distance. Branch distance is estimated by examining the branching node's conditional statement
and sometimes missed target [17]. The branch distance value alone is insufficient to produce the desired
path. The branch distance is paired with heuristic information of approximation level to improve the
searching. It indicates the distance between the target node and the node currently visited [16]. When
there is a low probability of covering a path, this combined FF fails [18].

In this work, a CSA based approach is paired with an enhanced combination function to generate test
cases for the critical path. The innovative aspect of this paper’s search strategy is introducing an
improved objective function (IOF). IOF is a FF that combines branch distance with predicate distance.
The objective behind considering CSA is the behavior of crow flock that resembles an optimization
process [19]. Crows keep their extra food in explicit locations (hiding spots) in their environs and retrieve
it once required. Crows are hungry birds as they flock together in search of better food supplies. From an
optimization perspective, the crows represent searchers or agents. The environs represent searching space,
and each location in the environs represents a feasible solution. The objective function is represented by
food source quality, and the global solution to the problem is the finest food source in the environment.

We focus on finding the optimal test case suite of software. The selection of test cases is one of the
significant parts of the test estimation. The aim is the critical path coverage so that test case selection will
be effective, and any typical test case should not be skipped. The total test case selected is observed
through Cyclomatic Complexity(CC) [20] by tracing paths on the CFG. In the proposed work, CSA is
considered for generating test cases automatically and optimizing the test suite by applying FF. CSA with
IOF is a novel approach that we considered in the paper. The main contributions of the paper are:

• Generate CFG for program code and trace the graph for complete path coverage without dropping any
critical path.

• Compute the CC to approximate the number of test cases.

• Apply CSA search technique with path or branch based IOF.

Other content of the article organized as Section 2 summarizes the contributions done by researchers in
this area. Section 3 elaborates on the background of the method opted in this paper. Section 4 comprises the
proposed method, whereas Section 5 describes experimental setup and evaluation, Section 6 containing
results and discussion. Section 7 concludes the work and mentions future works.

2 Related Work

Generation of test data automatically using SBT is a motivating research area. The criteria for code-level
testing is path coverage. This section focuses primarily on coverage of the branch or path code using

1126 IASC, 2022, vol.32, no.2

AI-based heuristic search algorithms, using path/branch-based FFs. Some nature-inspired population based
algorithms used by several researchers for test case generation are also mentioned here. The concepts and
contributions are pithy here.

A hybrid and simple genetic algorithm are proposed by Garg D. and Garg P. [18] for path testing. An
ExLB FF is suggested for path coverage. Although HGA provides better coverage through ExLB, it does not
cover the target path. A genetic algorithm (GA) based algorithm is used for test data generation by Pachauri
et al. [21]. The FF combines branch and path information for computation. The results of experiments reveal
significantly better coverage percentages during the search, still difficult to get the targeted path. Babamir FS
et al. [4] proposed a GA based testing technique to automate test data generation using different parameters
for structural-oriented program structure. The FF proposed by the authors tries to cover program paths
maximum possible way but does not achieve the targeted path. Jia YH et al. [7] developed a PSO based
optimization algorithm for automatic test data generation. The criteria for software testing is condition-
decision coverage that covers all conditional statements. This approach also does not cover the target
path. PSO algorithm-based test case generation is suggested by Huang M et al. [8]. To improve the
performance of PSO, they merged the group self-activity feedback (SAF) operator and Gauss mutation
(G) changing inertia weight. That improved approach is efficient in test case generation for multi-path.
Khan SA et al. [22] suggested Particle Swarm Optimization (PSO) technique for generating test case data
for integration testing. Dahiya SS et al. [10] presented an automatic test generation for structural software
using an artificial bee colony (ABC) based novel search technique. The FF generates test data with
branch distance-based objective function. The technique is not suitable for large inputs and where
constraints have many equality constraints. Sheoran S et al. [9] presented a novel approach using the
ABC algorithm for data flow testing search. The approach prioritizes the definition-use paths that are not
definition-clear paths. Aghdam ZK and Arasteh B. [23] presented an ABC algorithm for automatic test
data generation. The experiment was evaluated with a FF that considers branch coverage criteria to
optimize the solutions.

All the approaches discussed above cover a single path at a time that is a time-consuming process.
Following are some approaches presented to address this gap by searching for multiple paths.

The Dynamic Multiple-Objective Sorting Algorithm is offered by Panichella A et al. [21] to handle
many objectives. The FF combines approach level and branch distance in GA for branch coverage. Lv
XW et al. [16] proposed the PSO approach with metamorphic relationships for generating test cases for
multiple path coverage. The aim was to cover multiple paths efficiently with fewer iterations.

The attention of these mentioned works is on multiple path coverage, but they did not cover the critical
path. In our proposed technique, we focus on covering many paths automatically along with the critical path
in less time consumption.

3 Background

A population based metaheuristic CSA is utilized for searching all crucial paths for test case generation.
The common heuristics, e.g., branch distance, approximation level, have been considered. A graphical
representation of source code called Control Flow Graph [24] is generated for path coverage. CFG is
giving a moderate and sometimes exact prediction of test cases. The two important heuristic parameters
are considered here: Branch distance and Predicate distance.

3.1 Path Coverage

Testing with path coverage generates test cases by executing each path at least once in order to identify
defects included within the path. First, we determine the total linear independent branches/paths by
measuring the CC [15,18]. CC is a software metric measured to analyze the code's probable error. The

IASC, 2022, vol.32, no.2 1127

complexity metric was first introduced by Thomas J. McCabe [20]. CFG, an intermediate graph of lines of
code, is constructed for the calculation of CC. Then, using the McCabe formula, CC is determined from the
source code’s CFG. CFG is the combination of nodes and edges that denote instructions and flow of control
or data, respectively.

The mathematical equation to calculate the CC of a syntax drawn from the graph V(G) is:

V Gð Þ : M ¼ E � N þ 2 (1)

Here M = CC of graph G

E = # edges in the graph

N = # nodes in the graph

The calculation of complexity is as follows:

V Gð Þ : M ¼ P þ 1 (2)

Here P = no. of predicate node, the node with the conditional statement

CC is a metric of statistics about independent paths equivalent to the number of test case suites. Using
Eqs. (1) or (2), we can find the CC, and both equations give the same amount of test case suite.

In this work, we consider two case studies for test cases by covering the multiple paths. The first one is a
python program for Triangle Identification Problem [16,18] and generates test cases with 100% path
coverage. The second example is a small python program to Identify Armstrong Numbers.

3.1.1 Triangle Identification Problem (TIP)
This python program, given in Fig. 1a, identifies the type of triangle and classifies the angle. Triangle

classification is done based on three sides of the triangle. This code segment has a conditional statement to
decide whether a triangle is equilateral, isosceles, scalene, or it is not a triangle according to sides given to the
program as input. It also classifies the angle of a triangle as acute or not given input. For the given program, a
CFG is generated, as depicted in Fig. 1b.

(a) (b)

Figure 1: TIP (a) Source code in python (b) CFG

1128 IASC, 2022, vol.32, no.2

Each node of the graph presents a complete statement, and each edge of the graph carries the data and
control flow between two statements.

The linearly independent paths for the TIP program is obtained from its CFG as:

Path_1: 1 – 2 – 3 – 7 – 8 – S

Path_2: 1 – 2 – 4 – 5 – 7 – S

Path_3: 1 – 2 – 4 – 5 – 7 – 8 – S

Path_4: 1 – 2 – 4 – 6 – 7 – S

Path_5: 1 – 2 – 4 – 6 – 7 – 8 – S

Path_6: 1 – 9 – S

The outcomes of all these paths are given below:

Path_1: Equilateral and acute

Path_2: Isosceles

Path_3: Isosceles and acute

Path_4: Scalene

Path_5: Scalene and acute

Path_6: Can't form a triangle

The total number of the independent path can be confirmed with CC calculated by using Eq. (1).

M ¼ 13� 9þ 2 ¼ 6

where E ¼ 13 and N ¼ 9

The input to the program is given as three sides of triangles a, b, c as test data. If the value of a, b, c is less
than or equal to zero, then a triangle cannot be formed. The probability is very low or zero for that test data
generation. The probability of generating test data for these values is zero. Although the probability of the
aimed crucial path is always less than that of other alternatives, but it must be higher than 0. The path with
0 probability is an infeasible solution. The probability of forming an equilateral triangle is on all equal test
data. All the paths have higher probability except Path_1, which has the lowest probability than others
according to probability measures. In the example given in Fig. 1, the Path_1 that results in “Equilateral
and acute” is reflected as a critical path.

3.1.2 Identify Armstrong Number (IAN)
The part of the source code for Identification of an Armstrong number is shown in Fig. 2a. Input to this

algorithm is a number to check whether it is an Armstrong number or not. In this program, a modulus, power,
and division calculation are implemented within the for a loop. Whereas in TIP, only decision and selection
statements are included.

The CFG for IAN is shown in Fig. 2b. The total number of the linearly independent path traced through
path coverage is three for testing the IAN program. CC of the code can be calculated by equation no (1).
According to the graph shown in Fig. 2b, Path 2 (dashed line) has a lower probability of covering. The
other paths, i.e., Path 1 and Path 3, respond earlier than Path 2 because they have a higher probability of
traversing if the input range is taken between [0,152]. Path 2 is considered a critical path.

IASC, 2022, vol.32, no.2 1129

3.2 Crow Search Algorithm

Crows are a widespread genus of birds that are the most intelligent fowls among the creatures on the
planet. They are capable of memorizing faces, using tools, communicating in complicated ways, and
concealing and retrieving food. There are numerous examples of crow’s intelligence. These creatures
have shown self-alertness and possess the ability to create tools. Additionally, they are capable of
recalling the location of their meal up to several months later.

CSA is a unique population-based metaheuristic introduced by Askarzadeh A, 2016 [19], for solving
engineering optimization issues. The primary source of inspiration of CSA is the behavior of crows, the
memorization of hiding places used to store excess food, the following of one another during thefts, and
the protection of their caches being stolen.

The fundamental principles of the algorithm include the organization of crows into flocks. These ideas
resulted in the construction of a novel algorithm that is significantly different from existing algorithms that
take their primary inspiration from the natural behavior of birds, such as Bird Swarm Algorithm (BSA), Bird
Mating Optimizer (BMO), Chicken Swarm Optimization (CSO), Cuckoo Search (CS), and Peacock
Algorithm (PA). The following are the CSA principles:

1. Crows live in large families (flocks).
2. Crows can remember and recognize the hiding place of food.

3. They follow each other to thieve their food.

4. Crows guard their stocks against theft by some probability.

The parameters for the algorithm are mentioned here: N is the flock size (number of crows), d is the
number of dimensions in the search space. Itrmax is the maximum number of iterations, cmin; cmaxf g
denotes the range of possible crow position. At time Itr in search space, the position of crow i denoted as
ci Itrð Þ where i ¼ 1; 2; 3N , Itr ¼ 1; 2; 3; Itrmax and ci Itrð Þ= ci1; c

i
2; ::cid

� �
.

The position of the hiding place of crow i at iteration Itr is given as mi Itrð Þ. Now suppose the crow j
wishes to visit its hiding spot, mj Itrð Þ, during iteration iter. Now crow i wants to follow crow j and tracks
crow j0s hiding location in this Itr. The output of CSA is the ith item from memory m for which the value
of OF mið Þ is either minimum or maximum in the minimization or maximization cases.

(a) (b)

Figure 2: IAN (a) Source code in python (b) CFG

1130 IASC, 2022, vol.32, no.2

Following is the matrix that describes the N crows searching in d-dimensional search space and
positioned randomly. Each of the members of the flock represents a feasible solution to the problem,
while d symbolizes the number of choice variables.

Crows ¼
C1
1 C1

2 � � � C1
d

C2
1 C2

2 � � � C2
d

..

. ..
. ..

. ..
.

CN
1 CN

2 � � � CN
d

2
6664

3
7775 (3)

The value of memory mi is initialized with the value of ci. Initially Memory mð Þ ¼ Crows cð Þ:

Memory ¼
m1

1 m1
2 � � � m1

d
m2

1 m2
2 � � � m2

d

..

. ..
. ..

. ..
.

mN
1 mN

2 � � � mN
d

2
6664

3
7775 (4)

3.3 Objective Function

The objective function OF(x) evaluates by using the fitness of ci. The input parameter x is the vector of
decision variables. CSA technique researchers use the number of dimensions d in search space to evaluate
fitness. Branch distance is determined for conditional nodes using test data. The value decides how close or
distant the test data must be in order to satisfy the condition (true/false) [25]. In this research paper, we
suggest an improved objective function with two heuristic values.

4 Proposed Method

In this paper, we proposed a CSA based objective function that is modified for the fitness of the flocks.
We analyze path coverage to check the criticality of a branch that should not be skipped. We apply CSAwith
the suggested FF to generate test cases. Fig. 3 showing the overall flow of the proposed method.

4.1 Test Case Selection with CSA

Each crow denotes one test path in the CSA stated in ALGORITHM 1 as given in Fig. 4. The next path is
selected by updating the value by the statement with the equation below:

cij ¼ cij þ ri � fl � mk
j � cij

� �
if ri � AP (5)

cij ¼ rj � cmax � cmin
� �þ cmin if ri < AP (6)

proposed approach

Program
under Test

Control Flow
Graph

Tracing
independent

path

Finding
Cyclomatic

Complexity

CSA Algorithm
Generate
Test case

Fitness
Function

(FF)

Final test
data

Figure 3: Flow diagram of the proposed approach

IASC, 2022, vol.32, no.2 1131

where cij is the new position of crow and ri is random value ranges [0,1], and fl is flight length that is an
adjustable parameter. Awareness probability (AP) is also an adjustable parameter of this population based
algorithm. These are the two main parameters of CSA.

The memory for crow j indicate by mk
j , where j varies from {1,…,d} and k varies from {1,…,N}. The

first circumstance in which the crow ci follows another crow cj from the flock with the primary goal of
discovering that crow's memory mj and the second instance corresponds to the circumstance in which the
new position in the d-dimensional search space is initialized randomly. In our proposed method,
dimension d is initialized with the maximum number of nodes in any path, called path length. ci is
validated for each path.

All of the values of the d-dimensional vector fall within the interval [cmin, cmax], then ci is the feasible
solution. The selection of the paths are updated to reflect values from the interval [cmin, cmax] as, if cij > cmax,
then cij = cmax, and if cij < cmin, then cij = cmin.

In this work we initialize interval [cmin , cmax] = [1,8] means cmin = 1 and cmax = 8.

Figure 4: Algorithm for test case generation

1132 IASC, 2022, vol.32, no.2

4.2 Branch Distance Calculation

The main purpose is to develop test cases for paths that have a very low probability of being covered
during automated testing. Automatic test case generation becomes extremely challenging in this situation,
as the test data is sparse and covers a wide range.

It is critical to direct the search process in order to obtain that kind of test data. In our proposed searching
technique, we consider Branch Distance (BD) and Predicate Distance(PrD) for improved objective function
(IOF). Fig. 5 showing all predicate nodes and brach distance.

The BD determines the degree to which the input deviates from the predicate [16]. It specifies whether
the test data is close or far to satisfy the conditional statement of the code [25].

Here we consider TIP code for the explanation of the proposed technique. The conditional nodes in this
example are node1, node2, node4, and node6. Suppose predicate node for a path is node1 and denoted as Pr1,
then Branch Distance is shown as:

BD Pr1ð Þ ¼ BDða > bÞ ¼ abs b� að Þ (7)

Tab. 1 has the description of all predicates and their BD values. This BD is normalized [26] to map the
value of function within the interval [0,1] through the following formula for input x:

NBD xð Þ ¼ 1� 1:0001ð Þ�x (8)

where NBD is Normalized Branch Distance. This is the formula for Branch Distance Fitness (BDF).

4.3 Predicate Distance (PrD)

In our objective function, the second fitness parameter we consider is predicate distance (PrD). PrD is the
difference of nodes from the predicate node between the target(critical) path and other traversed path and
denoted as:

PrDi ¼ diff node Pi ; Ptð Þ (9)

where Pi is i
th traversed path and Pt is the targeted path.

Figure 5: Branch distance for the target of four conditional statements in TIP

IASC, 2022, vol.32, no.2 1133

4.4 Improved Objective Function

The path (ci) is evaluated by using IOF and if the value of IOF(ci) is less than the value of IOF(mi) then
mj is updated to the value of ci. Entered into the next iteration for repeating the evaluation. The proposed
improved objective function is given for the traversed path Pi on test cases t and predicate node Prj as:

IOF tð Þ ¼
XN
i;j¼1

BDij þ PrDj (10)

The value of IOF(mi) should be minimal.

5 Experimental Setup and Evaluation

5.1 Predicate Distance Calculation

A matrix is generated from the CFG depicted in Fig. 1b, and it contains all of the test paths. This matrix
is supposed to initialize the crow positions. The row denotes the paths for the crow, whereas the column
denotes the nodes as crow position.

Paths =

1 2 3 7 8 0 0
1 2 4 5 7 0 0
1 2 4 5 7 8 0
1 2 4 6 7 0 0
1 2 4 6 7 8 0
1 9 0 0 0 0 0

2
6666664

3
7777775

All these paths are equalized in length by appending zero at the trailing position. We replace the letter ‘S’
with zero (0) to simplify the calculation of path distances. The final node ‘stop’ is the same in all the paths,
which does not affect any computation. The nodes that exist on a path of the graph (CFG) are matched against
the target path (critical). Predicate Distance is the number of unmatched nodes on these two paths. The
critical path is Path_4, as discussed in section 3.1.1.

Now we calculate PrD of target path with every traverse path as:

Target path: Pt = [1 2 3 7 8 0 0] = P4

Pt: 1 2 3 7 8

PrD(P1 , Pt) = 0

Table 1: Fitness function evaluation of various predicates suggested by Tracey N [27]

Predicates BD Evaluation

x > y if y − x < 0, then 0 else (y − x) + K

x ≥ y if y − x ≤ 0, then 0 else (y − x) + K

x < y if x − y < 0, then 0 else (x − y) + K

x ≤ y if x − y ≤ 0, then 0 else (x − y) + K

x = y if abs(x − y) = 0, then 0 else abs(x − y) + K

x and y BD(x) + BD(y)

x or y min [BD(x), BD(y)]

1134 IASC, 2022, vol.32, no.2

PrD(P2 , Pt) = 2

PrD(P3, Pt) = 1

PrD(P4 , Pt) = 2

PrD(P5 , Pt) = 1

PrD(P6 , Pt) = 4

These values are going to be used to calculate fitness values through the CSA objective function.

5.2 CSA implementation for Generating Test Cases

The CSA is implemented on TIP with IOF function is described here:

Step 1: Initialize the crow population (number of test data)

N = 5

Dimension of search space is initialized with d = 3

Maximum Number of iterations Itr = 20

We initialize matrix of test data as the initial crow position as:

Crow =

2 2 5
4 9 3
3 7 5
2 4 7
1 3 3

2
66664

3
77775

Initially, the position of each crow is equivalent to the value of the memory.

So c1 = m1 = [2 2 5], c2 = m2 = [4 9 3], c3 = m3 = [3 7 5], c4 = m4 = [2 4 7], c5 = m5 = [1 3 3].

Fitness value evaluation:

Next, each crow’s position is evaluated through the improved objective function IOF(ci). The fitness
value is initialized by using Eq. (9). Test case c1 [2 2 5] moves to the Path_2 and changes its
position towards ‘Isosceles.’ BD is evaluated by using rule suggested by Tracey N et al.

BD(c1) = BD1 + BD2 + BD3 + BD4

BD1: (0-2)+(0-2)+(0-5) = -9<0 = 0

BD2: |(2-2)|+ |(2-5)| = 0+3 = 3+0.1 = 3.1

BD3: min(|(2-2)|, |(2-5)|, |(5-2)|) = min(0, 3.1, 3.1) = 0

BD4: (c-(a+b)) = (5-(2+2)) = 1+0.1 = 1.1

BD(c1) = 0+3.1+0+1.1 = 4.2

NBD(c1) = 1 – (1.001)-BD = 1 – (1.001)-4.2 = 0.0041

Fitness evaluation IOF(c1) = BD + PrD = 0.0041+2 = 2.0041 by Eq. (10)

Test case(c2) = [4 9 3] and Test case(c3) = [3 7 5] move to Path_5 and leads to same position ‘Scalene and
acute’

BD(c2) = BD1 + BD2 + BD3 + BD4 = 0+11.2+1+0 = 12.2

NBD(c2) = 1- (1.001)-12.2 = 0.0121

Fitness evaluation IOF(c2) = BD + PrD = 0.0101 + 1 = 1.0121

BD(c3) = BD1 + BD2 + BD3 + BD4 = 0+9.2+2+0 = 11.2

IASC, 2022, vol.32, no.2 1135

NBD(c3) = 1- (1.001)-11.2 = 0.0111

Fitness evaluation IOF(c3) = BD + PrD = 0.0101 + 1 = 1. 0111

Test case(c4) = [2 4 7] is covering the Path_4 for ‘Scalene’

BD(c4) = BD1 + BD2 + BD3 + BD4 = 0+2.1+0+1.1 = 3.2

NBD(c4) = 1- (1.001)-3.2 = 0.0031

Fitness evaluation IOF(c4) = BD + PrD = 0.0031+2 = 2.0031

Likewise, for Test case(c5) = [1 3 3] to ‘Isosceles and acute’ by moving on Path_3

BD(c5) = BD1 + BD2 + BD3 + BD4 = 0+2.1+0+0 = 2.1

NBD(c5) = BDF = 1- (1.001)-2.1 = 0.0020

IOF = 0.0020+1 = 1.0020

Tab. 2 consists of fitness values calculated above using BDF and IOF for all the randomly selected test
cases and shown in the matrix as crow's initial positions.

The minimum fitness value observed is IOF(c5) = 2.0020

Step 2: We initialised AP = 0.5, fl = 0.7 r = random number ranges [0,1]

Next, the new position of crows to follow the path is computed by using Eqs. (5) and (6), given below:

Crow =

4 6 4
4 2 8
3 5 7
6 6 2
4 1 5

2
66664

3
77775
= New position

Now, again we evaluate fitness value for the first iteration. The value for the IOF for all new test cases
given above is shown in Tab. 3. The fitness value is be replaced by step mentioned in the algorithm as: ‘if IOF
(ci) < IOF(mi)’ and test cases also updated accordingly.

Table 2: Fitness value as per BDF and IOF for all test data

Test Case A B C BDF IOF

C1 2 2 5 0.0041 2.0041

C2 4 9 3 0.0121 1.0121

C3 3 7 5 0.0111 1.0111

C4 2 4 7 0.0031 2.0031

C5 1 3 3 0.0020 1.0020

Table 3: Updated fitness value after 1st iteration on new test cases

Test Case A B C IOF

C1 4 6 4 1.0041

C2 4 9 3 1.0121

C3 3 5 7 1.0061

C4 6 6 2 1.0040

C5 1 3 3 1.0020

1136 IASC, 2022, vol.32, no.2

In Tab. 3, the fitness value of C1, C3, and C4 are lower than previous memory and only replaced in a new
position. Repeat the same step for the second iteration, find a new crow position, and evaluate fitness value.
The comparison is made with IOF(ci) and IOF(mi). The position of the crow is updated according to CSA.

As shown in Tab. 4, the fitness value for test cases C2 and C4 have been updated. Again the process
is repeated for the third iteration to find the new position of crow and their fitness value. The position as
test cases and respective fitness values are updated and mentioned in Tab. 5. The CSA with IOF can
achieve the target in few iterations. Although test on large numbers requires more iterations. From Tab. 5,
we found a test case (C2) with [3 3 3] that leads to the critical path ‘Equilateral and acute’ triangle with
minimum fitness value.

The proposed CSA based approach with improved objective function has its advantage over other
metaheuristic algorithms in that the IOF covers almost every path by generating various test cases,
including the critical path. The test case for the crucial path needs only a minimum number of iterations
and reduced runtime.

6 Results and Discussion

The parameter setting plays a key role in improving the performance of any optimization algorithm.
Tab. 6 depicts the parameter setting of CSA for TIP and IAN. The values are based on some research
work [3,16,18], general sources, and the nature of the programs. The system configuration is Windows
10, 8GB RAM, Intel Core i7,4690T central processing unit, 2.50 GHz, 64-bit OS, x64 based processor.
CSA is implemented in an Anaconda environment.

A comparative analysis is done with the other metaheuristic algorithm such as PSO and APSO. These
optimization algorithms are applied with BDF and Combined Fitness Function (CFF). The authors have
considered the triangle classification problem and area calculation for empirical evaluation.

Table 4: Updated fitness with changes in C2 and C4

Test Case A B C IOF

C1 4 6 4 1.0041

C2 5 4 7 1.0051

C3 3 5 7 1.0061

C4 2 3 4 1.0022

C5 1 3 3 1.0020

Table 5: Updated fitness with the minimum value

Test Case A B C IOF

C1 4 6 4 1.0041

C2 3 3 3 0.0000

C3 3 5 7 1.0061

C4 2 3 4 1.0040

C5 1 3 3 1.0020

IASC, 2022, vol.32, no.2 1137

We also have considered the same problem for comparison purposes. To the best of our knowledge CSA
algorithm with IOF is yet not applied for test case generation and optimization.

So here, we compared our results with the algorithm that considered the TIP problem with the
population N =1000 and iterations Iter = 100 as parameter setting.

According to results shown in Tab. 7, the CSA with IOF giving test data for the target path in the 3rd

iteration but within an average execution time of 0.2745 sec.

The results produced through the existing FFs and the suggested FF differ significantly in terms of how
many iterations and the average time spent on implementation. CSA with ICF produces better results for
considered TIP case study including IAN since this algorithm implements an efficient search strategy.

Fig. 6. has the details about the number of test cases generated for each test path for TIP in 100 iterations
on 1000 population (test data) as given in Tab. 8.

Table 6: Parameters for CSA

Parameters TIP IAN

Population Size 1000, 25000 50000

Dimension of search space 3 1

Awareness Probability(AP) 0.5 0.5

Flight Length(FL) 0.7 0.7

Maximum number of iterations 100 50

Cmax (maximum test data) 9 600000

Cmin (minimum test data) 1 100

Table 7: TIP comparison with various population

Algorithm Iterations to achieve target path Execution time in s (avg)

PSO with BDF 3 1.3535

APSO with BDF 3 1.5002

PSO with CFF 3 1.3560

APSO with CFF 2 0.4406

CSA with IOF 3 0.2745

0

100

200

300

1 2 3 4 5 6

N
um

be
r

of
 te

st
 c

as
es

ge
ne

ra
te

d

Test Paths

CSA with IOF

Figure 6: Test case generated with CSA

1138 IASC, 2022, vol.32, no.2

7 Conclusions and Future Work

In this paper, the main objective was to cover the target path with a minimum time span. We adopt CSA
based optimization technique by improvising its objective function. The fitness value is evaluated by using
branch distance and predicate distance in IOF that guide the search algorithms to develop various test cases to
cover a maximum number of paths automatically. The key idea was finding a test case for critical path
minimum time and fewer iterations. A population-based metaheuristic algorithm is used. A heuristic path
distance function IOF searched the target path efficiently. To carry out the experiments, we considered
two case studies, TIP and IAN. We have achieved almost 100% complete path coverage for the case
studies we considered using the suggested FF of CSA. The importance of the FF is that we reach our
aimed path in fewer iterations and very little time span compared to the other existing heuristic algorithm
with their branch distances FFs. We combine the predicate distance with branch distance as its heuristic
distance to give the search technique a suitable direction.

Our future work is to cover additional test paths concurrently in evolutionary software systems. We will
target to cover critical paths for regression testing and automate test case generation.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Z. Karimi and B. Arasteh, “An efficient method to generate test data for software structural testing using

artificial bee colony optimization algorithm,” Int. Journal of Software Engineering and Knowledge
Engineering, vol. 27, no. 06, pp. 951–966, 2017.

[2] P. R. Srivastava, “Optimization of software testing using genetic algorithm,” in Proc. Information Systems,
Technology and Management, Berlin, Heidelberg, Springer, pp. 350–351, 2009.

[3] A. Pachauri and G. Mishra, “A path and branch based approach to fitness computation for program test data
generation using genetic algorithm,” in Proc. IEEE Int. Conf. on Futuristic Trends on Computational Analysis
and Knowledge Management (ABLAZE), Greater Noida, India, pp. 49–55, 2015.

[4] F. S. Babamir, A. Hatamizadeh, S. M. Babamir, M. Dabbaghian and A. Norouzi, “Application of genetic
algorithm in automatic software testing,” in Proc. Int. Conf. on Networked Digital Technologies, Berlin,
Heidelberg, Springer, pp. 545–552, 2010.

[5] S. Sankar and V. Chandra, “An ant colony optimization algorithm based automated generation of software test
cases,” in Proc. Int. Conf. on Swarm Intelligence, Cham, Springer, pp. 231–239, 2020.

[6] S. Biswas, M. S. Kaiser and S. A. Mamun, “Applying ant colony optimization in software testing to generate
prioritized optimal path and test data,” in Proc. ICEEICT, IEEE, pp. 1–6, 2015.

Table 8: Number of generated test cases for all paths

Test Paths Path Description Number of Test cases

Path_1 Equilateral and acute 10

Path_2 Isosceles 160

Path_3 Isosceles and acute 280

Path_4 Scalene 170

Path_5 Scalene and acute 240

Path_6 Can’t form a triangle 140

IASC, 2022, vol.32, no.2 1139

[7] Y. H. Jia, W. N. Chen, J. Zhang and J. J. Li, “Generating software test data by particle swarm optimization,” in
Proc Asia-Pacific Conf. on Simulated Evolution and Learning, Springer, pp. 37–47, 2014.

[8] M. Huang, C. Zhang and X. Liang, “Software test cases generation based on improved particle swarm
optimization,” in Proc Int. Conf. on Information Technology and Electronic Commerce, IEEE, pp. 52–55, 2014.

[9] S. Sheoran, N. Mittal and A. Gelbukh, “Artificial bee colony algorithm in data flow testing for optimal test suite
generation,” Int. Journal of System Assurance Engineering and Management, vol. 11, no. 2, pp. 340–349, 2020.

[10] S. S. Dahiya, J. K. Chhabra and S. Kumar, “Application of artificial bee colony algorithm to software testing,” in
Proc. Australian Software Engineering Conf., IEEE, pp. 149–154, 2010.

[11] A. Alhroob, W. Alzyadat, A. T. Imam and G. M. Jaradat, “The genetic algorithm and binary search technique in
the program path coverage for improving software testing using big data,” Intelligent Automation & Soft
Computing, vol. 26, no. 4, pp. 725–733, 2020.

[12] P. R. Srivastava, A. Bidwai, A. Khan, K. Rathore, R. Sharma et al., “An empirical study of test effort estimation
based on bat algorithm,” Int. Journal of Bio-Inspired Computation, vol. 6, no. 1, pp. 57–70, 2014.

[13] M. M. Öztürk, “A bat-inspired algorithm for prioritizing test cases,” Vietnam Journal of Computer Science, vol. 5,
no. 1, pp. 45–57, 2018.

[14] M. Shahid, S. Ibrahim and M. N. Mahrin, “A study on test coverage in software testing,” Advanced Informatics
School (AIS), Universiti Teknologi Malaysia, International Campus, Jalan Semarak. Kuala Lumpur, Malaysia,
2011.

[15] R. Mall, “Fundamentals of software engineering,” in PHI Learning Pvt. Ltd., Delhi, India, 2018.

[16] X. W. Lv, S. Huang, Z. W. Hui and H. J. Ji, “Test cases generation for multiple paths based on PSO algorithm with
metamorphic relations,” IET Software, vol. 12, no. 4, pp. 306–317, 2018.

[17] A. P. Gursaran, “Program test data generation branch coverage with genetic algorithm: Comparative evaluation of
a maximization and minimization approach,” Int. Journal of Software Engineering & Applications, vol. 3, no. 1,
pp. 207–218, 2012.

[18] D. Garg and P. Garg, “Basis path testing using SGA & HGA with ExLB fitness function,” Procedia Computer
Science, vol. 70, pp. 593–602, 2015.

[19] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow
search algorithm,” Computers & Structures, vol. 169, no. 2, pp. 1–12, 2016.

[20] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4, pp. 308–
320, 1976.

[21] A. Panichella, F. M. Kifetew and P. Tonella, “Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets,” IEEE Transactions on Software Engineering, vol. 44, no. 2,
pp. 122–158, 2018.

[22] S. A. Khan and A. Nadeem, “Automated test data generation for coupling based integration testing of object
oriented programs using particle swarm optimization (PSO),” in Genetic and Evolutionary Computing. Cham:
Springer, pp. 115–124, 2014.

[23] Z. K. Aghdam and B. Arasteh, “An efficient method to generate test data for software structural testing using
artificial bee colony optimization algorithm,” Int. Journal of Software Engineering and Knowledge
Engineering, vol. 27, no. 06, pp. 951–966, 2017.

[24] S. Laokok and T. Suwannasart, “An approach for test case generation from a static call graph for object-oriented
programming,” in Proc. Int. Multi Conf. of Engineers and Computer Scientists, Hong Kong, vol. 1, 2017.

[25] Y. Chen, Y. Zhong, T. Shi and J. Liu, “Comparison of two fitness functions for GA-based path-oriented test data
generation,” Proc. IEEE Int. Conf. on Natural Computation, vol. 4, pp. 177–181, 2009.

[26] J. Wegener, A. Baresel and H. Sthamer, “Evolutionary test environment for automatic structural testing,”
Information and Software Technology, vol. 43, no. 14, pp. 841–854, 2001.

[27] N. Tracey, J. Clark, K. Mander and J. McDermid, “An automated framework for structural test-data generation,”
in Proc. IEEE Int. Conf. on Automated Software Engineering (Cat. No. 98EX239), Honolulu, HI, USA, pp. 285–
288, 1998.

1140 IASC, 2022, vol.32, no.2

Automated Software Engineering

Source Code Change Analysis with Deep learning based programming model
--Manuscript Draft--

Manuscript Number: AUSE-D-21-00066R1

Full Title: Source Code Change Analysis with Deep learning based programming model

Article Type: S.I. : Software Engineering for Parallel Programming

Keywords: Change Impact Analysis, Abstract syntax tree, Path2Vec, Deep learning, word
embedding, distance metrics, attention, un-parsing.

Corresponding Author: Babita Pathik, Phd Scholar
DAVV: Devi Ahilya Vishwavidyalaya
Indore, INDIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: DAVV: Devi Ahilya Vishwavidyalaya

Corresponding Author's Secondary
Institution:

First Author: Babita Pathik, Phd Scholar

First Author Secondary Information:

Order of Authors: Babita Pathik, Phd Scholar

Meena Sharma, PhD

Order of Authors Secondary Information:

Funding Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Reviewer #1:

1. In section 4, paragraph 3, the authors explained the flow of their process in four

parts. Instead of writing steps as 'one', 'two' etc., they should give a number or can

write step 1, step 2, etc., for clarity.

Response: Done

2. In figure 4, two parts (a) and (b) are there, but the authors did not consider them

separately in the paragraph. It is suggested to mention them in the text.

Response: Done

3. ALGORITHM 1 and ALGORITHM 2 caption is missing. Give proper caption

based on the task of these algorithms.

Response: Captions are added

4. Some references are not in the prescribed format. The formatting of all the

references should be uniformed.

Response: Reference formatting is Done

5. The author should add some latest works of literature in the paragraphs of the

introduction section, especially from 2019-20.

Response: Latest research papers are added.

6. Sub-heading 5.2 'Results' should be renamed according to the experimental

evaluation like the other paragraph's heading. That looks appealing.

Response: Done

7. I recommend the authors to proofread the manuscript with a native English

speaker.

Response: Done

8. Discuss the comparison of the accuracy of the relevant studies

Response: A comparative table is added.

Review #2:

1. Add some more references in support of the work in the literature review section.

Briefly explain these references in that section that will show the novelty of your

work.

Response: Latest references are added along with the limitations of existing work in

tabular form.

2. The meaning of variables is not clear. Readers will be confused. The authors

should explain them properly.

Response: Detailed explanation is added.

3. Write the caption and number separately for figure 11, as it seems the caption is

missing.

Response: Done

Response to Reviewer Comments

4. Authors have used abbreviations in some places and their full form somewhere.

Once the abbreviation is declared, use it throughout the paper where it is required.

Response: Correction is done.

5. Discriminate the use of LSTM and Bi-LSTM for the proposed approach.

Response: Done

6. In figure 3, a very small code segment has been taken; why? Give reason for that.

Response: The proposed model is also applicable to large program code, but we

portray results on small code segments due to the large space requirement for graphical

representation of ASTs.

7. The conclusion part should include result-specific data or focus on the outcome of

work done.

Response: The results are included in the conclusion part.

Review #3:

1. The drawbacks of conventional techniques should be described clearly. The

authors should emphasize the difference with other methods to clarify the

position of this work further. The author can prepare a table that will help to

understand.

Response: Information is added in a tabular form. Refer Table 1.

2. The attention mechanism should be explained in more detail, supporting your

work. A separate sub-section can be added in the main section.

Response: A separate section is added explaining the Attention mechanism (section.

4.6.1)

3. What are the values for tuning Hyperparameter? Specify the values for the

parameters that are mentioned in the last paragraph of section 5?

Response: Hyperparameter values are mentioned in the new paragraph.

4. In figure 6, the description of the node's type is missing. It will better to use a

table in place of the figure to describe the nodes. For example, ClassDef → ?????.

Response: The description of Figure 6 is shown in the form of a table. (refer Table 2)

5. In section 3, subsection 3.1 abbreviation EIS is not described before. Although

before using the abbreviation, its description must be written.

Response: Done

6. The term IABLSTM is missing from the abstract or title. If it is significant in this

paper, it should be added in the abstract part. The authors should write its

expanded form also for more clarity.

Response: Done

7. Authors are advised to present a discussion on the accuracy of similar studies.

Response: A detailed description is added in the form of a table. (refer Table 5)

Reviewer #4:

1. In this manuscript, the contributor has not emphasized how the Deep Learning

Framework is utilized to handle industrial manufacturing. A deep learning

framework is provided in diagram 1, but its incorporation with the testing and its

relevant information is missing.

Response: Thanks for your suggestion. Deep Learning Framework is fit for industrial

manufacturing for a reason dealing and manufacturing substantial data. This is useful

where these data are used efficiently. As far as our paper is concerned, the results of

the framework can be considered for regression testing, but we have not extended it in

this article. We have focused on finding code changes and their impacts.

2. How the two purposes achieve it with the loss function is completely loaded with

the equations. Therefore, it is not easy to follow. Applying the operational flow of

approach Path2Vec provided in a diagram appears well, but its implementation

in this manuscript and its functional description are not justified.

Response: Done

3. Moreover, the usage of the algorithm along with the data by several processes they

are general information storage, implementation of the user interface, privacy

design, and support design and its necessary information, are not presented well.

Response: The proposed algorithm is specifically covering the methodology to achieve

our objective of change detection. We have not covered the above mentioned area of

software products in this article.

4. Besides, there is no clear description provided for how the Effective Inspection

System for the smart manufacturing industry and its discussions are not

considered in this manuscript; therefore, it deficits in studying the central theme

of this work.

Response: The idea presented in this article will facilitate the software maintenance

process in the information technology industry. Software engineers and developers also

take help for regression testing.

5. In the result analysis, how the Receiver Path2Vec is used to evaluate the rate and

its necessary information is not provided. Furthermore, how the blob, edge,

corner, and spots are depicted in diagram 8 are not elucidated.

Response: As two additional diagrams are added as per review, so Diagram 8 has

become diagram 10. It is updated with the necessary information. In this presented

work, IABLSTM is evaluated as a whole on accuracy rather than Path2Vec separately.

Rate is not considered as evaluation.

6. The conclusion does not summarize how the images are captured to analyze the

manufacturing system's deficits efficiently.

Response: This review seems to be irrelevant with respect to the presented work as we

have neither captured any images and nor analyzed any manufacturing system.

Review #6

1. To support the novelty of the presented work, a clear comparative study is

required for a crisp conclusion. Need to refer to more recent papers to fulfill the

said task.

Response: Recent papers are added (2019, 2020). A table is added showing the

limitations of various existing methods.

2. Hyper-parameter tuning is specifically not mentioned. A detailed description is

equired for more clarity.

Response: Detailed description about Hyper-parameter tuning is added.

3. A comparative analysis based on the performance of the proposed model must be

provided by the authors.

Response: A table is added for comparative analysis of presented work with existing

methods based on performance.

4. In fig.2 LSTM network is missing from the overall working flow, even though it is

a part of the proposed approach, that should be included in the given figure.

Response: Figure 2 is modified with said content.

5. The description of variables or the meaning is not given properly. The description

gives a better understanding and authors must focus on this point.

Response: All the considered variables are described for understanding.

6. Authors have given Figure 1 for the LSTM network. However, the given figure

seems to be a standard figure. Authors are required to give an explanation about

the figure in the interest of the readers of the journal. As many parameters are

given in the figure, authors are required to give a short explanation about them.

Response: The explanation of Figure 1 with all parameters and variables is done.

7. In the text authors have mentioned "Figure 1 depicts the overall architecture of

the LSTM network". However, this representation could be better in reference to

the author's work.

Response: We have replaced the text with a better statement.

8. Authors have used multiple abbreviations. Either authors should prepare the

table of abbreviations or each abbreviation must be written in full form at its first

instance.

Response: All the abbreviations have been elaborated before their use.

9. Figure 2 has a caption as "Figure 2. Overall working flow of our approach

IABLSTM". I recommend that this caption can be more comprehensive to

enlighten the details.

Response: We have updated the caption in detail in Figure 2.

10. There are divisions of Figure 4 (a) and Figure 4 (b) and a separate caption is given.

However, I recommend that there should be only one caption for Figure 4 where

both the captions can be referred using (a) and (b) and similarly figures can be

referred through (a) and (b). This is similar to the Figure 3 used in the manuscript.

Response: Only one caption is written for Figure 4(a) and (b)

11. Equation 10 is used in the text. But what about other equations? Other equations

should also be used in the text.

Response: All the equations (1-13) are used and cited in the text.

12. Authors are required to discuss what is BOW, TF, or TF-IDF and how these are

used?

Response: We have not evaluated the considered program and dataset on above said

technique. We have applied the concept of Word2Vec to proposed a new concept of

Path2Vec in this article. We have mentioned the background of all of these

terminologies in section 3, 2nd paragraph.

13. The authors are required to discuss the available relevant methods.

Response: Done in the form of tables. (refer Table 1)

14. The authors are required to compare their results with the current state-of-the-

art methods.

Response: Done in the form of tables. (refer Table 5)

15. Include more relevant work in the related work section.

Response: Done

16. Overall recommendation is to improve the language to increase the readability of

the paper.

Response: Done

Review #7

1. The difficulties faced in the existing system based on object-oriented based parallel

programming source code have not depicted along with their constraints.

Response: Done (refer section 7).

2. When compared to Path2Vec, how much accuracy is achieved by the conventional

models despite of generating abstract syntax tree?

Response: Done (refer Table 5).

3. What are the characteristics of change impact analysis (CIA) software involved in

identifying the changes?

Response: Static Code analysis is performed on object-oriented method as granularity

level.

4. If the software change is implemented after the maintenance, then how do the

change impacts the backend and frontend source code and what are the

drawbacks that occur due to the impact made on source code?

Response: As we have proposed a methodology for change detection if it occurred and

applied it to small code segments. We have also applied our approach to the AST

dataset to verify the correctness of the model proposed, but we have not considered or

coordinated with backend and frontend source code. Source code change impact

analysis is part of the maintenance process, and it definitely affects the related modules

(backend and frontend). Added this point in section 8 as future work.

5. lack of information concerning the structure of source code tree illustration

utilized by the Abstract syntax tree (AST).

Response: Done

6. While representing about the contribution of this paper related to the change

detection in source code Bi-LSTM is suggested but in abstract section only

Path2Vec approach is described what about the Bi-LSTM method?

Response: Done

7. The author did not state whether the proposed Word2vec word embedding

technique is either a supervised or unsupervised model.

Response: Done

Although word embeddings are considered unsupervised, they are trained using a

fictitious supervised learning problem.

8. There is no sufficient information provided for the existing system LSTM and

MLP architecture for processing abstract syntax tree.

Response: Done

9. How does the tokens sequence is generated for the input data and how does it maps

into vector through embedding layer?

Response: Done

10. Comparative data between several word embedding techniques BOW, TF-IDF,

Word2Vec have not elucidated in this paper.

Response: We have not evaluated above said technique on considered data. We have

applied the concept of Word2Vec to proposed a new concept of Path2Vec in this article.

11. Working procedure of Bi-LSTM neural network approach is not explained well

and seems to be difficult to understand without testimonials. The function of

softmax activation layer and its benefits is not represented in this paper.

Response: Explained with separate section.

[Type here]

Source Code Change Analysis with Deep learning based programming model

Babita Pathik ∙ Meena Sharma

Abstract Analyzing the change in source code is a very crucial activity for object-oriented parallel

programming software. This paper suggested an Impact analysis method with Attention BiLSTM

(IABLSTM) for detecting the changes and their affected part in the object-oriented software system.

Classical approaches based on control flow graph, program dependence analysis, latent dirichlet allocation,

and data mining have been used for change impact analysis. A Path2Vec approach is presented in the paper,

combining a deep learning technique with word embedding to analyze and identify the change. The paper

considers two versions of a python program for experiment and generates the abstract syntax tree (AST).

Then extract the path to produce a token sequence. Next, convert the token sequence into unique vectors

by applying a word embedding layer. The BiLSTM network encodes the sequence into a vector

representation. After that, compare the embedded output with the use of cosine distance metrics. We trained

the neural network model with the embedded outcome. Then decode the resultant token sequence into a

path of AST. Finally, convert the AST path back to code using the un-parsing technique. To strengthen the

parallel programming based proposed model, we combined the attention mechanism to emphasize and

detect the differences in the code. The model is detecting the change of code efficiently. The experimental

results show that our proposed model's change detection accuracy increases significantly compared with

other conventional models for change impact analysis. The proposed method can also be applied for impact

analysis on object-oriented based parallel programming. The empirical evaluation shows that the model

outperforms change detection with approximately 85% validation accuracy.

Keywords: Change Impact Analysis, Abstract syntax tree, Path2Vec, Deep learning, word embedding,

distance metrics, attention, un-parsing.

Babita Pathik (✉)

IT, Institute of Engineering & Technology, DAVV, India

e-mail: babitapathik@gmail.com

Meena Sharma

Department of Computer Engineering, Institute of Engineering & Technology, DAVV, India

e-mail: msharma@ietdavv.edu.in

Revised Manuscript Click here to
access/download;Manuscript;Revised_Paper_290821_AUSE.do

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/ause/download.aspx?id=49681&guid=6eff381c-ab98-4fc5-97cb-8e712a442eb3&scheme=1
https://www.editorialmanager.com/ause/download.aspx?id=49681&guid=6eff381c-ab98-4fc5-97cb-8e712a442eb3&scheme=1
https://www.editorialmanager.com/ause/viewRCResults.aspx?pdf=1&docID=2332&rev=1&fileID=49681&msid=af6bb36d-2ffa-4f42-97eb-77505eeb7d10

[Type here]

1 Introduction

Due to the continuous growth of computer based applications and usage, the maintenance of the software

has become a crucial task. For reducing the maintenance cost and effort, it is necessary to find the changes

and their impact on any part of the code very efficiently. Software change impact analysis enables testers

to reduce the maintenance cost by identifying changes and their impact on the code. Once the change is

implemented in code, it can affect anywhere any part of the code. This effect is commonly known as the

ripple effect. The change in software may cause many side effects. Sometimes it may cause errors too. The

object-oriented program comprises influential behavior. The object-oriented paradigms have programming

concepts, e.g., polymorphism, inheritance, abstraction and encapsulation. The change analysis techniques

take these concrete features of object-oriented programs into account and generate potentially impacted

classes, class methods or class fields. In order to help testers and developers, it is reasonably necessary to

analyze the changes and their impact on code efficiently and accurately. It may reduce testing costs up to

some extent. Change Impact Analysis(CIA) of software is a process of finding changes and their potential

impacts on the part of the software system (Bohner et al. 1996).

This paper focuses on finding all the changes in the revised version of the software by evaluating both

versions using a parallel programming model. The presented work will facilitate the software maintenance

process in the information technology and software industries. The model framework is useful for software

engineers to perform regression testing. The granularity of a program may be file level, code level, function

level, change level. We choose the code level of the program for an experiment in this paper. The CIA

technique suggested by various researchers for static code analysis gives the approximate result. Metrics

like McCabe and CK are not sufficient to analyze the basic structure of the code. Traditional methods like

software edit history (Kitsu et al. 2013), repositories mining (Moldrez et al. 2017), Control call graph (Badri

et al. 2005), Program Dependence Graph (PDG) (Baah et al. 2010), Aspect-Oriented Dependence Flow

Graph (Ahmad et al. 2014) considered syntax structure and its relationship among function and classes like

elements. But these methods did not consider semantic information instead.

There are some more techniques used by various researchers, such as LDA (Thomas et al. 2010),

Latent Semantic Indexing (LSI) (Gethers M. et al. 2011). These improved the performance of code change

analysis up to some extent. A deep learning model with a framework of encoder-decoder is applicable in

source code generation and its modeling, according to Le TH et al. (2020). Meng and Liu (2020) present a

BiLSTM network with a self-attention layer to detect source code.

The syntactic and semantic information are the features that contain such structural and semantic

information that may advance the performance of impact analysis. An AST of every program has detailed

semantic information and conceives its syntactic structure (Alon et al., 2018, Wang W et al., 2020). A

neural network based on AST has been developed (Zhang J. et al., 2019). The change and change impact

can be searched and analyzed more accurately with the help of the AST of the program code. The semantic

information helps to find the difference between two different versions of the code. Some change does not

affect other code. Those set of change is termed as the actual impact set (AIS). That can be traceable by

semantic information. Extract all the paths from the generated AST for further process. The paths are

extracted as a whole then each of which is separated by splitting them. Each path is converted in vector

representation.

Following are the significant contributions in this paper:

(1) We suggest a BiLSTM based change detection that learns useful features related to the source code's

semantic and syntactic information. BiLSTM with attention is used for training and named IABLSTM.

(2) We do parsing on a program to evaluate the syntax tree and follow the path of the tree in a depth-first

traversal manner. Split the path to generating the tokens.

(3) We apply Path2Vec that uses the Word2vec word embedding technique to convert code’s ASTs into

high dimensional real-valued vectors taken as input to the LSTM based model for training.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The rest of the paper is organized as section two briefly summarizes the work achieved by various

researchers in CIA and software code analysis. The background of our work is mentioned in section three.

The fourth section describes the proposed methodology. The fifth section contains the experimental setup

with results, and finally, the sixth section concludes the paper with expected future work.

2 Literature Review

The motivation behind this work is that if changes and their consequences can be detected efficiently, the

testing and maintenance costs can be reduced proportionally. It is always a thrust area of research due to

the industry's need. Here we brief the work presented by the author, which we have referred to in our work.

Table 1 briefs the approaches and threats studied from the above articles. Angerer et al. (2019) presented a

CIA approach, which determines the source code's impacted element. They used to control flow and data

flow analysis for their approach. Goknil A et al. (2016) utilize semantics of requirements relations, change

requests and traces between requirements and architecture to improve CIA in software architecture. Musco

V et al. (2016) present LCIP, a learning system that uses historical data to forecast future impacts. The

artifacts investigated for CIA are object-oriented software methods. A multi-level word and character

embedding were adapted to record the semantics of code modifications and reviews. The embeddings are

trained using a suggested attentional deep learning model (Siow JK et al., 2019). Tiwang et al. (2019)

suggested a deep learning model for source code generation and completion. AST is processed for structure

evaluation of source code. They utilize LSTM, deep learning, and MLP architectures to generate the model.

 A learning-based approach is presented for detecting code clones. Code analysis enables the automatic

connection at lexical and syntactic levels of patterns mined with a system based on deep learning (White

M et al., 2016). Using source code analysis techniques, Eid S et al. (2020) proposes a novel approach to

automatically identify probable code changes that result in performance degradation between system

versions. A deep learning method is combined with word embedding in a framework for predicting the

program's defect (Liang et al. 2019). Token sequence extracted from the generated AST. These tokens are

mapped with a real-valued vector using a mapping table. They provided unsupervised training using the

word embedding model and LSTM network using vector sequences and labels.

Table 1. Proposed approach and limitations

Author Proposed Approach Limitations

Goknil A. et al.

(2016)

To identify architectural aspects for the change

impacts in architecture requirements, employ the

formal semantic of requirement relations and traces

between Requirement & Architecture.

Returns the impact on new requirement only if an

existing requirement relating to a new requirement

exists.

Angerer et al.

(2019)

Configuration-aware CIA and interprocedural

approach using conditional system dependence

graph

The assessment is based on a less customizable

code base; some alternative functionalities are not

included. It could not be applied to full code.

Musco V et al.

(2016)

CIA for object-oriented methods artifacts presented

by considering Class-Hierarchy-Analysis call graph
Valid only for Java software, even only for the

studied projects.

Siow JK et

al.(2019)

Developed a multi-level word and character

embedding technique to express the semantics of

code modifications and reviews.

Negative data may exist in the training set, while

actual positive data is available in the test set. The

model is learning some sections of the test set in

the training phase.

Eid S et al.

(2020)

Identify probable code changes for test cases with a

genetic algorithm-based performance tool.

The approach has one basic problem: it cannot

identify newly added, instead of updated, source

code performance regressions.

 Dam HK et al. (2018) designed a prediction model capable of automatically learning and utilizing

attributes for representing and predicting defects in source code. The approach is based on a sophisticated

deep learning, tree-structured LSTM that corresponds directly to the source code's AST representation.

LSTM with an attention mechanism based intelligent model proposed by Rahman et al. (2020) for source

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

code completion. The model classifies the erroneous source code and clean code. The goal of the work is

to detect the error in code line by line. Meng and Liu (2020) presented a unique model for detecting source

code with a self-attention layer based on a BiLSTM network. The model encodes the series of statement

vectors using the model, which is a well-known deep learning framework. The model maintains both the

syntactic and semantic properties of the source code during the encoding process.

 From the briefing of the literature survey, we can conclude that syntactic and semantic features help

source code analysis. The method proposed here is generalized and applicable in any source code except

parsing of the code. In this work, we get an AST to extract both the features information. Our model, unlike

others, is using BiLSTM with self-attention for detecting the change code.

3 Background

3.1 Change Impact Analysis

Change Impact Analysis is a crucial activity in the software development process due to software evolution.

There are so many changes that emerge in software during maintenance. The conception of the CIA is to

recognize the changes and their side effects. The impacted part needs to be analyzed effectively to reduce

maintenance costs. For large scale software, the CIA is a rigorous task. Assessment of Estimated Impact

Set (EIS) is the CIA's primary goal, and it must be as close to AIS. Several researchers suggest various

methods to detect impacted parts in source code, including the control call graph and other CIA techniques.

3.2 Abstract Syntax Tree

Abstract Syntax Tree (Büch et al. 2019) is a mode of representing the source code in graphical notations.

AST is used by compilers, which reads the code by parsing it and generate the object binaries. It is a tree

that represents the abstract syntactic structure of a selected source code. AST completely restores the

structural information of the given source code. Each node of the tree corresponds to the essential elements

of the code. It efficiently characterizes the programs with any source code and is widely adopted in the

software engineering field. AST holds syntactic and semantic information in an exemplary manner and is

frequently used by researchers and IT industries. The purpose is to extract hidden information from the

code. In this paper, we traverse the tree to process the path.

3.3 Word Embedding

Word embedding is a broadly accepted technique for text in the field of natural language processing. (Hoang

et al. 2020). It is a vector representation of words of given documents. Word embedding is mainly a feature

extraction technique used in text processing (Hameed et al. 2020). A vector of real value represents each

word of the document. We use embedding to encode the token sequence and map it into a vector. Then

these vectors are required as input for our model. There is various embedding technique we have gone

through, such as BOW, TF-IDF, Word2Vec. We add an embedding layer to our network to extract features.

 The BOW model is often employed in the categorization of documents, and each word is used as a

training feature for a classifier. BOW doesn't work very well if statements have the same meaning but only

with different terms. TF-IDF is a statistic that reflects the importance of a word in a corpus of documents.

Word2Vec model is used for vector representations of words known as word embedding. This is done in a

preprocessing phase through which the acquired vectors are put into a NN model for predictions and some

other task. This model utilizes the semantics of words. We extend the working of the Word2Vec model for

our method accordingly.

The purpose of this training is to drag the semantic difference between paths. Embedding layer added

as part of a neural network model. The layer is usually built for dealing with natural language processing

tasks, specifically classification, language modeling. The document should be preprocessed for encoding.

The vector size is specified with a particular dimension such as 50, 100, or 300 and becomes part of the

model. One-hot encoded word is mapped to the word vectors through mapping. The network takes the

encoded input sequentially.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The widely used embedding method is Word2Vec, an efficient statistical method (Meng and Liu,

2020). Refer the program to as a text document. Skip-gram and Continuous Bag of words (CBOW) are the

two architectures on which Word2Vec works. The word wp is predicted in CBOW, if wp-2, wp-1, wp+1,

wp+2 are given context or words. In this work, a token is a path sequence that is a combination of nodes.

We adopt the Word2Vec word embedding technique to encode the targeted token. The basic reason for

selecting this technique is to retain the order of the words intact. It is the way we can maintain the sequence

of the token

3.4 LSTM Network

LSTM is a gated version of RNN (Liang et al., 2019). It is well suitable to process sequential data. LSTM

clenches mainly three gates as input gate (it), forget gate (ft), and output gate (ot). The working of the cell

state is transmitting relevant data through a sequence forming a chain. The cell state remembers the material

that comes out of the previous time step during the processing in sequences. Data is collected or erased into

the cell state via gates as far as the cell state comes into the movement. The neural network-integrated gates

determine which cell state data is enabled.

The first gate is the "forget gate," which decides which information should store and discard. The

current state input and information from the previously hidden state pass by the sigmoid function. The

function returns the value between 0 and 1. If the value it returns is nearer to 0 means inhibiting the

information, and if the value is closer to 1, keep and pass all information. We get the value by equation (2).

We've got the input gate to modify the cell state by equation (1). To further control the network,

transfer the current input and hidden state output through the tanh function, which ranges the output values

from -1 to 1. Then the sigmoid result is multiplied with the tanh output. To calculate cell state, we received

sufficient information. First, the pointwise multiplication is held between the cell state and forgot vector. If

values compound it near 0, it drops values in the cell state. Next, take the input gate’s output, and pointwise

addition is applied, which upgrades the cell state with new values found appropriate by the considered

neural network. The state is our new cell state and evaluated using equations (4) and (5).

The output gate is appropriate to determine the next hidden state using equation (3). For predicting the

value, the hidden state is having information about previous inputs. First, new input and the previously

hidden state transfer into the sigmoid function. Then transfer the recently changed cell state to the tanh

function. The sigmoid output is multiplied with tanh output to determine hidden state data with equation

(6). The hidden cell and new cell state are then passing to the subsequent stage. Fig. 1 depicts an internal

architecture of the LSTM cell.

Fig. 1 Internal working of an LSTM cell

The equations for the gates in LSTM are:

h
t

C
t-1

 C
t

h
t-1

 h
t

it

x
t

ft C’t

ot

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Input gate 𝑖𝑡 = 𝜎 (𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1)

Forget gate 𝑓𝑡 = 𝜎 (𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

Output gate 𝑜𝑡 = 𝜎 (𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3)

σ = Sigmoid function

𝑤𝑖/ 𝑤𝑓 / 𝑤𝑜 = Weight for the input/forget/ output gate neuron

ℎ𝑡−1 = Output of the previous hidden state is at time t-1

𝑥𝑡 = Current state input, i.e., at time-stamp t

𝑏𝑖/ 𝑏𝑓/𝑏𝑜 = Biases for the input/forget/ output gates

 New Candidate for cell state at time t : 𝐶’𝑡 = 𝑡𝑎𝑛ℎ (𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4)

Cell state at time t : 𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶’𝑡 (5)

Final output at t : ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (6)

𝐶𝑡−1 = Cell state at time t-1

𝑤𝑐 = weight for a new candidate

𝑏𝑐 = Bias for a new candidate

With cell state and the gates mentioned above, gratuitous information is automatically dropped by

LSTM cell as the time step grows. LSTMs are widely used in software engineering problems (Liang et al.,

2019, Meng and Liu, 2020) and natural language processing (Hameed and Garcia, 2020), where semantic

relation is essential. In the paper, we train the model using BiLSTM to learn source code.

3.5 BiLSTM

BiLSTM is an advanced form of RNN. These can significantly increase model performance when used to

solve sequence classification issues. The model consists of two LSTMs: one that takes the input in one

direction and the other in the opposite direction (forward and backward direction). BiLSTM significantly

improves the quantity of data presented to the network, which benefits the algorithm's context.

The BiLSTM is designed to achieve the objective of long term dependence at the moment around t.
Source code comprises contextual information that is important to spot potential issues. Each program has

its own context-sensitive syntax and semantics. The emergence of a different code segment is normally

relevant to both preceding or succeeding code. In the implementation of BiLSTM, bidirectional processing

runs given inputs in two directions; forward direction leads from past to future, and backward is from future

to past. We use this model two combined hidden states; one can preserve information from both the past

and future at any point in time.

3.6 Attention Mechanism

We can obtain hidden features of all time nodes in a series from the output of the BiLSTM network. We

insert an attention layer after the Bi-LSTM layer in order to improve the influence of crucial nodes. When

the attention mechanism is applied, critical nodes that are important for the sequence are aggregated

together to produce a sequence vector.

4 Proposed Approach

This section of the paper describes the overall working of our proposed approach. Multiple version of source

code is taken for experiment purpose to analyze the change. Our proposed IABLSTM is a system that

automatically traces syntactic features and semantic information from the source code through parsing to

extract key features to find change code.

Very first, we apply preprocessing on input source codes which involve the removal of comment lines.

Our target is to train the model with a different version of the same program with or without error and, after

that, successfully use it to detect changes by giving another version of the same program. Fig. 2

demonstrates the proposed method of IABLSTM.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The LSTM based approach has two working parts. The first one is the representative part, and the

second is the discriminative part. In the first part, we represent the code in dimensionality vector, which is

achieved with the following steps:

Step 1: Both versions' selected python source code is presented into ASTs by utilizing available AST tools.

These ASTs generate at the statement level.

Step 2: We perform pre-order traversal on the tree to extract path sequence with a granularity of statement.

Now we split the sequence path up to the leaf nodes.

Step 3: According to the deep-first traversal technique, each split path sequence is converted into a real-

valued vector with an LSTM encoder's help. All path fragment is transformed into an ordered set

of path vectors.

Step 4: The proposed model generates a final characteristic vector from a path vectors sequence through a

bidirectional LSTM (BiLSTM) encoder with the self-attention layer. A set of code vectors

calculated by applying cosine distance using this model is further loaded into the designated model.

The model predicts the probability of change for the pair of codes.

Fig. 2 A process diagram for the proposed IABLSTM approach with AST.

4.1 Code Preprocessing

Before training the model, we filtered raw source codes by removing unnecessary items. First, all irrelevant

elements have been eliminated from the code, such as new lines, comments (#), and tabs (\t). Then, every

remaining code element like keywords, numbers, functions, variables, classes, and characters have been

translated into sequences of terms. The filtered code was parsed through the parser.

4.2 Source Code Parsing

AST is a syntactical structure representation of a code as a tree. It is an intermediate representation of a

program during the construction of a compiler. The construction of AST is a part of parsing that is a

syntactic analyzer.

Fig. 3 Python programs for charging vehicle (a) first version (b) revised version

Multi Version

Source Code

AST

a

b c d e

f g h i

Invocation

and
Extracting

tree path

Splitting

path and

tokenizing

Processing AST

Vector

representation

Measuring

Distance

Transform

into path

Un-parsing

AST

Change

set

BiLSTM with Attention (IABLSTM)

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

(a)

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

 def charg(self):

 self.chrg_lvl = 100

 print('charged')

(b)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

We generate AST for a different version of a program to extract the various existing path. The semantic

analyzer utilizes the information provided by the AST. Every path ends with a leaf node. The leaf node or

terminal node contains tokens of the program code.

There are two small python codes given in Fig. 3(a) and 3(b) for the first and second versions,

respectively. Fig. 4(a) and 4(b) depict the AST of code given in Fig. 3(a) and 3(b), respectively. The

proposed model is also applicable to large program code, but we portray results on small code segments

due to the large space requirement for graphical representation of ASTs.

In Fig. 4(a) and 4(b), the nodes of the tree comprise keywords, characters. These fundamental elements

of the source code are tokens. The parent-child node pair can also be extracted from AST. A parent-child

relationship is valuable when it is required to trace back for analysis. There are various types of nodes that

emerged in AST. Each node shows either a code component or a specific characteristic of code. Every tree

starts with a module as a root node.

(a)

(b)

Fig. 4 AST for (a) first version (b) revised version

Name

ClassDef

“EleVehicl” Name

“Vehicl” Load

FunctionDef FunctionDef

“_init_” arguments Assign

“self” “make” “model

”

“type”

Attribute Constant

Name “chrg_lvl” Store 0

“self” Load

“charg” arguments Assign Expr

arg arg arg arg arg

“self”

Attribute

Name Constant

Constant

“chrg_lvl” Store

“self” Load

100

Call

“print” Load “charged”

ClassDef

“EleVehicl” Name

“Vehicl” Load

FunctionDef

“_init_” arguments Assign

“self” “make” “model

”

“type”

Attribute Constant

Name “chrg_lvl” Store 0

“self” Load

arg arg arg arg

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Fig. 5 enlisted the character hold by the nodes of a tree. The list may vary, here we include

some of them.

4.3 Processing of AST

Path extracted from AST is considered for further processing. Visit every node of the tree through pre-

order. We traverse the nodes of the tree in the depth-first traversal technique. After traversing, the path is

extracted as shown in Figures 6 and 7 for source codes shown in figures 3(a) and 3(b), respectively. It shows

the output as a complete string. To convert this string into words, we need to break it down to generate

tokens. The paths are separated by splitting with the terminal node, which is having variable path length.

These separated paths are tokens that construct a sequence vector. All the nodes, including the terminal

node of each truncated path, show the program code's characteristics or code elements. Algorithm 1 in

Figure 8 explains the generating and parsing of the source code.

Fig. 5 Types of nodes in AST

4.4 Path2Vec

All the separate paths transform into a vector representation. Paths are tokens and in the form of strings that

cannot be used as input directly. So, first of all, the tokens are converted into the token id. Then the token

ids are transformed into a vector. Vectors are of varying length of n number of tokens. The token ids are

unique integer values. Vectorization is achieved through the encoding technique by using word embedding.

Fig. 6 Extracted path for code in Fig. 3(a)

ClassDef Module Alias Store Store

NameConstant comprehension ListComp Return Num

FunctionDef Assign Slice Constant Tuple

Name Call For statement Mult NotEq

Arguments str While statement AugAssign Eq

Print Expr If statement List Mod

BinOp True Gt Attribute LtE

Load Subscript GtE Sub Add

Compare arg Lt Div Index

["ClassDef(name='EleVehicl', bases=[Name(id='Vehicl', ctx=Load())],"

 "keywords=[], body=[FunctionDef(name='__init__',"

 "args=arguments(args=[arg(arg='self', annotation=None), arg(arg='make',"

 "annotation=None), arg(arg='model', annotation=None), arg(arg='type',"

 'annotation=None)], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None,'

 "defaults=[]), body=[Assign(targets=[Attribute(value=Name(id='self',"

 "ctx=Load()), attr='charg_level', ctx=Store())], value=Num(n=0))],"

 'decorator_list=[], returns=None)], decorator_list=[])']

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Fig. 7 Extracted path for code in Fig. 3(b)

The description of the tree component as nodes are given in Table 2.

Table 2. Description about tree components

Nodes Description

ClassDef Class definition

args arguments

FunctionDef Function definition

vararg Variable argument

attr attribute

kwonlyargs lists of arg nodes

kw_defaults Default keywords

Expr Expression

Str String

kwarg passed arguments by keyword

ctx Store an assignment

Fun function

Fig. 8 Algorithm 1 for Parsing the files and vector representation of AST

["ClassDef(name='EleVehicl', bases=[Name(id='Vehicl', ctx=Load())],"

 "keywords=[], body=[FunctionDef(name='__init__',"

 "args=arguments(args=[arg(arg='self', annotation=None), arg(arg='make',"

 "annotation=None), arg(arg='model', annotation=None), arg(arg='type',"

 'annotation=None)], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, '

 "defaults=[]), body=[Assign(targets=[Attribute(value=Name(id='self',"

 "ctx=Load()), attr='charg_level', ctx=Store())], value=Num(n=0))],"

 "decorator_list=[], returns=None), FunctionDef(name='charg',"

 "args=arguments(args=[arg(arg='self', annotation=None)], vararg=None, "

 'kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[]),'

 "body=[Assign(targets=[Attribute(value=Name(id='self', ctx=Load()),"

 "attr='charg_level', ctx=Store())], value=Num(n=100)),"

 "Expr(value=Call(func=Name(id='print', ctx=Load()), args = [Str (s = 'charged')],"

 'keywords=[]))], decorator_list=[], returns=None)], decorator_list=[])']

Algorithm 1:
Input: Two Version Source Codes S = {Si, Si+1}

 Set of featuring nodes F = {f1, f2, f3, ...fn}

Output: Path List P = {Pi, Pi+1}

 Vector V = {Vi, Vi+1}for {Si, Si+1}

for all source files do

 for i = 1 to n do

 ASTi = Generating AST from Si

 Visiting ASTs each node F by depth first manner

 Accumulate Pi = {fi1, fi2, fi3, ...fin }

 end for

 end for

 for each P do

 Splitting Pi as Tokens → {Pi1, Pi2, Pi3, . . ., Pin}

 Adding each Token to V

 return V

end for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The token id is represented in a real-valued vector through the Word2Vec embedding technique.

Dealing with the paths and converting them into a vector is termed as Path2Vec. For example, ‘ctx=Load()’

is a token mapped to some integer value and emerged in an array of vector Vp. In this way, the vector

sequence is generated as v1, v2, v3, v4,........vn and given as input to the network. Vp and Vc are the vectors of

previous code and current code, respectively. The hidden state outcome to form a new state as:

 ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑉𝑝), 𝑡 = {1. . 𝑛} (7)

 ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑉𝑐), 𝑡 = {1. . 𝑛} (8)

𝑉𝑝 = Vector for previous code

𝑉𝑐 = Vector for current code

ℎ𝑡 = hidden state outcome for both code

4.5 Change Detection

We apply the cosine distance metric for searching the changes that occurred in the revised version of the

code. The cosine distance metric formula is the dot product of two attributes. It is the measurement of the

cosine angle of two vectors. The outcome of the equation is a normalized value. Resultant values of the

metric laid between 0 to 1. The idea comes from determining the angle between the two objects. Researchers

extensively use the cosine distance metric to search for the similarities between two components. In this

paper, we use the metric to observe the dissimilar part of a program to detect the imposed changes. Cosine

similarity is widespread because it is efficiently evaluated on vectors, significantly on sparse vectors. It

determines how much two vectors are similar or dissimilar irrespective of their size. The vectors are path

sequence embedded vectors in our context. Cosine similarity is much helpful for cases when there are

duplicate data matters. Analyzing text similarity is an NLP-based application of the metric. The formula

for cosine metric is given as equation (9).

dis(𝑉, 𝑉′)= cos(𝜃) =
𝑉 ∙ 𝑉′

‖𝑉‖‖𝑉′‖
 =

∑ 𝑉𝑖 𝑉𝑖
′𝑛

𝑖=1

√∑ 𝑉𝑖
2 𝑛

𝑖=1 √∑ 𝑉𝑖
′2𝑛

𝑖=1

 (9)

where 𝑣 ∙ 𝑣′ = ∑ 𝑣𝑖 ∙ 𝑣𝑖
′𝑛

1 = 𝑣1𝑣1
′ + 𝑣2𝑣2

′ + 𝑣3𝑣3
′ … +𝑣𝑛𝑣𝑛

′ = two vector’s dot product.

In equation (9), dis (V, V’) is the difference between two vectors. Here V and V’ are path vectors of the

program's previous version and the current version.

dis (V, V’) = 1 if V = V’

dis (V, V’) = 0 or < 1 if V ≠ V’

Algorithm 2 in Figure. 9 describes the pseudo convention for vectorization and difference measurement of

ASTs. The Pi and Pi+1 are the two path tokens of some length m we get from Algorithm 1. These vectors

held the unique ID of the tokens such as:

Pi = {𝑡𝑖
1, 𝑡𝑖

2 , 𝑡𝑖
3, ……… 𝑡𝑖

𝑚}

Pi+1 = {𝑡𝑖+1
1 , 𝑡𝑖+1

2 , 𝑡𝑖+1
3 , ………𝑡𝑖+1

𝑚 }

𝑡𝑖
𝑚 = mth token of ith path

𝑡𝑖+1
𝑚 = mth token of (i+1)th path

4.6 Neural Network Model for Difference Measurement

After completing the embedding and tokenization process, we trained our proposed models and other

associated, cutting-edge models with the past versions of source codes for Vehicle problems. The next move

is to review the model's output on the code variant detection task at the end of the training process. How

correctly do the differences are identified, and changes are predicted?

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Our proposed model is trained with BiLSTM. Supervised learning gives better performance than

unsupervised learning.

4.6.1 Attention with BiLSTM

The attention mechanism with BiLSTM enhances the hidden feature of nodes in sequence. Figure 10

depicts the process of attention mechanism. The intention of incorporating the attention mechanism into

BiLSTM is to strengthen our model and predict long sequences of source codes. So an attention layer is

embedded with the BiLSTM layer. The attention layer aggregates all sequences and from a sequence vector.

Merging all the hidden layer output and giving the attention function improves the performance of the

model. The BiLSTM is used here to generate a sequence of annotations (h1, h2, ….., hn) for each input

sentence. All the vectors h1, h2, .., etc., used in work are mainly the interconnection of forward and backward

hidden states in the network as given in equation (10).

 ℎ𝑗 = ⌈ℎ⃗ 𝑗
𝑇 ; ℎ⃗⃖𝑗

𝑇⌉
𝑇
 (10)

ℎ𝑗 = annotation sequence

Fig. 9 Algorithm 2 for vectorization and difference measurement

Algorithm 2:

Input: ASTs’ path vectors 𝑃𝑖 , 𝑃𝑖+1, the fixed length of each vector is m;

Output: distance vector (diff_list), sent;

Initialize a list V, dictionary tokenID;

for i=1 to n do

 for j = 1 to 𝑙𝑒𝑛(𝑃𝑖) do

 if 𝑠𝑝𝑙𝑖𝑡(𝑃𝑖) is TRUE

 𝑡𝑜𝑘𝑒𝑛𝐼𝐷 = 𝑖𝑛𝑡_𝑣𝑎𝑙𝑢𝑒(𝑝𝑖
𝑗
) ;

 𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑜𝑘𝑒𝑛𝐼𝐷);
 end if

 end for

end for

//Creating a list of tokens for both program separately on the basis of term frequency:

𝑃𝑣𝑒𝑐𝑡1 and 𝑃𝑣𝑒𝑐𝑡2

for i = 1 to 𝑙𝑒𝑛(𝑃𝑣𝑒𝑐𝑡1[1 .. 𝑙𝑒𝑛(𝑃𝑖)]) & 𝑙𝑒𝑛(𝑃𝑣𝑒𝑐𝑡2[1. . 𝑙𝑒𝑛(𝑃𝑖+1)]) do

 for j = 1 to i do

for k= 𝑙𝑒𝑛(𝑗) 𝑡𝑜 𝑙𝑒𝑛(𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ) do //max_length is for adjusting the max dimension

𝑃𝑣𝑒𝑐𝑡1 [k] = 0;

end for

end for

end for

for i = 1 to 𝑙𝑒𝑛(𝑃𝑖) & 𝑙𝑒𝑛(𝑃𝑖+1) do

 𝑐𝑜𝑠𝑖𝑛𝑒(𝑃𝑣𝑒𝑐𝑡1, 𝑃𝑣𝑒𝑐𝑡2)

 if 𝑐𝑜𝑠𝑖𝑛𝑒 == 1

 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
 else

 𝑎𝑝𝑝𝑒𝑛𝑑(𝑑𝑖𝑓𝑓_𝑙𝑖𝑠𝑡[𝑃𝑣𝑒𝑐𝑡2])

 end if

end for

for i = 1 to 𝑙𝑒𝑛(𝑑𝑖𝑓𝑓_𝑙𝑖𝑠𝑡) do

 𝑜𝑢𝑡 = 𝑖𝑛𝑣𝑒𝑟𝑡_𝑑𝑒𝑐𝑜𝑑𝑒(𝑖)
 𝑠𝑒𝑛𝑡 = 𝑢𝑛𝑝𝑎𝑟𝑠𝑒(𝑜𝑢𝑡)
end for

return diff_list, sent

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

We input the annotation ℎ𝑗 to the multilayer perceptron to generate a hidden representation 𝑎𝑡 by the

equation (11) and depicted in Figure 10.

𝑎𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑛 ℎ𝑗 + 𝑏𝑛) (11)

Here 𝑊𝑛 is new weight and 𝑏𝑛 is a new bias.

Furthermore, we measured cross-entropy at the softmax layer for every epoch to evaluate the model

loss function. The difference between the actual and predicted results is referred to as cross-entropy. The

softmax function is used to normalized the weight at attention. Softmax is typically used as the final layer

of neural networks. The softmax function's performance range is between 0 and 1.

Fig. 10 BiLSTM Model with self-attention

The input to the softmax layer is context vector 𝑥 = [𝑥1, 𝑥2, 𝑥3, …… . . 𝑥𝑛] multiplied with the output

𝑎𝑡 and returned normalized weights 𝑝 = [𝑝1, 𝑝2, 𝑝3, …… . 𝑝𝑛], that can be defined as in equation(12) :

𝑝𝑖 =
𝑒𝑥𝑝 (𝑎𝑡𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑎𝑡𝑥𝑗)
𝑘
𝑗=1

 (12)

Finally, we construct the sequence vector by summing all the nodes with corresponding weights using

equation (13). The context vector at the node level is randomly initialized and updated during training.

𝑠𝑖 = ∑ 𝑝𝑖 ℎ𝑗𝑗 (13)

𝑠𝑖 = weighted sum

5 Experimental Setup and Results

5.1 Dataset and System Selection

There are barely any datasets available for code change detection, which gives specifications related to our

concern, and it's quite challenging to identify change sets. The empirical setup is done on 150k Python

Dataset [sri.inf.ethz.ch/py150]. We select an AST file python100k_train for around 2GB in size and JSON

format for training and python100k_test for testing. The file contains AST of 100,000 python programs.

Tree pathn

Tree path2

Tree path3

ℎ1
⃖⃗⃗⃗⃗ ℎ1

⃗⃗⃗⃗ Tree path1

W
o

rd
 E

m
b

ed
d
in

g
s

 v1

 v2

 v3

 vn

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ2
⃗⃗⃗⃗ ℎ2

⃖⃗ ⃗⃗⃗

ℎ3
⃗⃗⃗⃗ ℎ3

⃖⃗ ⃗⃗⃗

ℎ𝑛
⃗⃗⃗⃗ ℎ𝑛

⃖⃗ ⃗⃗⃗

C

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

Input Vector Bi-LSTM Attention

tanh sigmoid

Features generation Features extraction Prediction Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

These python programs are gathered from the GitHub repository. The programs those AST have a

maximum of 30,000 nodes are included in these repositories. According to the system’s capacity, we further

divide this big-sized JSON file into small chunks with the help of a JSON splitter. Tensorflow with Keras

using Python development environment on google cloud. Windows 10, 8GB RAM, Intel Core i7,4690T

central processing unit, 2.50GHz, 64-bit OS, x64 based processor.

5.2 AST Encoding

ASTs are capable of storing both the structural as well as semantic information about a program module.

Because the vector is composed of path tokens, it cannot be used directly as an input to IABLSTM. As a

result, we create a dictionary for mapping tokens to integers. If there are m tokens and each token relates to

a distinct integer, the mapping range is 1 to m. To begin, we count the tokens' frequency and then arrange

them according to their frequency. Next, we create an indexed dictionary for the ordered tokens, with the

most often occurring tokens at the top. Afterward, in the mapping stage, we equalize the length of these

numeric vectors. A length of the vector should be chosen with a size less than the required length is denoted

by 0 because 0 has no meaning when tokens are mapped starting at 1. If the length of a vector exceeds the

required length, the additional component is truncated. Since the tokens with a greater frequency are

translated to a smaller integer, the tokens with a lower frequency are mapped to the largest integer. As a

result, we find the index of the largest integer in the vector and remove it one by one until the vector length

equals the set length. Figure 11 describes the processing of the AST.

Fig. 11 Processing of AST with embedding layer

Finally, we apply word embedding for high-dimensional vector representation of each token using a

trainable word dictionary embedded in the network. Although word embeddings are considered

unsupervised, they are trained using a fictitious supervised learning problem.

5.3 Path Extraction and Vectorization

The experiment is initially performed on a small dataset with various python codes with multiple entries,

e.g., the category of program, type of file, file name, and program's status. The program's status has entries

regarding the change or no change and the program itself. We first fetched the program its status according

to the program category and file type. In the next step, we preprocessed all these programs and removed

the comment lines. Next, we generated an AST and then got a path with pre-order traversal from it. Table

3 briefs the various kinds of tokens extracted from the tree's path and their corresponding integer value. We

have enlisted some of them in the table. The table with the tokens column contains various parts of the tree

Abstract Syntax Tree

Path Tokens

[825, 617, 753, 993, 667, 993]

Embedding layer

[-0.003, 0.012, 0.045, 0.021, 0.043, 0.046,

-0.032, -0.002, 0.013, -0.0179]

Path String

“attr='charg_level', ctx=Store())],

value=Num(n=100))”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

we got by traversing the pre-ordered manner and tokenizing it. Another column of the table includes the

token id of these tokens.

Figure 12 portrays an example code for this paper, then we extracted the abstract tree and got the

sequence path. Next, we tokenize the path sequence and generate tokens, and then we converted these

tokens into identifiers and got token IDs. Every token itself has various tokens.

Table 3 Tokens and its corresponding ID

Tokens Integer value

ctx=Load()

body=[FunctionDef(name='__init__')]

ctx=Store()

keywords=[]

annotation=None

vararg=None

decorator_list=[]

kwonlyargs=[]

returns=None

kw_defaults=[]

kwarg=None

defaults=[]

[709, 667]

[825, 617, 753, 993, 667, 993]

[709, 338]

[958]

[693, 444]

[168, 444]

[206, 370]

[994]

[786, 444]

[634, 636]

[334, 444]

[636]

Fig. 12 Example python code and Tokenization and Encoding Process

5.4 Distance Measurement

We calculated the cosine distance and found the dissimilar part of the code. The cosine metrics give better

results on a sequence of the vector. Cosine metrics take the total length of the vectors. These vectors are

prepared from BOW, TF, or TF-IDF. Through Figure 13(b), the probable changes are marked in a different

color that has been integrated into the code given in 13(a). This python code is for showing the charging

level of a vehicle. We have taken the code just for demonstration purposes. In the first code, there is a class

defined for an electric vehicle with an initialization function. The revised version has one new charg

function added to it, and the rest of the code is as same as the previous one. The function sets the charging

level to 100. The code from keyword ‘def’ to the symbol ‘)’ is newly included syntax into the same existing

program. The model identified these codes with the highest probability.

Encoded path sequence IDs Extracted path sequence

class EleVehicl(Vehicl):

def _init_(self, make,
model,

type):

 self.chrg_lvl = 0

"ClassDef(name='EleVehicl',",

"bases=[Name(id='Vehicl',",

'ctx=Load())],',
"body=[FunctionDef(name='__init__',",

"args=arguments(args=[arg(arg='self',",

"arg(arg='make',",

"arg(arg='model',",

"arg(arg='type',",

'vararg=None,',
'kwonlyargs=[],',

'kw_defaults=[],',

'kwarg=None,',
"body=[Assign(targets=[Attribute(value=Name(id='self',",

'ctx=Load()),',

"attr='chrg_lvl',",
'ctx=Store()),',

'value=Num(n=0)),',

'returns=None),',

[63, 753, 45],

[50, 753, 565, 595],

[709, 667],
[825, 617, 753, 993, 667, 993],

[5, 777, 5, 904, 904, 291],

[904, 904, 802],

[904, 904, 80],

[904, 904, 989],

[168, 444],
[994],

[634, 636],

[334, 444],
[825, 788, 856, 737, 277, 753, 565, 291],

[709, 667],
[698, 448, 886],

[709, 338],

[277, 912, 661, 225],
[786, 444],

Python Source Code

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

5.5 Training and Validation

We evaluated both the model BiLSTM and IABLSTM on the chosen python program of charging the

vehicle's battery and Python 150k dataset. The model accuracy and cross-entropy are portrayed with the

help of the pyplot library.

Fig. 13 Previous version (a) current version with change part (b)

The following figures are showing the results of empirical evaluation sequentially. The accuracy and

cross-entropy are evaluated on the selected AST dataset for the BiLSTM model, as depicted in Figure 14

and Figure 15, respectively. The training accuracy goes up to 85%, and validation accuracy has grown up

to 75%. Likewise, training cross-entropy is down to 35%, whereas validation cross-entropy goes down to

56%.

Fig. 14 Accuracy plot for Python150k using BiLSTM

(b)

Fig. 15 Cross-entropy plot for Python150k using BiLSTM

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 1 0

ac
cu

ra
cy

epoch

Training Validation

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 1 0

cr
o

ss
-e

n
tr

o
p

y

epoch

Training Validation

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

(a)

class EleVehicl(Vehicl):

 def __init__(self, make, model, type):

 self.chrg_lvl = 0

 def charg(self):

 self.chrg_lvl = 100

 print('charged')

(b)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

epoch

Figures 16(a) and (b) showing the accuracy and cross-entropy evaluated on the same dataset for our

model IABLSTM. The training accuracy uplifted to 97%, and validation improved up to 85%. The model

training loss comes down to 8%, and validation loss goes down to 40%.

(a)

(b)

Fig. 16 Change detection Model for Python150k using IABLSTM (a) accuracy (b) cross-entropy

The accuracy analysis of both the model is shown in Figure 17.

Fig. 17 Epochs wise accuracy analysis of both models on Python 150k

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 1 0

ac
cu

ra
cy

epoch

Training Validation

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 1 0

cr
o

ss
-e

n
tr

p
y

epoch

Training Validation

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Bi-LSTM

IABLSTM

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

5.6 Hyperparameter

We specified numerous hyperparameter for the experimental purpose to improve our results in this study.

To avoid overfitting, we proposed a dropout ratio of 0.25 for our proposed model. Adam optimizer is used

in the LSTM network. The learning rate is critical for the training of neural networks since it may be used

to modify the model's learning speed. The learning of the network becomes slower or faster as the value of

the learning rate decreases or increases. This work determines the learning rate (l) 0.002, and during

training, the network weights are updated with the value of l. We take input length 100, the number of

epoch 20 and the number of hidden units 200.

6 Results and Discussion

Table 4. gives a comparative analysis among the various neural network based LSTM, BiLSTM,

IABLSTM models. We applied all these models on considered example code, EleVehicl and Python 150k

dataset.

Table 4. Accuracy and cross-entropy comparison on different NN models on example source code

 EleVehicl Python 150k

Model Cross-entropy Accuracy Cross-entropy Accuracy

LSTM 0.6772 0.5434 0.6810 0.5682

BiLSTM 0.5459 0.6597 0.3459 0.8497

IABLSTM 0.2693 0.8056 0.0859 0.9721

We have compared cross-entropies of all the models by evaluating them on different data and shown in

Figure 18.

Fig. 18 Comparison on cross-entropies of various models for codes

Figure 19 displays the chart for training accuracy observed on various models, which we mentioned in the

paper.

Fig. 19 Comparison on accuracies of various models for example codes

0

0.2

0.4

0.6

0.8

LSTM Bi-LSTM IABLSTM

C
ro

ss
-e

n
tr

o
p

y

EleVehicl

Python150k

0

0.2

0.4

0.6

0.8

1

LSTM Bi-LSTM IABLSTM

A
cc

u
ra

cy

EleVehicl

Python150k

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

The figure showing the comparative analysis of BiLSTM and IABLSTM that stated using BiLSTM

with self-attention improves the accuracy up to 11% to detect the code change compared to simple BiLSTM.

Our IABLSTM model outperforms other state-of-art that uses AST. Table 5 enlisted the results in terms

of accuracy. The comparative analysis is performed based on the objective achieved, and the method opted

by the authors.

Table 5. Comparison on Accuracy

Objective Methods
Results(Accuracy/

Precision)

Change impact prediction LCIP 74%

Code change extraction CC2Vec 90.7%

Defect prediction AST+LSTM 90%

Code clone detection AST+GMMN 96%

Learning program properties AST path+Word2Vec(JavaScript) 69.1%

Code clone detection and classification ASTNN 98.2%

Code clone detection AST+ Attention BiLSTM 96.8%

Code change detection Path2Vec + IABLSTM 97.2%

The methods included in given Table 5. have considered AST as source code parsing in most of the

works. We also generated AST and processed it through Path2Vec, achieving 28% better performance than

the Word2Vec approach.

7 Threats to validity

There are some threats to validity stated here. The Python150k dataset taken for experimental purposes is

easily downloadable but not easy to handle completely due to its length. The dataset can be breakdown into

small sizes for its usefulness. Another threat we faced is system configuration constraints while evaluating

object-oriented based parallel programming code. The exact amount of change is hard to find, although we

have achieved accuracy up to the mark.

8 Conclusion and Future Work

In this work, we have presented an approach for source code change detection using deep learning

based BiLSTM with self-attention IABLSTM. BiLSTM with attention is used to acquire the semantic as

well as syntactic information together of the input code in the encoding process. The results improved up

to 85% in terms of accuracy to find the actual impact set compared to other models. The implemented

model gives 11% more accuracy than the BiLSTM model. We generated the syntax tree and traversed the

tree to extract the said information using a novel approach of parallel programming for change detection.

Then the path is transformed into the vector using a vectorization approach and applied distance metrics to

analyze all changes. We could see that our model outperforms existing neural network based models. Here

we suggested the model that is experimented on small scale software. In the future, the work can be

extended to detect the change and its impact on large-scale industry level software with backend and

frontend software modules.

Conflicts of Interest

The authors declared no conflict of interest.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

References

Ahmad, S., Ghani, A. A. A., Sani, F. M.: Dependence flow graph for analysis of aspect oriented programs.

International Journal of Software Engineering & Applications, 5(6), 125 (2014)

Alon, U., Zilberstein, M., Levy, O., Yahav, E.: A general path-based representation for predicting program

properties. ACM SIGPLAN Notices. 53(4), 404-419 (2018)

Angerer, F., Grimmer, A., Prähofer, H., Grünbacher, P.: Change impact analysis for maintenance and

evolution of variable software systems. Automated Software Engineering. 26(2), 417-461 (2019)

Baah, G. K., Podgurski, A., Harrold, M. J.: The probabilistic program dependence graph and its application

to fault diagnosis. IEEE Transactions on Software Engineering. 36(4), 528-545 (2010)

Badri, L., Badri, M., St-Yves, D.: Supporting predictive change impact analysis: a control call graph based

technique. In Proceedings of Asia-Pacific Software Engineering Conference, IEEE. 9 (2005)

Bohner, S. A.: Impact analysis in the software change process: a year 2000 perspective. In icsm. 96, 42-51

(1996)

Büch, L., Andrzejak, A.: Learning-based recursive aggregation of abstract syntax trees for code clone

detection. In Proceedings of International Conference on Software Analysis, Evolution and Reengineering.

95-104 (2019)

Gethers, M., Kagdi, H., Dit, B., Poshyvanyk, D.: An adaptive approach to impact analysis from change

requests to source code. In Proceedings of IEEE/ACM International Conference on Automated Software

Engineering. 540-543 (2011)

Hameed, Z., Garcia-Zapirain, B.: Sentiment classification using a single-layered BiLSTM model. IEEE

Access. 8, 73992-74001 (2020)

Hoang, T., Kang, H. J., Lo, D., Lawall, J.: CC2Vec: Distributed representations of code changes. In

Proceedings of ACM/IEEE International Conference on Software Engineering. 518-529 (2020)

Kitsu, E., Omori, T., Maruyama, K.: Detecting program changes from edit history of source code. In

Proceedings of Asia-Pacific Software Engineering Conference, IEEE. 1, 299-306 (2013)

Liang, H., Yu, Y., Jiang, L., Xie, Z. Seml: A semantic LSTM model for software defect prediction. IEEE

Access, 7, 83812-83824 (2019)

Meng, Y., Liu, L.: A Deep Learning Approach for a Source Code Detection Model Using Self-Attention.

Complexity. (2020)

Molderez, T., Stevens, R., De Roover, C.: Mining change histories for unknown systematic edits. In

Proceedings of International Conference on Mining Software Repositories, IEEE. 248-256 (2017)

Rahman, M., Watanobe, Y., Nakamura, K.: A Neural Network Based Intelligent Support Model for

Program Code Completion. Scientific Programming. (2020)

Thomas, S. W., Adams, B., Hassan, A. E., Blostein, D.: Validating the use of topic models for software

evolution. In Proceeding of IEEE working conference on source code analysis and manipulation. 55-64

(2010)

Tiwang, R., Oladunni, T., Xu, W.: A Deep Learning Model for Source Code Generation. In SoutheastCon,

IEEE. 1-7 (2019)

Le TH, Chen H, Babar MA.: Deep learning for source code modeling and generation: Models, applications,

and challenges. ACM Computing Surveys (CSUR). 53(3),1-38 (2020)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Type here]

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X.: A novel neural source code representation based on

abstract syntax tree. In Proceedings of IEEE/ACM International Conference on Software Engineering

(ICSE). 783-794 (2019)

Wang W, Li G, Ma B, Xia X, Jin Z.: Detecting code clones with graph neural network and flow-augmented

abstract syntax tree. In Proceedings of International Conference on Software Analysis, Evolution and

Reengineering, IEEE. 261-271 (2020)

White M, Tufano M, Vendome C, Poshyvanyk D.: Deep learning code fragments for code clone detection.

In Proceedings of the International Conference on Automated Software Engineering (ASE), IEEE. 87-98

(2016)

Eid S, Makady S, Ismail M.: Detecting software performance problems using source code analysis

techniques. Egyptian Informatics Journal. 21(4), 219-29 (2020)

Goknil A, Kurtev I, Berg KV.: A rule-based change impact analysis approach in software architecture for

requirements changes. arXiv preprint arXiv. 1608.02757 (2016)

Musco V, Carette A, Monperrus M, Preux P.: A learning algorithm for change impact prediction. In

Proceedings of the International Workshop on Realizing Artificial Intelligence Synergies in Software

Engineering, IEEE. 8-14 (2016)

Siow JK, Gao C, Fan L, Chen S, Liu Y. Core: Automating review recommendation for code changes. In

Proceedings of the International Conference on Software Analysis, Evolution and Reengineering, IEEE.

284-295 (2020)

Dam HK, Pham T, Ng SW, Tran T, Grundy J, Ghose A, Kim T, Kim CJ.: A deep tree-based model for

software defect prediction. arXiv preprint arXiv. 1802.00921 (2018)

https://www.sri.inf.ethz.ch/py150

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ORIGINAL RESEARCH

Sentiment analysis based on aspect and context fusion using
attention encoder with LSTM

Jitendra Soni1 • Kirti Mathur2

Received: 29 December 2021 / Accepted: 8 April 2022

� The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2022

Abstract Sentiment analysis is a type of natural language

processing approach that identifies the emotional tone

hidden within a body of text by using machine learning

techniques. It would be beneficial to consider the aspects

and contexts that are hidden behind the text in order to

identify the hidden tone. We propose a hybrid model in this

research, based on the fusion of Long short term memory

(LSTM) and Encoder with attention for sentiment analysis.

We’ve taken into account a variety of factors and different

contexts and aspects when analyzing a tweet’s word or

phrase. Encoder attention mechanism is used to calculate

aspect relevance whereas to obtain the related context, we

employ Paragraph2vec to facilitate the process of deter-

mining contextual meaning. Paragraph2vec and encoder

output features were combined and fed into the LSTM for

classification. We carried out experiments using the Twitter

Sentiment140 dataset. The results of fusion model is being

compared with the LSTM, Bi-directional LSTM and

Bidirectional Encoder Representations from Transformers

(BERT) model and the results of the tests show that our

method outperforms the baseline models that are currently

available.

Keywords Sentiment analysis � Natural language

processing � Long short term memory � Social media

1 Introduction

There has been seen a rise in the popularity of sentiment

analysis in the recent years, in the processing of social

media data from online communities, blogs, micro-blog-

ging platforms, and other collaborative media [1]. There

are numerous applications of sentiment analysis, including

social media monitoring [2], monitoring of opinion [3],

stock market prediction [4], and so on and so forth. Based

on the existing research till now sentiment analysis is

divided into three broad level document [5], sentence [6]

and aspect [7]. Document level analysis require to process

the entire document to express some opinion as positive or

negative, whereas sentence level uses individual sentences

for classification or to draw some opinion.

According to the aforementioned sentiment analysis

methods, it is observed that sentiment analysis involving

aspect is more precise than other sentiment analysis

methods like sentence level or document level. Aspect

based require to extract and summarise what people have to

say about things, such as entities or aspects of entities [8].

Consider the sentence, ‘‘Ravi is brilliant because he is

arrogant’’ this statement shows both positive and negative

nature of Ravi. In this case, the words brilliant and arrogant

are being considered as aspects that, if ignored, will result

in a text prediction error. Likewise the sentence ‘‘Vishnu

likes watching WWE as it is vibrant and provoking’’ the

sentence has both positive and negative words, likes is a

positive word at the same time vibrant and provoking can

be considered as negative words. Therefore for classifying

a sentence considering both aspect and context will defi-

nitely add a flavour. As a result, considering both the aspect

and context of a sentence will lead to a more accurate

analysis of the sentiments. For sentiment analysis at the

aspect level, LSTM and attention are becoming

& Jitendra Soni

jsoni@ietdavv.edu.in

1 Institute of Engineering and Technology, Devi Ahilya

University, Indore, India

2 International Institute of Professional Studies, Devi Ahilya

University, Indore, India

123

Int. j. inf. tecnol.

https://doi.org/10.1007/s41870-022-00966-1

http://orcid.org/0000-0002-7111-8589
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-022-00966-1&domain=pdf
https://doi.org/10.1007/s41870-022-00966-1

increasingly popular. When it comes to an attention model,

it makes sense that a context word closer to the aspect is

more important than one further away. This intuition holds

true for context word location information as well.

It is common for deep neural network models to be used

for sentiment analysis because of their ability to generate

low-dimensional word embeddings and better sentence

representations [9, 10]. LSTM uses a sequential approach

and performs the same operation on each context word,

making it difficult to determine the significance of a factor

of the various words in a sentence. One solution to this

problem is to manually or through some other method

explicitly capture the contextual importance of words.

Another issue with existing baseline models is that they

treat all instances of a target as equally important and

simply compute a mean vector over such instances, even if

a target contains multiple instances.

Context and aspect-based methods are combined to

address the aforementioned concerns, for sentiment anal-

ysis wherein the fused features were fed to the Attention

Encoder with LSTM model for classification of sentiments.

The following is a summary of the paper’s major

contributions:

(1) Extraction of features based on context using

Paragraph2Vec.

(2) Extraction of features based on aspect using encoder

attention.

(3) Fusion of Aspect and Context of Sentences embed-

dings to add more meaning to the features.

(4) Proposal of Hybrid Attention Encoder with LSTM

for final classification based on the fusion.

The remainder of the paper is organised in the following

manner: Sect. 2 presents the literature survey. Section 3,

defines the methodology, the architecture of Attention

Encoder with LSTM, dataset, preprocessing, context

retrieval, aspect retrieval, fusion and the LSTM model for

classification of sentiments. In Sect. 4 We present the

results of our experiments and compare them with the

baseline models. Finally Sect. 6 concludes the paper by

pointing to possible future work that can be undertaken.

2 Literature survey

In this section, we will be highlighting the work done by

various researchers in the field of sentiment analysis.

Earlier, sentiment analysis was done with the use of con-

ventional methods, such as sentence modelling and linear

classifiers. Sentiment analysis was carried out using a bag

of words (BoW) [11], however the bag of words approach

lacks the semantics and ordering of words information.

N-gram [12] is another method which somehow overcome

the drawback of BoW but suffers from data sparsity

problem [13]. Later, sentiment classification in sentences

was made possible by the introduction of machine learning

algorithms like Random forest, Decision Tree, and Support

Vector Machine. [14–16], but these algorithms cannot

extract features on their own, as a result, deep neural net-

works, which are capable of making decisions on their

own, are increasingly being used. Recently, Recurrent

Neural Networks (RNN) have been used in a variety of

Natural Language Processing (NLP) applications such as

voice recognition, text analysis and language translation.

Long short term memory (LSTM), an RNN variant, was

very popular, and many researchers used it for various

sequence to sequence modelling tasks.

One of the most influential category of sentiment anal-

ysis is aspect-level sentiment analysis. The authors Chen

et al. [17] uses the combination of LSTM and convolu-

tional neural network (CNN) for identifying sentiments and

their work is predicated on the assumption that aspect and

opinion are in the same clause. However they have given

the context but have not touched upon the aspect. Similarly

authors Jain et al. [18] have also proposed a hybrid model

based on LSTM and CNN for sentiment analysis. Other

work for the analysing aspect in sentiments is shown by the

authors, Zhang et al. [19] where they developed two

aspect-level gated neural networks for sentiment analysis:

first one is use for modelling semantic information from

tweet text and the other for modelling the interaction

between the target and its environment. On a similar note

Tang et al. [9] have modeled sentence representation using

LSTM with target dependency. With the introduction of

attention model by Vaswani et al. [20] the research has

shifted towards identifying the attention of words for NLP

tasks. An LSTM model based on attention was proposed by

the authors Wang et al. [21] which focuses on various parts

of sentences, depending on the context of the sentence to

which it is being applied. As per the work done by Ma et al.

[22], a method using common sense knowledge was

demonstrated for resolving the targeted aspect level senti-

ment analysis.

The method of learning text representation by using

explicit memory has started emerging in recent years [23].

Using eye-tracking data to learn attention information, as

recently proposed by the authors Chen et al. [24], the

accuracy of attention-based sentiment analysis can be

improved. It was proposed by Zhu and Qian [25] to use an

auxiliary memory network with a deep learning algorithm

in conjunction with an aspect and term learning algorithm

to simultaneously learn the characteristics of both aspects

and terms.

Attention mechanism today have gained popularity in

detecting sentiments that focuses on aspect. The authors

Naseem et al. [26] that encodes the representation from the

Int. j. inf. tecnol.

123

transformer and uses deep intelligent contextual embed-

ding for sentiment analysis. A more recent work by authors

dowalgar et al. [27] uses transformer with meta embedding

for mixed sentiment analysis on social media. In 2021 the

authors He et al. [28] propose a sentiment analysis model

that incorporates time squeeze fusion and unimodal rein-

forced Transformer. The authors Bacco et al. [29] have

introduced explanability in the sentiment analysis using

transformers.

3 Methodology Attention encoder with LSTM

In this section, we describe the dataset used, the prepro-

cessing performed on the dataset, context retrieval using

Paragraph2vec, and aspect retrieval using the Attcoder

model. Finally, the fusion of aspect and context is descri-

bed, which will be fed into the LSTM for sentiment clas-

sification. The overall architecture of Paragraph2vec

Attention Encoder with LSTM is shown in Fig. 1

3.1 Dataset

The Sentiment140 dataset, which contains 1.6 million

Tweets, was used for the experiment. The dataset was

obtained from UCI’s Machine Learning repository [30].

The dataset includes the following six fields:

(1) target: The label of tweet or its polarity i.e

negative,neutral and positive.

(2) ids: The identifier representing the tweet.

(3) date: The tweet’s date

(4) flag: The query (lyx). This value is 0 if there is no

query.

(5) user: User name who have posted the tweet.

(6) text: The content of the tweet.

3.2 Preprocessing

All 6 fields of the dataset is not required for classification

of sentiments, also the text attribute of the dataset has to be

preprocessed, as tweets have their own different symbolic

language for communication which includes Html links,

hash tags, mentions and special characters. So for the

sentiment prediction these styled representation has to be

removed. Preprocessing has been done using regular

expression (re) package of python. The following prepro-

cessing tasks were performed.

3.2.1 Removal of Hash Tags, mentions and special

characters

By removing Hash Tags and mentions from a tweet, we

aim to have a ’cleaner’ tweet. Hash tags are the text that

starts with # symbol like #ð½a� zA� Z0 � 9�1; 50Þ so

anything after # is meaningless for the sentiment predic-

tion. Similarly mentions are the text that starts with @

symbol like @§þj@§þ again anything after @ symbol

will not be contributing to the prediction of the sentiments

therefore it has be removed in order to get cleaner text.

Special characters includes the characters other than

alphanumeric which has been excluded.

Fig. 1 Paragraph2vec Attention Encoder with LSTM Architecture

Int. j. inf. tecnol.

123

3.2.2 Removal of Html links and lower case the text

The second preprocessing tasks that has been implemented

is the removal of Html links which starts with https. Some

people tweets includes the links to some external web

sources that has to be removed as such it again does not

contribute to the prediction of sentiments. Once all pre-

processing has been done finally the clean twitter text is

converted to lowercase as it reduces the ambiguity of a

sentence.

3.2.3 Removal of stop words

The clean text however contains some words like a, an, the

which constitutes the stop words. Stopwords constitutes the

words that add little meaning to a sentence and can be

omitted without changing the meaning of the sentence.

Python’s NLTK package was used to remove stop words.

3.3 Context retrieval using Paragraph2vec

Once the preprocessing is accomplished the next task is to

retrieve the context from it. The paragraph2vec is used to

extract information context from the text. For varying-

length texts, covering paragraphs, sentences and docu-

ments, the Paragraph Vector algorithm learns feature rep-

resentations with fixed lengths from these representations.

[31]. Paragraph2vec is basically implemented using two

models a paragraph vector distributed bag of words (PV-

DBW) and a paragraph vector distributed memory model

(PV-DM). This study uses the distributed memory model to

identify tweet context. Figure 2 shows the description of

distributed memory model in which features are extracted

for each word and then averaging is done for a specific

tweet. In this study, each tweet representing a sentence or

paragraph and every word in the sentence is assigned a

unique vector. The paragraph and word vectors are aver-

aged, and the Context retrieval vector is obtained by con-

catenating the two vectors together. The results of the

embedding were used as features, which were then fused

with the features obtained from the Encoder Attention

model to produce a final result.

3.4 Aspect retrieval using encoder attention

The conceptual aspects or the primitives for the sentence is

retrieved using the Encoder attention shown in Fig. 3. Here

Q: Vector(Linear layer output) related with what we

encode(output of encoder layer).

K: Vector(Linear layer output) related with what we use

as input to output.

V: Learned vector(Linear layer output) as a result of

calculations, related with input. Q, K, V are the represen-

tation of the input sentence, after the embedding and

positional encoding steps. The scaled Dot product attention

is calculated using the formula below as implemented in

Vaswani paper [20].

AttentionðQ;K;VÞ ¼ softmaxðQ� KT

ffiffiffiffiffi

dk
p Þ � V ð1Þ

The aspect and context words relationship is considered for

representing the word vectors while applying encoder

attention mechanism. Once the attention for individual

words is calculated, it is concatenated for each sentence to

represent the Aspect retrieval vector.

3.5 Fusion of aspect and context

The output of PV-DM i.e. Context Retrieval vector and the

output of Encoder Attention i.e Aspect Retrieval were

fused to obtain the final features embedding for each sen-

tence representing tweets. The fusion is carried out by

considering the average of the two features obtained.

Fig. 2 Paragraph vector distributed memory (PV-DM) Fig. 3 Encoder attention

Int. j. inf. tecnol.

123

3.6 Long short term memory

For learning long term dependencies, LSTM is a good

choice which is the category of Recurrent Neural Network

(RNN). The meaning and overall polarity of a document

are greatly influenced by the long-term dependencies that

exist between them. LSTM are designed to address the

problem of this problem of long-term dependency by

incorporating a memory into the network. Hochreiter and

Schmidhuber [32] were the ones who have introduced

LSTM. Similar to how a regular RNN works, for each time

step the LSTM architecture has a set of repeating modules.

During each time step, it is controlled by a set of gates

consisting of the input gate, the forget gate, and the output

gate. Gates accept the old hidden state and the current time

step as inputs. The current memory cell and the hidden

state are both updated by these gates. Here are the LSTM

transition functions:

it ¼ðbi þWi½ht�1; xt�Þ ð2Þ

Ct ¼ tanhðbc þWc½ht�1; xt�Þ ð3Þ

ft ¼ðWf ½ht�1; xt� þ bf Þ ð4Þ

Ot ¼ðbo þWo½ht�1; xt�Þ ð5Þ

Ct ¼ ft � Ct�1 þ it � Ct ð6Þ

3.7 Architectural design of LSTM

The LSTM model’s description is shown in Fig. 4 The

model comprises of 2 LSTMs layers. The concatenation of

the context feature obtained from Paragraph2vec and the

aspect feature obtained from Encoder attention is depicted

in the illustration. In Paragraph2vec, we define parameters

specifying the minimum number of characters, the size of

the embedding, and the size of the window. After done

with the training process using Paragraph2vec, the sentence

representations such as word vectors and information

contexts are obtained. In encoder attention we obtain the

attention of each word by applying the Eq. 1 which are

then concatenated for each sentence or tweet to obtain the

final representation. Then the averaging is done on top of

concatenating the aspect and context vector. The number of

hidden LSTM layers and dense layers are then initialised

based on the classes present in the dataset, softmax acti-

vation function is applied to the representations. To rep-

resent positive, negative, and neutral sentiment, we’re

using softmax to transform the last layer’s output values

into probability values. A predicted class is the end result

of the process (e.g sentiment).

4 Preliminary environment for experiment

Our experiments were carried out using the Twitter Sen-

timent140 dataset. We divided the dataset into two cate-

gories: balanced and imbalanced, so that the balanced

dataset contains an equal number of records for each of the

three sentiments (positive, negative, and neutral). Imbal-

anced includes records with unequal distribution of all

three sentiments. While experimenting, the following set-

tings were used:.

(1) Overfitting: Balanced and imbalanced category

datasets were split into 90 : 10 to avoid overfitting.

Because of the disparity in the number of positive,

negative, and neutral tweets in the original data, the

model was also trained with a more balanced data

set, which included tweets that were equally posi-

tive, negative, and neutral.

(2) Embedding Dimension: The embedding dimension

for each tweet selected is 100. As the maximum

length of a tweet is close to 100, we believe it would

be optimal.

(3) Hidden Layer LSTM : 32 Preliminary tests show that

the best results are achieved when 32 layers are used

for the hidden layers LSTM.

(4) Batch size : 64 Default value for batch size chosen is

64, meaning that after every processing of 64

sentences gradient is updated.

(5) Number of epochs : 10 � 100 epochs A preliminary

study is conducted to find the minimum number of

epochs that would be chosen for training so we have

started with 10 epochs and three maxlens, and

gradually increasing to 100 with the intent of

achieving more convergence.

5 Results and comparison

As a means of evaluating the classification results, the

Confusion Matrix is used. A confusion matrix sums up

classification prediction results. The study’s primary

objectives are to evaluate the proposed method and its

ability to classify sentiments. To put it another way, as per

the formula:

Acc :¼ Tpos

Tposþ Tnegþ Fposþ Fneg
ð7Þ

Pr :¼ Tpos

Tposþ Fpos
ð8Þ

Rec :¼ Tpos

Tposþ Fneg
ð9Þ

Int. j. inf. tecnol.

123

F1score :¼ 2 � Pr � Rec

Pr þ Rec
ð10Þ

here Tpos represents True positive, Tneg represents True

negative, Fpos represents False positive and Fneg repre-

sents False negative. Acc represents the accuracy, pr rep-

resents the precision and Rec represents the recall value.

5.1 Experiments on balanced dataset

Classification models are represented by a ROC curve

(receiver operating characteristic curve) that shows how

well they perform across all classification thresholds. The

ROC curve for positive sentiments versus all other (nega-

tive and neutral) sentiments for the balanced dataset is

depicted in Fig. 5. The value of the area under the curve

was calculated to be 0.84.

5.2 Experiments on imbalanced dataset

The ROC curve for positive sentiments versus all other

(negative and neutral) sentiments for the imbalanced

dataset is depicted in Fig. 6. The value of the area under the

curve was calculated to be 0.80. The curve’s x axis rep-

resents the false positive rate, while the y axis represents

the true positive rate.

5.3 Result comparisons with other baseline models

This section discusses the comparison results of the pro-

posed Attcoder with other baseline models such as LSTM,

Bi-directional LSTM and BERT for both balanced and

imbalanced category of dataset. Table 1 shows the the

comparison among all mentioned models for balanced

category. In terms of classification metrics, Att-coder has

outperformed all baseline models with precision of 0.86

Fig. 4 LSTM architecture

Fig. 5 ROC Curve of positive vs all (negative and neutral) sentiments

for Balanced Category

Int. j. inf. tecnol.

123

percent, recall of 0.85 percent and f1-score of 0.86 percent.

However the results of Bi-directional LSTM were

promising among the other compared models.

Table 2 shows the the comparison among all mentioned

models for imbalanced category. In terms of classification

metrics, Att-coder has once again outperformed all baseline

models with precision of 0.80 percent recall of 0.79 percent

and f1-score of 0.79 percent respectively.

6 Conclusion

As part of this study, sentiment analysis specifically clas-

sification is accomplished. For extracting context feature

we use Paragraph2vec and encoder attention for aspect

feature extraction. LSTM is used for sentiment classifica-

tion based on the fusion of an aspect vector and a context

vector. Sentiment140 dataset is chosen for classification.

The accuracy on the balanced category is reported to be

88.33 percent and for the imbalanced category comes out

to be 79 percent. Comparing our proposed approach to the

baseline models reveals that our proposed approach out-

performs them all however there is still a lot of room for

improvement, especially when it comes to the relationship

between context and aspect. Context aids in the discovery

of context-specific meaning, whereas the aspect reveals

polarity. For sentiment analysis, considering both factors

will add more meaning. One can plan for the future to

handle vectors of aspects that include multiple words. Even

more difficult is to deal with the task of recognising an

explicit feature’s implicit feature in an effective analysis

method.

References

1. Cambria E, Das D, Bandyopadhyay S, Feraco A, et al. (2017) A

practical guide to sentiment analysis. Springer

2. Zárate J. M, Santiago S. M (2019)‘‘Sentiment analysis through

machine learning for the support on decision-making in job

interviews. In: International Conference on Human–Computer

Interaction. Springer, pp. 202–213

3. Xiong S, Wang K, Ji D, Wang B (2018) A short text sentiment-

topic model for product reviews. Neurocomputing 297:94–102

4. Groß-Klußmann A, König S, Ebner M (2019) Buzzwords build

momentum: global financial twitter sentiment and the aggregate

stock market. Expert Syst Appl 136:171–186

5. Lin C, He Y (2009) Joint sentiment/topic model for sentiment

analysis. Proceedings of the 18th ACM conference on Informa-

tion and knowledge management, pp. 375–384

6. Shoukry A, Rafea A (2012) Sentence-level arabic sentiment

analysis. In: 2012 International Conference on Collaboration
Technologies and Systems (CTS). IEEE, pp. 546–550

7. Schouten K, Frasincar F (2015) Survey on aspect-level sentiment

analysis. IEEE Trans Knowl Data Eng 28(3):813–830

8. Zhang L, Wang S, Liu B (2018) Deep learning for sentiment

analysis: a survey. Wiley Interdiscip Rev Data Min Knowl Dis-

cov 8(4):e1253

9. Tang D, Qin B, Feng X, Liu T, (2015) Effective lstms for target-

dependent sentiment classification. arXiv preprint arXiv:1512.

01100

10. Wang Y, Huang M, Zhu X, Zhao L (2016) Attention-based lstm

for aspect-level sentiment classification. In: Proceedings of the

2016 conference on empirical methods in natural language pro-

cessing, pp. 606–615

11. Da Silva NF, Hruschka ER, Hruschka ER Jr (2014) Tweet sen-

timent analysis with classifier ensembles. Decision Sup Syst

66:170–179

12. Joachims T (1998) Text categorization with support vector

machines: learning with many relevant features. In: European

conference on machine learning. Springer, pp. 137–142

13. Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural

probabilistic language model. J Mach Learn Res 3: 1137–1155

14. Neethu M, Rajasree R (2013) Sentiment analysis in twitter using

machine learning techniques. In: 2013 Fourth International

Fig. 6 ROC Curve of positive vs all (negative and neutral) sentiments

for Imbalanced Category

Table 1 Comparison of classification metrics for Balanced category

Models Precision Recall f1-score

LSTM (baseline) 0.75 0.75 0.75

Bi-directional LSTM 0.77 0.75 0.76

BERT 0.76 0.75 0.75

Att-Coder (Proposed) 0.86 0.85 0.86

Bold represents our model obtained accuracy which is better than the

other listed models

Table 2 Comparison of classification metrics for Imbalanced

category

Models Precision Recall f1-score

LSTM (baseline) 0.65 0.62 0.63

Bi-directional LSTM 0.67 0.61 0.63

BERT 0.69 0.67 0.68

Att-Coder (Proposed) 0.80 0.79 0.79

Bold represents our model obtained accuracy which is better than the

other listed models

Int. j. inf. tecnol.

123

http://arxiv.org/abs/1512.01100
http://arxiv.org/abs/1512.01100

Conference on Computing, Communications and Networking

Technologies (ICCCNT). IEEE, pp. 1–5

15. Jadav BM, Vaghela VB (2016) Sentiment analysis using support

vector machine based on feature selection and semantic analysis.

Int J Comput Appl 146(13)

16. Ajit P (2016) Prediction of employee turnover in organizations

using machine learning algorithms. Algorithms 4(5):C5

17. Chen P, Xu B, Yang M, and Li S (2016) Clause sentiment

identification based on convolutional neural network with context

embedding. In: 2016 12th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-

FSKD). IEEE, pp. 1532–1538

18. Jain PK, Saravanan V, Pamula R (2021) A hybrid cnn-lstm: a

deep learning approach for consumer sentiment analysis using

qualitative user-generated contents. Trans Asian Low Resou

Lang Inform Process 20(5):1–15

19. Zhang M, Zhang Y, Vo D.-T (2016) Gated neural networks for

targeted sentiment analysis. In: Thirtieth AAAI conference on

artificial intelligence

20. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez

A. N, Ł. Kaiser, Polosukhin I (2017) Attention is all you need. In:

Advances in neural information processing systems,

pp. 5998–6008

21. Wang J, Li J, Li S, Kang Y, Zhang M, Si L, Zhou G (2018)

Aspect sentiment classification with both word-level and clause-

level attention networks. IJCAI 2018:4439–4445

22. Ma Y, Peng H, Cambria E (2018) Targeted aspect-based senti-

ment analysis via embedding commonsense knowledge into an

attentive lstm. In: Thirty-second AAAI conference on artificial

intelligence

23. Sukhbaatar S, Szlam A, Weston J, Fergus R (2015) End-to-end

memory networks. arXiv preprint arXiv:1503.08895

24. Chen P, Sun Z, Bing L, Yang W, (2017) Recurrent attention

network on memory for aspect sentiment analysis. In: Proceed-

ings of the 2017 conference on empirical methods in natural

language processing, pp. 452–461

25. Zhu P, Qian T (2018) Enhanced aspect level sentiment classifi-

cation with auxiliary memory. In: Proceedings of the 27th

International Conference on Computational Linguistics,

pp. 1077–1087

26. Naseem U, Razzak I, Musial K, Imran M (2020) Transformer

based deep intelligent contextual embedding for twitter sentiment

analysis. Fut Gen Comput Syst 113:58–69

27. Dowlagar S, Mamidi R (2021) Cmsaone@ dravidian-codemix-

fire2020: a meta embedding and transformer model for code-

mixed sentiment analysis on social media text. arXiv preprint

arXiv:2101.09004

28. He J, Mai S, Hu H (2021) A unimodal reinforced transformer

with time squeeze fusion for multimodal sentiment analysis.

IEEE Signal Process. Lett 28:992–996

29. Bacco L, Cimino A, Dell’Orletta F, Merone M (2021) Extractive

summarization for explainable sentiment analysis using

transformers

30. Dua D, Graff C (2017) UCI machine learning repository.

[Online]. Available at: http://archive.ics.uci.edu/ml

31. Le Q, Mikolov T (2014) Distributed representations of sentences

and documents. In: International conference on machine learning.

PMLR, 2014, pp. 1188–1196

32. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Computat 9(8):1735–1780

Int. j. inf. tecnol.

123

http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/2101.09004
http://archive.ics.uci.edu/ml

ar
X

iv
:2

11
0.

04
00

8v
1

 [
co

nd
-m

at
.m

tr
l-

sc
i]

 8
 O

ct
 2

02
1

Synthesis and study of ScN thin films

Susmita Chowdhury,1 Rachana Gupta,1 Parasmani Rajput,2 Akhil Tayal,3 Dheemahi Rao,4, 5, 6 Reddy

Sekhar,7 Shashi Prakash,1 Ramaseshan Rajagopalan,7 S. N. Jha,2 Bivas Saha,4, 5, 6 and Mukul Gupta8, ∗

1Applied Science Department, Institute of Engineering and Technology, DAVV, Indore, 452017, India
2Beamline Development and Application Section, Physics Group,

Bhabha Atomic Research Centre, Mumbai 400085, India
3Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany

4Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064,India
5International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research,Bengaluru 560064, India
6School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064,India

7Surface and Nanoscience Division, Materials Science Group,
Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam - 603102, India

8UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452 001,India
(Dated: April 18, 2022)

To contemplate an alternative approach for the minimization of diffusion at high temperature
depositions, present findings impart viability of room-temperature deposited reactively sputtered
ScN thin film samples. The adopted room temperature route endows precise control over the RN2

flow for a methodical structural phase evolution from Sc→ScN and probe the correlated physical
aspects of the highly textured ScN samples. In the nitrided regime i.e. at RN2

= 2.5 - 100%
flow, incorporation of unintentional oxygen defects were evidenced from surface sensitive soft x-ray
absorption spectroscopy study, though less compared to their metal (RN2

= 0%) and interstitial
(RN2

= 1.6%) counterparts, due to higher Gibb’s free energy for Sc-O-N formation with no trace
of ligand field splitting around the O K-edge spectra. To eradicate the sceptism of appearance
of N K-edge (401.6 eV) and Sc L-edge (402.2 eV) absorption spectra adjacent to each other, the
nascent Sc K-edge study has been adopted for the first time to validate complementary insight
on the metrical parameters of the Sc-N system taken into consideration. Optical bandgaps of the
polycrystalline ScN thin film samples were found to vary between 2.25 - 2.62 eV as obtained from
the UV-Vis spectroscopy, whereas, the nano-indentation hardness and modulus of the as-deposited
samples lie between 15 - 34GPa and 152 - 476GPa, respectively following a linearly increasing trend
of resistance to plastic deformations. Besides, contrary to other early 3d transition metal nitrides
(TiN, VN, CrN), a comprehensive comparison of noticeably large homogeneity range in Sc-N has
been outlined to apprehend the minuscule lattice expansion over the large RN2

realm.

I. INTRODUCTION

Early 3d transition metal nitrides (TMNs) e.g. ScN,
TiN, VN and CrN even though crystallizes in cubic
rocksalt-type B1 structure, but distinct band structure
manifests heterogeneous electrical conductivity within
the family of early TMNs [1, 2]. Among them, ScN
as a semiconductor sought a profound research atten-
tion in recent times, whereas, the rest of the early 3d
TMNs exhibit metallic nature and are substantially well
explored since decades [2, 3]. Apart from ScN been
a pre-eminent refractory compound (melting point ex-
ceeding ≈2873K, corossion resistant, high hardness of
≈21GPa) [3] exhibiting high thermoelectric figure-of-

merit (0.3 at 800K) [4] and assist as a template for
the growth of low dislocation density GaN [5], ScN fur-
ther possess immense functionalities in conjuction with
other TMNs viz. ScxGa1−xN as light emitting diodes [6],
Al1−xScxN as MEMS magnetoelectric sensors [7, 8], epi-
taxial (Zr,W)N/ScN - metal/semiconductor superlattices
as thermionic energy conversion devices [9] etc. Besides

∗ Corresponding author:mgupta@csr.res.in

these intriguing aspects, the lowest enthalpy of forma-
tion (∆H0

f = -19.79 eV) [10] Sc-O of Sc compared to other
TMNs is the principal intricacy for synthesis of pure ScN,
resultant being an unintentional n-type degenerate semi-
conductor [11, 12].

Hence for application based perspectives, to modulate
the band structure engineering for superior device perfor-
mances, so far, most of the studies adopted high vacuum
(≤10−8Torr) depositions to ensure low defect concentra-
tions with atomically smooth epitaxial growth of ScN
thin film samples on variety of single crystal substrates
(MgO, Al2O3, GaN, SiC etc.) [13–16], and few of them
aided with process parameters are tabulated in Table I.
As can be seen from Table I, conventional use of high
substrate temperature (Ts ≥ 823K) has been an integral
part during the synthesis of ScN thin film samples, pos-
sibly due to higher adatom mobility promoting enhanced
crystalline defect free ScN growth [17]. In addition, in-
tensive research attention have also been dedicated to
get an insight on explicit defect contributions and mi-
crostructural growth behavior (e.g. dislocations, twin
domains etc.) of ScN samples and when fabricated with
other metals and/or TMNs as in metal/semiconductor
superlattices, multilayers etc [1, 4, 18, 19].

In terms of defects, even though it is well known that

http://arxiv.org/abs/2110.04008v1
mailto:mgupta@csr.res.in

2

during the growth of ScN itself, finite incorporation of
substitutional (ON) and/or interstitial oxygen (Oi) is in-
herent regardless of Ts [16, 18, 20], but combined study
of first principles density functional theory (DFT) with
site occupancy disorder technique reveals that the elec-
tronic band structure of ScN remains unaltered despite
of a shift of the Fermi energy level to the bottom of the
conduction band [4]. Nonetheless, only recently, the pri-
mary contribution of oxygen incorporation has also been
attributed to the surface oxidation [13, 17]. Howbeit, ni-
trogen vacancies (VN) are known to form a defect energy
level at ≈1.26 eV above the valence band maxima at Γ
point of the Brillouin zone [21]. In this context, it is to be
mentioned here that significance of high Ts depositions
in supression of defects were found to be conflicting in
literature [13, 17, 22, 23], yet have not been highlighted
so far.

Furthermore, as regards to technological viability in
electronics viz. CMOS integrated circuits, plastic sub-
strates etc, high Ts synthesis is highly undesirable [24].
Moreover, the extent of diffusion across the metal-
semiconductor superlattice and/or multilayer interfaces
will be comparatively high at a high Ts regime [12],
which could limit the device performances in practi-
cal applications. Additionally, interdiffusion across film-
substrate interfaces are also pronounced at high Ts de-
positions [21, 25]. In view of this, contrary to high Ts

depositions, we adopted a room temperature deposited
reactive magnetron sputtering technique for the synthesis
of ScN thin film samples, as ScN favors thermodynamical
growth conditions even at 298K (∆H0

f = -3.29 eV). Such
temperature regime also paves the way for precise con-
trol over variation of relative N2 partial pressures (RN2

)
to probe the structural phase evolution from hexagonal
close packed (hcp) Sc to rocksalt-type face centered cubic
(fcc) ScN, which is still ambiguous.

In order to probe the electronic structure of ScN,
so far, usually x-ray photoelectron spectroscopy (XPS)
or soft x-ray absorption spectroscopy (SXAS) at N K-
edge (401.6 eV) and Sc L-edge (402.2 eV) were consid-
ered [21, 26–28]. But, since the two absorption edges
appear very close to each other and moreover, both
XPS and SXAS are known to be surface sensitive tech-
niques [29], an alternative powerful technique such as x-
ray absorption fine structure (XAFS) can provide bet-
ter insight on the metrical parameters at atomic scale
level. With this motif, for the first time, XAFS was im-
plemented on the Sc-N system complementary to SXAS
to probe the K-edge of Sc in ScN. In spite of recent surge
in investigation of various physical properties, further re-
alization of variation of N were systematically demon-
strated in terms of structural, electronic, optical and me-
chanical responses of room temperature deposited ScN
thin film samples which are still missing in literature.

II. EXPERIMENTAL

Metallic Sc and a series of ScN thin film samples
were deposited on amorphous quartz and single crys-
tal Si (100) substrates at various RN2

[= PN2
/(PN2

+
PAr), where PN2

and PAr are nitrogen and argon par-
tial pressures, respectively] flow = 1.6, 2.5, 5, 10, 25,
50 and 100% in closed intervals using a direct current
magnetron sputtering (dcMS) at ambient temperature
(≈300K). For thin film deposition, a Sc (99.95% pure)
3-inch target was sputtered in the presence of 5N pu-
rity Ar and/or N2 gas flows. Prior to the deposition,
the substrates were cleaned in an ultrasonic bath of ace-
tone followed by methanol wiping with dry air blown and
were loaded into the chamber. Subsequently, the sample
holder was baked for 1 hour at 573K and then cool down
to room temperature to achieve a base-pressure of about
1×10−7Torr or lower. During deposition, the working
pressure was ≈3×10−3Torr and the substrate holder ro-
tation was kept fixed at 60 rpm to get better uniformity
of the samples.

For thickness calibration of the samples, x-ray reflec-
tivity (XRR) measurements were performed using Cu-Kα

x-rays on a Bruker D8 Discover system. Once the deposi-
tion rate was obtained from the fitting of the XRR data
(not shown), typically 200nm thick samples were pre-
pared following the similar deposition procedure. The
structural characterization of samples were carried out
using x-ray diffraction (XRD) using a Bruker D8 Ad-
vance XRD system based on θ-2θ Bragg-Brentano geom-
etry with Cu-Kα (1.54 Å) x-rays and detected using a fast
1D detector (Bruker LynxEye). To probe the local elec-
tronic structure, surface sensitive SXAS measurements
were performed at N K-edge and Sc L(III,II)-edges in total
electron yield (TEY) mode at BL-01 beamline of Indus-
2 synchrotron radiation source [37] at RRCAT, Indore,
India. Complementary to SXAS, to get an elementary in-
sight probing the deep core level in atomic scale regime,
x-ray absorption fine structure (XAFS) measurements
were performed in fluorescence mode at BL-09 beamline
at RRCAT, Indore, India and also at P64 beamline of
PETRA-III, DESY, Germany [38]. XAFS data taken at
Sc K-edge from both beamlines were found to be similar
and XANES data taken at BL-09 and EXAFS data taken
at P64 has been included. The obtained data was pro-
cessed in Athena software [39] with pre and post-edge
normalization [40] and fitting of the Fourier Transform
(FT) spectra were performed using a software code de-
veloped by Conradson et al [41]. The fitted R range was
taken from 0 to 10 Å, while the used k -range was 3 to
8 Å−1.

The optical absorption spectra of the ScN thin
film samples were recorded by Perkin Elmer, Lambda-
750 UV–Visible spectrophotometer with double beam
monochromator in the wavelength range of 250 - 1000nm
at room temperature. The reflectance of the recorded
data were converted to absorption spectra using Kubelka-
Munk radiative transfer model, which is associated with

3

TABLE I. Growth techniques of ScN thin film samples deposited using various substrate temperature (Ts) and deposition power
(P) on different substrates with corresponding lattice parameter (LP) and direct optical bandgap (Eg) values. Here, dcMS =
Direct current magnetron sputtering and MBE = Molecular beam epitaxy, RMS = Reactive magnetron sputtering, 300† =
amorphous at 300K, GGA-PBE = Perdew-Burke-Ernzerhof GGA exchange correlation functional, HSE06 = Heyd-Scuseria-
Ernzerhof Hybrid functional, FLAWP = Full-potential linearized augmented plane wave method, FLAWP-GGA = Full-potential
linearized augmented plane wave method with generalized gradient approximation, LDA = Local density approximation,
GGA+U = Generalized gradient approximation with Hubbard U correction.

Exp. Substrate Process LP Eg Ref.
Tech. Parameters (Å) (eV)
dcMS MgO (001) Ts = 1103K, 4.50 - [4]

& Si (001) P =150W
dcMS c-plane Al2O3, Ts = 973 - 1223K, 4.504 - 4.512 - [16]

MgO (111) & P = 125W
r-plane Al2O3

dcMS MgO (001) Ts = 1123 & 1223K, 4.50 2.18 - 2.7 [30]
P = 60 - 300W

dcMS MgO (001) Ts = 973K 4.573 2.59 [26]
MBE GaN (0001), Ts = 1023K, 4.497 2.1 [15]

SiC (0001) & P = 200W
AlN (0001)

RMS MgO (001) Ts = 823K, 4.52 - 4.54 2.1 [25]
P = 25 - 127W

dcMS MgO (001) Ts = 873 - 1073K, 4.50 2.19 - 2.23 [17]
P = 125W

dcMS c-plane Al2O3 Ts = 300† - 1023K, ≈4.47 - 4.52, 2.2 - 3.1 [17]
& Si P = 40W

MBE MgO (001), Ts = 1073K, - 2.15 [31]
dcMS Quartz & Ts = 300K, 4.49 - 4.567 2.25 - 2.62 this

Si (100) P = 100W work
Theoretical
GGA-PBE - - 4.519 2.02 [30]
& HSE06 4.499 -
FLAPW & - - 4.42 - [32]
FLAPW-GGA - - 4.50 -
LDA - - 4.47 - [33]
GGA+U - - 4.52 1.86 [34]

the absorption coefficient (α) [42] of the ScN thin film
samples. To measure the hardness and elastic modulus of
the samples, nanoindentation tests (Anton Paar, Switzer-
land) were performed using Berkovich diamond indenter
tip with standard loading and unloading procedure based
on Oliver and Pharr model [43]. In order to suppress the
substrate effects, the measurements were performed on
one/tenth of the total sample thickness [44].

III. RESULTS

A. X-Ray Diffraction

To take into account the phase formation of as-
deposited samples, Figure 1(a) illustrates the XRD data
of Sc and ScN thin film samples and are compared with
bulk references [30, 45], whereas, Figure 1(b) demon-
strates the obtained variations in the lattice parameters
(LP) and crystallite size as a function of RN2

. In ad-
dition, the highlighted region (in cyan) of Figure 1(b)
depicts the experimentally obtained LP of ScN thin film

samples in literature and the red dotted line is a guide to
eye for the theoretical predicted value of bulk ScN [30].
As can be seen from Figure 1(a), the occurence of three
prominent peaks for Sc thin film sample can be assigned
to (100), (002) and (101) reflection planes of hcp Sc,
whereas for ScN samples, three different growth stages
can be witnessed with variation in RN2

flow namely, (i)
interstitial incorporation of N atoms within hcp Sc, (ii)
formation of NaCl rocksalt type fcc-ScN, and (iii) grad-
ual expansion of ScN lattice due to incorporation of N
atoms in fcc-ScN.

Here, it is to be mentioned that an earlier report on
deposition of polycrystalline ScN thin film samples on
quartz substrates at Ts = 300K using rf magnetron sput-
tering have reported amorphous growth and later on tun-
ing of Ts to high temperature resulted in preferential
grain growth either along (111) or (200) plane, albeit the
XRD data for the as-deposited samples were not pre-
sented therein [46]. However, in the present work, at a
very initial stage of RN2

= 1.6%, the N atoms occupy the
interstitial sites of hcp Sc manifesting an asymmetry and
broadening in the reflection peak which suggests phase

4

30 40 50 60 70

30 40 50 60 70 80

0 20 40 60 80 100
4.48

4.50

4.52

4.54

4.56

RN2 (%)

LP
 (Å

)

(b)

20

25

30

35

40

45

C
ry

st
al

lit
e

Si
ze

 (n
m

)
(2

01
)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

(1
12

)

(1
03

)

(1
10

)

(1
01

) Sc Ref

(1
00

)

2q (Degrees)

(1
02

)

(0
02

)

0%

(2
20

)

(3
11

)
(2

22
)

(2
00

)

(1
11

)

ScN Ref

2.5%

10%

25%

50%

(a) 100%

1.6%

5%

FIG. 1. XRD pattern(a) and obtained variations in the lattice
parameters and crytallite size (b) as a function of RN2

of pure
Sc and ScN samples deposited at various RN2

= 1.6, 2.5, 5, 10,
25, 50 and 100%.

co-existance of hcp Sc and fcc ScN at certain phase frac-
tions (as could also be evidenced from our XAFS data)
and an enhancement in the crystalline disorder. Later
on, when RN2

was increased to 2.5%, the sample exhib-
ited a highly textured orientation with (111) and (222)
reflection planes, resembling a rocksalt NaCl type struc-
ture even though the LP was 4.49 Å, slightly less than
the theoretically predicted value of 4.501 Å [30]. With

further increase in RN2
flow (from 5 to 50%), the textur-

ing of the samples remain unaltered, but due to gradual
incorporation of N atoms within the crystal lattice, it
starts to expand as shown in Figure 1(a) by the gradual
peak shifts of both (111) (magnified view shown in the
highlighted inset) and (222) reflection peaks towards the
lower diffraction angle (shown by dotted lines) accompa-
nied with an increase in the crystallite size (Figure 1(b)).
Such unidirectional grain growth can be attributed to

the kinetics driven mechanism at ambient temperature
deposition (≈300K), due to trapping of the less mobile
adatoms in the highest surface energy site i.e along the
(111) reflection plane of ScN [47]. Besides, further in-
crease in RN2

at 100% flow causes lattice expansion in ex-
pense of reduced peak intensity of (111) reflection plane
due to possible oversaturation of N, resulting in broaden-
ing of the (111) peak (as can be seen in highlighted region
of Figure 1(a)) with reduced crystallite size (Figure 1(b)),
and further absence of (222) grain growth suggests shat-
tering of the long range periodicity. In view of growth
evolution of Sc→ScN at various RN2

flow with electronic
properties, SXAS measurements were performed and are
discussed in section III B.

B. Soft X-Ray Absorption Spectroscopy

To get an insight on the local electronic structure of
Sc and ScN thin film samples with variation in RN2

flow,
SXAS spectra of Sc L-edge and N K-edge were recorded
and are shown in Figure 2(a), whereas, the first order
derivative of the absorption spectra with respect to the
photon energy is described in Figure 2(b). Additionally,
to probe the oxidation effect, Figure 2(c) demonstrates
the O K-edge XANES spectra of the samples. Here, it is
to be mentioned that for a pure Sc sample, two absorp-
tion edges namely LIII and LII are expected due to spin-
orbit splitting of the Sc 2p orbital into 2p3/2 and 2p1/2
states in the absence of any ligand (C, N, O etc.) around
the vicinity of Sc, a consequence of the transition of core
electron from Sc 2p3/2→Sc 3d (LIII) and Sc 2p1/2→Sc
3d (LII) states [48]. However, in the present case, the
prominent features of Sc sample in Figure 2(a) and 2(b)
marked as ‘1’, ‘2’, ‘3’ and ‘4’ can be assigned to LIII (t2g),
LIII (eg), LII (t2g) and LII (eg) edges respectively due to
the presence of a finite amount of unintentional O ligand
field, which led to hybridization of Sc 3d-O 2p orbitals
resulting in further splitting of each LIII and LII features
into t2g and eg.
Subsequently, the effect of surface oxidation/oxidation

during the deposition itself for Sc sample is even pro-
nounced from the O K-edge, where the doublet appear-
ing at around 532.4 and 534.4 eV (shown by the pink
highlight) can be inferred to t2g (O 2pπ+Sc3d) and eg
(O 2pσ+Sc3d) states due to the possible octahedral lig-
and field splitting (10Dq), wheras the broad feature ‘D’
arises due to hybridization of the O 2p with 4sp states
of Sc [48, 49]. Similarly, for RN2

= 1.6% sample, both

5

530 540 550 560

D

 (arb. units)

 0%

C

2.5%

 1.6%

10%

5%

25%

50%

100%

(c)

399 406 413

1.6%

(a
rb

. u
ni

ts
)

0%

25%

10%

5%

2.5%

4
321 BA

(a)

100%

50%

402 408

0%

1.6%

BA

2.5%

5%

10%

25%

50%

d
/dE (arb. units)

4
32

100%
1 (b)

Photon Energy (eV)

FIG. 2. Normalized SXAS spectra of Sc LIII, LII and N K-edge (a), first order derivative of absorption spectra with respect
to the photon energy (b) and O K-edge (c) of pure Sc and ScN samples deposited at various RN2

= 1.6, 2.5, 5, 10, 25, 50 and
100%.

Sc L-edge and O K-edge features mimic the same trend
as metallic Sc thin film sample, but an increase in 10Dq
≈ 2.9(±0.3) eV can be observed, which might be due to
the shrink in volume of interstitial ScN during the pro-
cess of structural transformation from Sc→ScN. Hence,
O K-edge spectra confirms the incorporation of bonded O
on the sample surface which can be present either in the
form of ScxOy (for Sc)/ScOxNy (for 1.6% ScN), but, cer-
tainly not Sc2O3 (10Dq[Sc−O] = 3.3 eV), as both samples
were of metallic grey in color (as opposed to transparent
Sc2O3).

With further increase in RN2
from 2.5 - 100%, as can be

seen from Figure 2(a) and 2(b), two new pronounced fea-
tures labelled as ‘A’ and ‘B’ arises which can be ascribed
to ligand field splitting in the presence of N octahedral
environment and noticeable reduction in the intensity of
features ‘1’ and ‘3’ can be detected which can be bet-
ter discerned from the O K-edge spectra. Here, instead
of a doublet, a new feature ‘C’ can be noted. The ap-
pearance of similar experimental spectra have also been
reported by Kumar et al. in the O K-edge of TiN (Ts =
1023K) and through a combined study of DFT and ab-
initio full potential multiscattering (FMS) theory, they
concluded that such feature arises due to the presence
of substitutional (ON) and interstitial (Oi) oxygen in a

defect complex state (4ON+Oi) [20]. Hence, the con-
tribution of defects in early TMNs are comparable for
both ambient and high Ts depositions. As mentioned
earlier, since the N K-edge and Sc L-edge appears very
close to each other, Nayak et al. have performed the-
oretical simulations based on the FMS theory and re-
ported a value of 10Dq = 2.1 eV [27], which is in well
agreement with the experimentally observed value of ≈
2.3(±0.3) eV obtained in the present work. Even though,
it appears from Figure 2(a) that the energy features of
‘2’ and ‘4’ remain almost unaltered with an increase in
RN2

flow (2.5% and above), but first order derivatives of
the absorption spectra divulged a diverse profile where a
new feature (around ‘2’ and less pronounced for feature
‘4’) towards the lower energy side for these samples is
clearly visible as evidenced from Figure 2(b), which can
be attributed as LIII (eg) and LII (eg) corresponding to
Sc-N bonds. Considering the new features of ScN, the
spin-orbit splitting comes out to be 4.8(±0.3) eV, well in
agreement as reported for ScN [28].

6

4480 4520 4560
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4490 4500 4510 4520

0.0

0.2

0.4

0.6

0.8

1.0

1.2 (b)
G

 0%
 1.6%
 2.5%
 5%
 10%
 25%
 50%
 100%

N
or

m
al

iz
ed

 x
(E

)

Energy (eV)

E

F(a)

 1.6%
 LCF Fit

Energy (eV)

FIG. 3. Normalized Sc K-edge XAFS spectra of metallic Sc and ScN thin film samples deposited at various RN2
= 1.6, 2.5, 5,

10, 25, 50 and 100% (a) and linear combination fit (LCF) of 1.6% sample.

C. X-Ray Absorption Fine Structure

So as to achieve complementary information about the
electronic structure, Figure 3(a) depicts the normalized
Sc K-edge XANES spectra of Sc and ScN samples de-
posited at various RN2

flow and Figure 3(b) shows the
linear combination fit (LCF) of 1.6% sample. The spec-
tra of Sc and 1.6% ScN sample shows distinct features in
comparison to samples deposited at relatively high RN2

flow. In the pre-edge region, an intense feature ‘E’ can
be seen for Sc sample and with RN2

flow at 1.6%, it gets
feeble. Such intense pre-edge feature has previously been
reported for metallic hcp Ti (for both foil and film) with
hexagonal symmetry and has been attributed to 1s →
3d electric quadrupole transition (∆l = ±2) [50, 51]. It
is conventional that pre-edge features differ due to dif-
ferent geometrical parameters such as, inversion symme-
try, co-ordinations and bonding configurations (e.g. bond
length, bond angles) etc [52]. For 1.6% sample, the best
fit was obtained considering the phase co-existance of
both Sc (71.9(±0.9)%) and ScN (28.1(±0.9)%) phases.

On the contrary, with further incorporation of N, the
intensity gradually reduces from RN2

= 1.6% to 2.5%,
and are alike for rest of the samples. Since, it is well
established that Sc is bonded with nearest neighbor N
atoms in an octahedral co-ordination sphere with inver-
sion symmetry [28], the emergence of weak pre-edge fea-
ture can be ascribed to 1s core electron transition to 3d
states of the absorber having a partial contribution from
the 2p orbitals of N under the allowed electric dipole
transition scheme (∆l = ±1), like in TiN [53].

In addition, nitridation of the samples consequences in
continuous shift of the absorption edge (E0 = taken at
50% of the absorption spectra) [54] towards the higher
energy side at E0 = 4496(±0.3) (Sc), 4497.4(±0.3) (RN2

= 1.6%) and 4500.3(±0.3) (RN2
= 2.5%) eV which can

be interpreted in terms of higher core-hole screening due
to increase in valence states of Sc from Sc → ScN. How-

ever, above the absorption edge in the XANES region, the
feature ‘F’ and ‘G’ can be assigned to 1s → 4p electric
dipole allowed transitions of a core electron as evidenced
for other transition metal compounds e.g. TiC [55]. A
diverse trend of feature ‘F’ can be attributed to the dif-
ferent stacking sequence of Sc (ABAB for hcp) and ScN
(ABCABC for fcc) samples, where higher fcc phase frac-
tions result in sharp intense peak (characteristic features
of TMNs) in comparison to diffuse kind of feature for Sc
thin film samples [56, 57], due to a possible intermixing
between 3d quadrupole and 4p dipole states [29]. It is
worth mentioning here that in the present study, Sc K-
edge of pure Sc thin film sample does not replicate the
XAFS spectra of Sc2O3 studied by Chassé et al [58], con-
sistent with our XRD data analysis. Since, fluorescence
detected XAFS is known to be a bulk sensitive technique
with penetration depth ranging in micrometers [51] com-
pared to surface sensitive SXAS where the depth scale
ranges only in nanometer scale (≈10nm) [29], the aver-
aged out bulk information from the XAFS data further
confirms the presence of higher surface oxidation in the
samples as was evidenced from the Sc L-edge and O K-
edge SXAS spectra.

Figure 4(a) and (b) shows the Fourier Transform (FT)
moduli |χ(R)| and the real component [Re χ(R)] of the
Sc K-edge EXAFS spectra as a function of radial dis-
tance (R-φ) and the corresponding best fit, whereas, Fig-
ure 4(c) demonstrates the χ(k)×k3 spectra. For fitting,
hcp and cubic rocksalt type NaCl structure of Sc and ScN
were considered having space groups of P63/mmc [59]
and Fm3̄m [15], respectively. The fitting was performed
using LP obtained from the XRD data and the obtained
metrical parameters are tabulated in Table II.

For Sc sample, the single shell of FT spectra corre-
sponds to Sc co-ordinated to 7.2(±1.8) Sc atoms each
having an atomic pair distance of 3.25(±0.02) Å. Hence,
the local co-ordination environment is rather in a dis-
torted hexagonal symmetry which might be responsible

7

1 2 3 4
-1

0

1

1 2 3 4 4 6 8 10
-4

0

4

-0.8

0.0

0.8

-1.5

0.0

1.5

-1.5

0.0

1.5

-1.5

0.0

1.5

-1.5

0.0

1.5

-1.5

0.0

1.5

-1
0
1

-15

0

15

-15

0

15

-15

0

15

-6

0

6

-15

0

15

-15

0

15

-15

0

15

N wave

Sc-Sc
 wave

Data-Fit

Fit

0%

Data

0%

(R
,

(k
)
k3)

(k)
k

3

k (Å-1)R- (Å)

(c)(b)

100%

(a)

1.6%

2.5% 2.5%

5%

10% 10%

5%

1.6%

25% 25%

50% 50%

100%

FIG. 4. Comparison of Fourier transform (FT) moduli χ (R) (a), Re [χ (R)] (b) in the R range and χ(k)×k3 spectra in the k
range (c) of Sc and ScN thin film samples deposited at various RN2

= 2.5, 5, 10, 25, 50 and 100%.

for an intense pre-edge feature across the Sc K-edge ab-
sorption spectra (Figure 3). In addition, for ScN, con-
sidering a theoretical LP of a∗ = 4.501 Å [15, 30], the
first and second nearest neighbor distances can be antici-
pated at R

∗

Sc−N = a/2 = 2.25 Å and R
∗

Sc−Sc = a/
√
2 =

3.18 Å [60]. As can be seen from Figure 4(a) and (b), the
two consecutive maxima distributed over R-φ = 1 - 3.9 Å
range correspond to the first Sc-N and second Sc-Sc near-
est neighbor bonds. For 1.6% sample, even though it was
not possible to obtain the structural parameters from the
XRD data due to appearance of a single broad peak, but
the obtained EXAFS fitting parameters from Table II
clearly states the interstitial nature of the sample with
less content of both N and Sc atoms in the first and sec-
ond shell co-ordinations to fully evolve to the fcc phase
considering only the ScN phase during fitting. Appar-
ently, at higher RN2

flow (above 2.5%), all ScN samples

typically exhibit the octahedral inversion symmetry as
expected in NaCl structure and corroborates well with
our XRD data within the experimental resolution, as ex-
pected. To take into account the optical and mechani-
cal response of the ScN samples, UV-Vis measurements
along with nanoindentation tests were performed and are
discussed in section IIID.

D. Optical & Mechanical Behavior

In order to delve the optical properties with electronic
structure, Figure 5(a) shows the Tauc’s plot curve of α
as a function of incident photon energy for ScN thin film
samples deposited at RN2

= 2.5, 5, 10, 25, 50 and 100%
flows. The optical bandgap values were obtained from the
intersection of the energy axis by extrapolating the lin-

8

TABLE II. The metrical parameters obtained from the fitting of the EXAFS data recorded at Sc K-edge. Considering the

central atom as Sc, here, N and N
′

= first and second nearest neighbor co-ordination, RSc−N and RSc−Sc = atomic pair distance
of the first and second neighbors i.e. Sc-N and Sc-Sc, σSc−N and σSc−Sc = root mean square displacement obtained from fitting
of the first and second shell.

RN2
N RSc−N σSc−N N′ RSc−Sc σSc−Sc

(%) (Å) (Å) (Å) (Å)
0% - - - 7.23 3.25 0.098

- - - (±1.82) (±0.02) (±0.01)
1.6% 2.252 2.189 0.064 5.78 3.136 0.098

(±0.676) (±0.025) (±0.031) (±1.59) (±0.021) (±0.017)
2.5% 4.48 2.25 3.358 9.25 3.20 0.06

(±1.34) (±0.02) - (±2.55) (±0.02) (±0.02)
5% 7.42 2.23 2.488 8.93 3.19 0.06

(±2.22) (±0.03) (±0.03) (±2.42) (±0.02) (±0.02)
10% 8.03 2.23 0.11 9.40 3.20 0.07

(±2.4) (±0.03) (±0.03) (±2.6) (±0.02) (±0.02)
25% 5.12 2.27 0.06 7.46 3.23 0.04

(±1.5) (±0.03) (±0.03) (±2.14) (±0.02) (±0.02)
50% 5.86 2.23 0.07 8.25 3.21 0.07

(±1.75) (±0.03) - (±2.3) (±0.02) (±0.02)
100% 7.61 2.28 0.07 5.39 3.27 0.05

(±2.28) (±0.02) (±1.62) (±0.02) (±0.03)

ear least square fitting curve around the inflection point
using the Tauc relation, αhν = A (hν - Eg)

1

2 for di-
rect transitions [61] where, hν = photon energy, Eg =
optical bandgap and A is proportionality constant. As
mentioned earlier in section IIIB, both Sc and 1.6% ScN
sample were metallic in nature and did not show any ab-
sorption in the whole energy spectrum. Beyond RN2

=
1.6%, all the samples showed semiconducting behavior
with a well-defined optical bandgap. In this context, it is
to be mentioned that ScN exhibits an indirect bandgap
of 0.9 eV [31, 62], whereas, two direct bandgaps at 2.2
and 3.8 eV were reported [3, 30]. Generally, only the
first direct bandgap has been reported (see Table I) and
will also be considered in this work. The large variation
in the reported bandgap values have been attributed ei-
ther to the formation of defect states near the conduc-
tion band for n-type degenerate semiconductor termed
as ‘Burstein-Moss band filling effect’ [63] or to the strain
mediated effects which can modulate the energy band
shifts to a certain extent [64]. The trend was non-linear
in nature with a maximum value of 2.62 eV for 5% ScN
sample and a minimum of 2.25 eV for sample deposited
at RN2

= 100%. Thus, the variations in the bandgap
values in the present study can be inferred primarily to
the contribution of defects as the stress-strain mediated
changes might be negligible in the present case, as all the
samples were deposited on amorphous quartz substrates.
It is worth mentioning here that the bandgap values of
ScOxNy and Sc2O3 are reported to be 3.25 eV and 5.6 eV,
respectively [27], which are way higher than the obtained
bandgaps in the present study.

Figure 5(b) demonstrates the measured indentation
hardness (H) and modulus (E) of the ScN thin film sam-
ples as a function of RN2

whereas, Figure 5(c) illustrates
the ratio of (H3/E2) which corresponds to the resistance

of ScN samples to plastic deformation as a function of
H. As expected, Sc exhibits the lowest H and E values of
8(±1.3) and 79(±7)GPa, respectively. With nitridation,
both H and E increases monotonically from 15 - 27GPa
and 152 - 268GPa for the ScN samples, except for RN2

= 2.5%, which is close to the calculated value of 25GPa
for ScN [65]. At RN2

= 2.5%, the values maximizes at
34(±6.2) and 476(±157)GPa, respectively, which can be
attributed to the highest density as estimated from the
XRD data [66], smaller grain size and strong (111) and
(222) texturing of the ScN sample [67]. With increase in
RN2

= 2.5 - 50%, from the XRD data (Figure 1), it is
evident that the XRD peaks shift chronically along the
lower diffraction angle demonstrating in-plane compres-
sive residual stress. In addition, the texturing effect is
well retained, which is known to be the highest density
plane and the corresponding H is considered to be the
highest along the (111) plane [68] and are the reasons
behind the increase in H. Even though, the texturing ef-
fect is witnessed for RN2

= 100% sample only along the
(111) plane, but the decrease in grain size in turn ele-
vates the grain boundaries which could lead to plausible
rise in H value [67]. Furthermore, the gradual rise in E
values from Sc→ScN can be attributed to the strong co-
valent bond formation of Sc-N than metallic Sc-Sc bonds
in Sc [44], as evidenced from our XAFS study. Apart
from this, the ScN thin film samples also show a propi-
tious resistance to plastic deformation (H3/E2) following
a linear trend with increase in H values [69]. However,
it is to be mentioned here that typically the values of H
and E are likely comparable in the range of RN2

= 2.5 -
100% within the error bars.

9

1.5 2.0 2.5 3.0
0.0

4.0x1015
0.0

4.0x1015

0.0

4.0x1015

0.0

3.0x1015
0.0

4.0x1015

0.0

3.0x1015

2.5%

2.5

5 10 15 20 25 30 35
0.05

0.10

0.15

0.20

0.25

0.30
H3 /E

2
(G

Pa
)

Indentation Hardness (GPa)

5%

2.62

10%

2.52

25%

h (eV)

2.37

50%

2.47

0 20 40 60 80 100
0

8

16

24

32

40

 Hardness
 Elastic Modulus

RN2 (%)

In
de

nt
at

io
n

H
ar

dn
es

s
(G

P
a)

0

100

200

300

400

500

600

700

 In
de

nt
at

io
n

M
od

ul
us

 (G
P

a)

(c)

(b)100%

(
h

)
(e

Vm
-1

)

2.25

(a)

FIG. 5. Obtained direct bandgaps from the Tauc’s plot of the absorption co-efficient as a function of incident photon energy (a),
nano-indentation hardness and modulus with error bars (b) and the ratio of (H3/E2) depicting resistance to plastic deformation
of ScN thin film samples as a function of hardness (c), deposited at room-temperature at various RN2

= 1.6, 2.5, 5, 10, 25, 50
and 100% flow.

IV. DISCUSSION

At an early stage of subtle nitridation (RN2
= 1.6%),

combined XRD and XAFS study reveal formation of an
interstitial compound in the intermediate stage during
evolution from hcp Sc to fcc ScN and with higher content
of N, at RN2

= 2.5% and above, adaptation of fcc phase
with octahedral symmetry were observed. Here, it is in-
teresting to note that likewise in early TMNs, ScN does
not possess bimetallic phases (e.g. Ti

2
N, V2N and Cr

2
N)

at ambient temperature and pressure, and rather man-
ifests a large homogeneity range (retaining NaCl type
rocksalt crystal structure from as low as RN2

= 2.5% to
as high as 100%). In contrary, with increase in N2 atomic
%, the overall crystal lattice withstands a minimal lat-
tice expansion of only ≈ 1.7% at highest RN2

= 100%
for ScN. It could be well discerned in terms of higher in-
terstitial lattice volume of ScN compared to other early
TMNs in the series (TiN, VN and CrN). Since, the early

TMNs exhibit NaCl type rocksalt crystal structure, the
corresponding octahedral interstial site occupancy of ni-
trogen atoms would be at edge centers of the unit cell
i.e. at (12 ,0,0), (0, 12 ,0), (0,0, 12) and at the center i.e.

(12 ,
1
2 ,

1
2) position of the respective unit cell. Considering

the (100) lattice plane of the unit cell, from the simple
pictorial overview as shown in Figure 6 for ScN sample,
the radius of the interstitial site (Rint) can be similarly
evaluated for early TMNs by solving two basic equations
along the edge and diagonal as,

RTM+2Rint+RTM = a,(i)

and,

RTM+2RTM+RTM = (a2 + a 2)
1

2 ,(ii)

where, RTM = radius of TM atom, and a = LP of
TMN. Hence, the corresponding structural parameters
of the early TMNs are enlisted in Table III.

10

TABLE III. Early transition metals (TM) and their corresponding crystal structures (CS) and lattice parameters (LPTM). In
comparison to metal counterparts, lattice parameters (LPTMN) of their nitrides with calculated radius of interstitial octahedral
site (Rint) have been tabulated below.

TM CS LPTM TMN LPTMN Rint Ref.
(Å) (Å) (Å)

Sc hcp a = b = 3.309, ScN 4.501 0.659 [70]
c = 5.273

Ti hcp a = b = 2.951, TiN 4.24 0.621 [71]
c = 4.684

V bcc a = 3.03 VN 4.139 0.606 [66]
Cr bcc a = 2.885 CrN 4.14 0.606 [72]

FIG. 6. Representative unit cell of ScN (100) crystal plane

From Table III, it is evident that ScN exhibits the
largest unit cell with higher fraction of interstitial vol-
ume among the early TMNs, leading to a large homo-
geneity range for retainig the fcc rocksalt phase accom-
panied with minuscule lattice expansion. In this context,
it is worth mentioning that Al et al. have reported that
ScN can withstand upto ≈ 20% of N vacancies within the
crystal lattice [73]. Such a large homogeneity range has
also been witnessed for other early TMNs like TiNx (0.67
≤ x ≤ 1.3) [74], VNx (0.79 ≤ x ≤ 0.96) [75] etc. in the oc-
tahedral symmetry. In addition, combined SXAS study
at Sc L-edge, N K-edge and O K-edge reveal that the
effect of oxidation is less pronounced for nitrided sam-
ples compared to their metal/interstitial counterparts.
This is due to formation of strong Sc-N covalent bonds
which results in relatively high Gibb’s energy for oxide
formation (-6.48 eV) of ScN than metallic Sc-Sc bonds in
pure Sc (-9.43 eV) at ≈298K [13]. Furthermore, our Sc
K-edge XANES spectra confirms distinct evolution from
hexagonal to octahedral symmetry complemented with a
clear rise in the valence state for ScN samples consistent
with our XRD results. The pre-edge features of neither
Sc nor ScN resembles the Sc K-edge oxide spectra [58]
emphasizing on the higher surface oxidation effect in all
these samples. Nonetheless, the local electronic struc-
ture as recorded from EXAFS replicates the XRD data
with further insight on the presence of local defects in the
vicinity of Sc atoms but the visible changes are however

marginal for all the samples. Even so, the non-monotonic
variations in the optical bandgaps across the whole RN2

range have no clear trend and in this scenario, it is dif-
ficult to correlate them in terms of defects as in case
of polycrystalline thin film samples, the role of defects
are always expected to be higher than epitaxial ScN thin
film samples studied so far. Howbeit, the bandgap values
in the present study lie well within the energy regime of
ScN thin film samples as observed for high Ts depositions
on single crystal substrates. Additionally, the hardness
and indentation modulus agrees well during the evolu-
tion from Sc→ScN with a linearly increasing trend of
resistance to plastic deformation and also matches well
with those reported in the literature [76, 77] within the
experimental error bars.

CONCLUSION

In lieu of adoptation of high tempearture depositions
hitherto, as-deposited ScN thin film samples exhibited
highly textured orientation along the (111) and (222) re-
flection planes grown on amorphous quartz substrates
due to preferable highest surface energy configuration
at low temperature regime (here 300K). SXAS study
reveals pronounced incorporation of oxygen in metal-
lic Sc and interstial ScN sample deposited at RN2

=
1.6% flow, although reduction of oxygen content can be
witnessed with nitridation of the samples (RN2

= 2.5 -
100%). Complementary XAFS study shows distinct evo-
lution from Sc→ScN, where an intense pre-edge feature
stems from non-centrosymmetric distortion for Sc and
interstitial ScN (RN2

= 1.6%) sample, whereas, octahe-
dral symmetry was retained by rest of the ScN samples
deposited at higher RN2

flow. From UV-Vis measure-
ment, the obtained direct optical bandgaps were found
to vary between 2.25 - 2.62 eV for RN2

= 2.5 - 100%, well
in agreement with the values routinely reported in lit-
eratures for epitaxial ScN thin film samples. Even so,
the nano-indentation measurements validates the high
hardness of highly elastic ScN thin film samples rang-
ing between 15 - 34GPa with a monotonically increasing
trend in the value of resistance to plastic deformations.
In turn, the large homogenity range of Sc-N system has
been compared with elemental early 3d transition metal

11

nitride series viz. TiN, VN and CrN to comprehend the
phase stability of cubic NaCl rocksalt type structure of
ScN thin film samples over large variation in RN2

flow.
Hence, cumulative inferences drawn from this work can
be epitomized as high vacuum deposition is imperative
for high quality ScN samples but an alternate room tem-
perature deposition can be adopted as opposed high Ts,
to minimize the unintentional diffusion mechanisms at
elevated temperatures finding applications in electronics
viz. CMOS integrated circuits, free standing films on
plastic substrates.

ACKNOWLEDGMENTS

Authors (SC and RG) are grateful to UGC-DAE CSR,
Indore for providing financial support through CSR-IC-
BL-62/CSR179-2016-17/843 project. Thanks are due to
V. R. Reddy and Anil Gome for XRR measurements,
Rakesh Sah for SXAS measurement at BL-01, Indus 2,
RRCAT and Layanta Behera for various experiments. SC
is thankful to Sanjay Nayak for fruitful discussions and
Yogesh Kumar for his extended help in XRD and XAFS
measurements. We also thank S. Tokekar, A. J. Pal, A.
K. Sinha, D. M. Phase, V. Ganesan and V. Sathe for
their kind support and constant encouragements.

[1] B. Saha, A. Shakouri, T. D. Sands, Rocksalt nitride
metal/semiconductor superlattices: A new class of arti-
ficially structured materials, Applied Physics Reviews 5
(2018) 021101.

[2] P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias,
D. Bellas, C. Lekka, E. Lidorikis, Conductive nitrides:
Growth principles, optical and electronic properties, and
their perspectives in photonics and plasmonics, Materials
Science and Engineering: R: Reports 123 (2018) 1–55.

[3] B. Biswas, B. Saha, Development of semiconducting ScN,
Physical Review Materials 3 (2019) 020301.

[4] P. V. Burmistrova, J. Maassen, T. Favaloro, B. Saha,
S. Salamat, Y. Rui Koh, M. S. Lundstrom, A. Shakouri,
T. D. Sands, Thermoelectric properties of epitaxial ScN
films deposited by reactive magnetron sputtering onto
MgO (001) substrates, Journal of Applied Physics 113
(2013) 153704.

[5] F. Scholz, Semipolar GaN grown on foreign substrates: a
review, Semiconductor Science and technology 27 (2012)
024002.

[6] M. Little, M. Kordesch, Band-gap engineering in sputter-
deposited ScxGa1−xN, Applied Physics Letters 78 (2001)
2891–2892.

[7] J. Su, F. Niekiel, S. Fichtner, L. Thormaehlen, C. Kirch-
hof, D. Meyners, E. Quandt, B. Wagner, F. Lofink,
AlScN-based MEMS magnetoelectric sensor, Applied
Physics Letters 117 (2020) 132903.

[8] F. Tasnádi, B. Alling, C. Höglund, G. Wingqvist,
J. Birch, L. Hultman, I. A. Abrikosov, Origin of the
anomalous piezoelectric response in wurtzite ScxAl1−xN
alloys, Physical review letters 104 (2010) 137601.

[9] V. Rawat, Y. K. Koh, D. G. Cahill, T. D. Sands, Ther-
mal conductivity of (Zr, W) N/ScN metal/semiconductor
multilayers and superlattices, Journal of Applied Physics
105 (2009) 024909.

[10] A. Belosludtsev, K. Juškevičius, L. Ceizaris, R. Samuilo-
vas, S. Stanionytė, V. Jasulaitienė, S. Kičas, Correlation
between stoichiometry and properties of scandium oxide
films prepared by reactive magnetron sputtering, Applied
Surface Science 427 (2018) 312–318.

[11] B. Saha, M. Garbrecht, J. A. Perez-Taborda, M. H.
Fawey, Y. R. Koh, A. Shakouri, M. Martin-Gonzalez,
L. Hultman, T. D. Sands, Compensation of native donor
doping in ScN: Carrier concentration control and p-type
ScN, Applied Physics Letters 110 (2017) 252104.

[12] P. Eklund, S. Kerdsongpanya, B. Alling, Transition-
metal-nitride-based thin films as novel energy harvesting
materials, Journal of Materials Chemistry C 4 (2016)
3905–3914.

[13] J. More-Chevalier, S. Cichoň, L. Horák, J. Buĺı̌r,
P. Hub́ık, Z. Gedeonová, L. Fekete, M. Poupon,
J. Lančok, Correlation between crystallization and oxida-
tion process of ScN films exposed to air, Applied Surface
Science 515 (2020) 145968.

[14] D. Rao, B. Biswas, E. Flores, A. Chatterjee, M. Gar-
brecht, Y. R. Koh, V. Bhatia, A. I. K. Pillai, P. E. Hop-
kins, M. Martin-Gonzalez, et al., High mobility and high
thermoelectric power factor in epitaxial ScN thin films
deposited with plasma-assisted molecular beam epitaxy,
Applied Physics Letters 116 (2020) 152103.

[15] J. Casamento, J. Wright, R. Chaudhuri, H. Xing,
D. Jena, Molecular beam epitaxial growth of scandium
nitride on hexagonal SiC, GaN, and AlN, Applied Physics
Letters 115 (2019) 172101.

[16] A. Le Febvrier, N. Tureson, N. Stilkerich, G. Greczynski,
P. Eklund, Effect of impurities on morphology, growth
mode, and thermoelectric properties of (1 1 1) and (0 0
1) epitaxial-like ScN films, Journal of Physics D: Applied
Physics 52 (2018) 035302.

[17] D. Rao, B. Biswas, S. Acharya, V. Bhatia, A. I. K. Pillai,
M. Garbrecht, B. Saha, Effects of adatom mobility and
Ehrlich–Schwoebel barrier on heteroepitaxial growth of
scandium nitride (ScN) thin films, Applied Physics Let-
ters 117 (2020) 212101.

[18] Y. Kumagai, N. Tsunoda, F. Oba, Point defects and p-
type doping in ScN from first principles, Physical Review
Applied 9 (2018) 034019.

[19] S. Acharya, A. Chatterjee, V. Bhatia, A. I. K. Pillai,
M. Garbrecht, B. Saha, Twinned growth of ScN thin films
on lattice-matched GaN substrates, Materials Research
Bulletin (2021) 111443.

[20] R. Kumar, S. Nayak, M. Garbrecht, V. Bhatia, A. In-
diradevi Kamalasanan Pillai, M. Gupta, S. Shivaprasad,
B. Saha, Clustering of oxygen point defects in transition
metal nitrides, Journal of Applied Physics 129 (2021)
055305.

[21] M. S. Haseman, B. A. Noesges, S. Shields, J. S. Cetnar,
A. N. Reed, H. A. Al-Atabi, J. H. Edgar, L. J. Brill-
son, Cathodoluminescence and x-ray photoelectron spec-
troscopy of ScN: Dopant, defects, and band structure,

12

APL Materials 8 (2020) 081103.
[22] M. Moram, Z. Barber, C. Humphreys, The effect of oxy-

gen incorporation in sputtered scandium nitride films,
Thin Solid Films 516 (2008) 8569–8572.

[23] T. Ohgaki, K. Watanabe, Y. Adachi, I. Sakaguchi,
S. Hishita, N. Ohashi, H. Haneda, Electrical proper-
ties of scandium nitride epitaxial films grown on (100)
magnesium oxide substrates by molecular beam epitaxy,
Journal of Applied Physics 114 (2013) 093704.

[24] S.-L. Tsai, T. Hoshii, H. Wakabayashi, K. Tsutsui, T.-K.
Chung, E. Y. Chang, K. Kakushima, Room-temperature
deposition of a poling-free ferroelectric AlScN film by re-
active sputtering, Applied Physics Letters 118 (2021)
082902.

[25] J. S. Cetnar, A. N. Reed, S. C. Badescu, S. Vangala, H. A.
Smith, D. C. Look, Electronic transport in degenerate
(100) scandium nitride thin films on magnesium oxide
substrates, Applied Physics Letters 113 (2018) 192104.

[26] J. More-Chevalier, S. Cichoň, J. Buĺı̌r, M. Poupon,
P. Hub́ık, L. Fekete, J. Lančok, Electrical and optical
properties of scandium nitride nanolayers on MgO (100)
substrate, AIP Advances 9 (2019) 015317.

[27] S. Nayak, M. Baral, M. Gupta, J. Singh, M. Garbrecht,
T. Ganguli, S. Shivaprasad, B. Saha, Rigid-band elec-
tronic structure of scandium nitride across the n-type to
p-type carrier transition regime, Physical Review B 99
(2019) 161117.

[28] B. Biswas, S. Nayak, V. Bhatia, A. I. K. Pillai, M. Gar-
brecht, M. H. Modi, M. Gupta, B. Saha, Interfacial
chemistry and electronic structure of epitaxial lattice-
matched TiN/Al0.72Sc0.28N metal/semiconductor super-
lattices determined with soft x-ray scattering, Journal
of Vacuum Science & Technology A: Vacuum, Surfaces,
and Films 38 (2020) 053201.

[29] G. S. Henderson, F. M. De Groot, B. J. Moulton, X-
ray absorption near-edge structure (xanes) spectroscopy,
Reviews in Mineralogy and Geochemistry 78 (2014) 75–
138.

[30] R. Deng, B. Ozsdolay, P. Zheng, S. Khare, D. Gall, Op-
tical and transport measurement and first-principles de-
termination of the ScN band gap, Physical Review B 91
(2015) 045104.

[31] H. A. Al-Brithen, A. R. Smith, D. Gall, Surface and
bulk electronic structure of ScN (001) investigated by
scanning tunneling microscopy/spectroscopy and optical
absorption spectroscopy, Physical Review B 70 (2004)
045303.

[32] C. Stampfl, W. Mannstadt, R. Asahi, A. J. Freeman,
Electronic structure and physical properties of early
transition metal mononitrides: Density-functional the-
ory LDA, GGA, and screened-exchange LDA FLAPW
calculations, Physical Review B 63 (2001) 155106.

[33] D. Gall, M. Stoehr, J. Greene, Vibrational modes in epi-
taxial Ti1−xScxN (001) layers: an ab initio calculation
and Raman spectroscopy study, Physical Review B64
(2001) 174302.

[34] B. Saha, J. Acharya, T. D. Sands, U. V. Waghmare, Elec-
tronic structure, phonons, and thermal properties of ScN,
ZrN, and HfN: A first-principles study, Journal of Ap-
plied Physics 107 (2010) 033715.

[35] C. Braun, Parratt 32 Program for Reflectivity Fitting,
Hahn-Meitner Institute, Berlin (1999).

[36] L. G. Parratt, Surface studies of solids by total reflection
of X-rays, Physical Review B 95 (1954) 359–369.

[37] D. M. Phase, M. Gupta, S. Potdar, L. Behera, R. Sah,
A. Gupta, Development of soft X-ray polarized light
beamline on Indus-2 synchrotron radiation source, AIP
Conference Proceedings 1591 (2014) 685–686.

[38] W. A. Caliebe, V. Murzin, A. Kalinko, M. Görlitz, High-
flux XAFS-beamline P64 at PETRA III, in: AIP con-
ference proceedings, volume 2054, AIP Publishing LLC,
2019, p. 060031.

[39] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEP-
HAESTUS: data analysis for X-ray absorption spec-
troscopy using IFEFFIT, Journal of Synchrotron Ra-
diation 12 (2005) 537–541.

[40] B. K. Teo, Extended x-ray absorption fine structure (EX-
AFS) spectroscopy: techniques and applications, in: EX-
AFS Spectroscopy, Springer, 1981, pp. 13–58.

[41] S. D. Conradson, T. Durakiewicz, F. J. Espinosa-Faller,
Y. Q. An, D. A. Andersson, A. R. Bishop, K. S. Boland,
J. A. Bradley, D. D. Byler, D. L. Clark, et al., Possi-
ble Bose-condensate behavior in a quantum phase orig-
inating in a collective excitation in the chemically and
optically doped Mott-Hubbard system UO2+x, Physical
Review B 88 (2013) 115135.

[42] A. Murphy, Band-gap determination from diffuse re-
flectance measurements of semiconductor films, and ap-
plication to photoelectrochemical water-splitting, Solar
Energy Materials and Solar Cells 91 (2007) 1326–1337.

[43] R. Ramaseshan, F. Jose, S. Rajagopalan, S. Dash, Prefer-
entially oriented electron beam deposited TiN thin films
using focused jet of nitrogen gas, Surface Engineering 32
(2016) 834–839.

[44] P. Panda, R. Ramaseshan, Effects of Cr doping on the
mechanical properties of AlN films grown by the co-
sputtering technique, Ceramics International 45 (2019)
1755–1760.

[45] F. H. Spedding, A. Daane, K. Herrmann, The crystal
structures and lattice parameters of high-purity scan-
dium, yttrium and the rare earth metals, Acta Crys-
tallographica 9 (1956) 559–563.

[46] X. Bai, M. Kordesch, Structure and optical properties
of ScN thin films, Applied surface science 175 (2001)
499–504.

[47] D. Gall, I. Petrov, L. Madsen, J.-E. Sundgren, J. Greene,
Microstructure and electronic properties of the refractory
semiconductor ScN grown on MgO (001) by ultra-high-
vacuum reactive magnetron sputter deposition, Journal
of Vacuum Science & Technology A: Vacuum, Surfaces,
and Films 16 (1998) 2411–2417.

[48] J. G. Chen, NEXAFS investigations of transition metal
oxides, nitrides, carbides, sulfides and other interstitial
compounds, Surface Science Reports 30 (1997) 1–152.

[49] F. De Groot, J. Fuggle, B. Thole, G. Sawatzky, L2,3 x-
ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+,
and Ti4+ in O h (octahedral) symmetry, Physical Review
B 41 (1990) 928.

[50] Z. Yong, T. Liu, T. Uruga, H. Tanida, D. Qi, A. Rusydi,
A. T. Wee, Ti-doped ZnO thin films prepared at different
ambient conditions: electronic structures and magnetic
properties, Materials 3 (2010) 3642–3653.

[51] D. Mardare, A. Yildiz, R. Apetrei, P. Rambu, D. Florea,
N. G. Gheorghe, D. Macovei, C. M. Teodorescu, D. Luca,
The Meyer-Neldel rule in amorphous TiO2 films with
different Fe content, Journal of Materials Research 27
(2012) 2271.

13

[52] N. Jiang, D. Su, J. Spence, Determination of Ti coordina-
tion from pre-edge peaks in Ti K-edge XANES, Physical
Review B 76 (2007) 214117.

[53] M.-H. Tuilier, M.-J. Pac, M. Ĝırleanu, G. Covarel,
G. Arnold, P. Louis, C. Rousselot, A.-M. Flank, Elec-
tronic and atomic structures of Ti1−xAlxN thin films
related to their damage behavior, Journal of Applied
Physics 103 (2008) 083524.

[54] Y. Kumar, A. Tayal, W. Caliebe, M. Gupta, Study of
carbon doped cobalt mononitride thin films, Applied Sur-
face Science (2021) 150443.

[55] V. Moisy-Maurice, C. De Novion, An application of Ti-K
X-ray absorption edges and fine structures to the study
of substoichiometric titanium carbide TiC1−x, Journal
de Physique 49 (1988) 1737–1751.

[56] A. Longo, L. Sciortino, F. Giannici, A. Martorana, Cross-
ing the boundary between face-centred cubic and hexag-
onal close packed: the structure of nanosized cobalt is
unraveled by a model accounting for shape, size distri-
bution and stacking faults, allowing simulation of XRD,
XANES and EXAFS, Journal of Applied Crystallogra-
phy 47 (2014) 1562–1568.

[57] Seema, A. Tayal, S. Amir, S. Pütter, S. Mattauch,
M. Gupta, et al., Structural, electronic, and magnetic
properties of Co4N thin films deposited using HiPIMS,
Journal of Alloys and Compounds (2020) 158052.

[58] M. Chassé, A. Juhin, D. Cabaret, S. Delhommaye,
D. Vantelon, G. Calas, Influence of crystallographic envi-
ronment on scandium K-edge X-ray absorption near-edge
structure spectra, Physical Chemistry Chemical Physics
20 (2018) 23903–23912.

[59] S. Chowdhury, R. Gupta, S. Prakash, L. Behera,
D. Phase, M. Gupta, Study of scandium nitride thin
films deposited using ion beam sputtering, in: AIP Con-
ference Proceedings, volume 2265, AIP Publishing LLC,
2020, p. 030312.

[60] M.-H. Tuilier, M.-J. Pac, G. Covarel, C. Rousselot,
L. Khouchaf, Structural investigation of thin films of
Ti1- xAlxN ternary nitrides using Ti K-edge X-ray ab-
sorption fine structure, Surface and Coatings Technology
201 (2007) 4536–4541.

[61] K. Kuriyama, Y. Takahashi, F. Sunohara, Optical band
gap of Zn3N2 films, Physical Review B 48 (1993) 2781.

[62] A. Qteish, P. Rinke, M. Scheffler, J. Neugebauer, Exact-
exchange-based quasiparticle energy calculations for the
band gap, effective masses, and deformation potentials of
ScN, Physical Review B 74 (2006) 245208.

[63] E. Burstein, Anomalous optical absorption limit in InSb,
Physical review 93 (1954) 632.

[64] S. Tamleh, G. Rezaei, J. Jalilian, Stress and strain effects
on the electronic structure and optical properties of ScN
monolayer, Physics Letters A 382 (2018) 339–345.

[65] M. A. Aslam, Z. Ding, Prediction of thermodynamically
stable compounds of the sc–n system under high pressure,

ACS omega 3 (2018) 11477–11485.
[66] J. Caicedo, G. Zambrano, W. Aperador, L. Escobar-

Alarcon, E. Camps, Mechanical and electrochemical
characterization of vanadium nitride (VN) thin films, Ap-
plied Surface Science 258 (2011) 312–320.

[67] Q. Wu, J. Liang, J. Liu, W. Bing, X. Long, S. Luo, Char-
acteristics of microstructure and mechanical properties of
Sc films as a function of substrate temperature, Applied
surface science 258 (2012) 7421–7424.

[68] B. V. Sarada, C. L. Pavithra, M. Ramakrishna, T. N.
Rao, G. Sundararajan, Highly (111) textured copper
foils with high hardness and high electrical conductiv-
ity by pulse reverse electrodeposition, Electrochemical
and Solid State Letters 13 (2010) D40.

[69] P. Mayrhofer, C. Mitterer, J. Musil, Structure–property
relationships in single-and dual-phase nanocrystalline
hard coatings, Surface and Coatings Technology 174
(2003) 725–731.

[70] H. Al-Brithen, A. R. Smith, Molecular beam epitaxial
growth of atomically smooth scandium nitride films, Ap-
plied Physics Letters 77 (2000) 2485–2487.

[71] P. Patsalas, C. Charitidis, S. Logothetidis, The effect
of substrate temperature and biasing on the mechani-
cal properties and structure of sputtered titanium nitride
thin films, Surface and Coatings Technology 125 (2000)
335–340.

[72] J. Olaya, S. Rodil, S. Muhl, L. Huerta, Influence of
the energy parameter on the microstructure of chromium
nitride coatings, Surface and Coatings technology 200
(2006) 5743–5750.

[73] H. A. Al-Brithen, E. M. Trifan, D. C. Ingram, A. R.
Smith, D. Gall, Phase stability, nitrogen vacancies,
growth mode, and surface structure of ScN (001) under
Sc-rich conditions, Journal of crystal growth 242 (2002)
345–354.

[74] I. Schramm, M. J. Jõesaar, J. Jensen, F. Mücklich,
M. Odén, Impact of nitrogen vacancies on the high tem-
perature behavior of (Ti1−xAlx)Ny alloys, Acta Materi-
alia 119 (2016) 218–228.

[75] R. Pompe, Some thermochemical properties
of the system vanadium—nitrogen and vana-
dium—carbon—nitrogen in the temperature range
1000–1550 C, Thermochimica Acta 57 (1982) 273–281.

[76] D. Gall, I. Petrov, N. Hellgren, L. Hultman, J. Sundgren,
J. Greene, Journal of Applied Physics 84 (1998) 6034–
6041.

[77] M. A. Moram, Z. H. Barber, C. J. Humphreys, T. Joyce,
P. Chalker, Young’s modulus, Poisson’s ratio, and resid-
ual stress and strain in (111)-oriented scandium nitride
thin films on silicon, Journal of Applied Physics 100
(2006) 023514.

Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A Review on forecasting the photovoltaic power
Using Machine Learning
To cite this article: Amit Kumar Mittal et al 2022 J. Phys.: Conf. Ser. 2286 012010

View the article online for updates and enhancements.

You may also like
Power Quality Pre-evaluation Method of
PV Power Station Considering Its Output
Elements
Tang Jinfeng, Kuang Jiexin, Zhong
Huamin et al.

-

The effect of particulate matter on solar
photovoltaic power generation over the
Republic of Korea
Junghoon Son, Sujong Jeong, Hayoung
Park et al.

-

Vulnerabilities and resilience of European
power generation to 1.5 °C, 2 °C and 3 °C
warming
I Tobin, W Greuell, S Jerez et al.

-

This content was downloaded from IP address 14.139.240.232 on 04/03/2023 at 12:09

https://doi.org/10.1088/1742-6596/2286/1/012010
https://iopscience.iop.org/article/10.1088/1757-899X/486/1/012014
https://iopscience.iop.org/article/10.1088/1757-899X/486/1/012014
https://iopscience.iop.org/article/10.1088/1757-899X/486/1/012014
https://iopscience.iop.org/article/10.1088/1748-9326/ab905b
https://iopscience.iop.org/article/10.1088/1748-9326/ab905b
https://iopscience.iop.org/article/10.1088/1748-9326/ab905b
https://iopscience.iop.org/article/10.1088/1748-9326/aab211
https://iopscience.iop.org/article/10.1088/1748-9326/aab211
https://iopscience.iop.org/article/10.1088/1748-9326/aab211
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuS8kS7rZBJf4wxS8ASezJdJ8Z8RLKGG4bd1kA-6DGsR7r8Dy7ep2jQyMCBERj5e31hf7xHIiItw72RZhgf2UE3uggmg8pkKNAX3oI77HCti59A46wHAYbOSs3tTPSBDOTdS0HYbVXMF-Q7MKW47w42Y9HdwlH3frmX_X4P60Qh_7y5dXG2yjc59z7WJbKHwYQHwwAset-XvTNQzCX-QE532L8JBTye9wvinI8UgY-XF0hm29G4u03Yp4lL3fPl9RNTUMDkA-a8Yo6StYu0XyfJiinJUN-EMqUbcpmYYPXByw&sai=AMfl-YQ_NHQzMj14EL8yJseAweDjmWWFg7D24kWurEGQCBxBaP0eJEoMRwtCa3vU6TUn72RnHVaBRRKjtHUk0A8&sig=Cg0ArKJSzNyISZzWCjWR&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/244/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanners%26utm_campaign%3D244AbstractSubmit

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICSTSD-2021
Journal of Physics: Conference Series 2286 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2286/1/012010

1

A Review on forecasting the photovoltaic power

Using Machine Learning

Amit Kumar Mittal1, 4, Dr. Kirti Mathur2, Shivangi Mittal3

1 Assistant Professor Computer Engineering IET DAVV, Indore, Madhya Pradesh, India
2 Associate Professor IIPS DAVV, Indore, Madhya Pradesh, India
3 Lecturer Electrical Engineering Govt. Polytechnic College Dewas Madhya Pradesh, India

4Email: amittal@ietdavv.edu.in

Abstract. In this review paper on different forecasting method of the solar power output for effective
generation of the power grid and proper management of transfer rate of energy per unit area occurred into the
solar PV system. Essential part in focusing the prediction of solar power is irradiance and temperature. The
irradiance can be forecasted by many algorithm and method is applied in prediction of generation of Short-term
photovoltaic power and long term solar power forecasting. And many papers describes on numerical weather
forecasting and some algorithm like neural networks or support vector regression for two step approach for
predicting the PV power. In this review shown that methods like Bagging Model , deep learning, genetic
algorithm, random forest, gradient boosting and artificial neural network. We found that for enhancing the
performance of predicting PV power many authors proposed the ensemble method that is the hybrid models of
different algorithm. And I found that on this review process ensemble methods show that good results and
improve the forecasting solar PV power.

Keyword
Photovoltaic Power, Irradiance, Machine learning, LSTM, Performance, forecasting, deep learning,.

1. Introduction

In the era of renewable energy, we have focused on energy produced by solar cell and with the large drop
in prices of photovoltaic (PV) cell the use of solar energy has increased [1]. Today one of the renewable
energy Source is PV power and in the future electricity generation it plays important role. A great part of
net electricity capacity of the globe growth occur in year 2017. Between years 2019 to 2024 the net
renewable energy is expected to grow 50 percent globally. The proportion of solar power in renewable
energy is 60 percent [4].
The solar power forecasting has some benefit like efficient operation in the power grid, optimization of
energy into the PV power system, power plant Schedule, Congestion management, Trade the produce
energy in the energy market, Price reduction for power generation.

ICSTSD-2021
Journal of Physics: Conference Series 2286 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2286/1/012010

2

Solar energy forecasting can be done by many ways. Machine learning and deep learning is most useful
method for it. Various ways to forecast the PV power have been researched and scientists have gained
surprising output. PV power forecasting methods are statistical approaches, machine learning techniques,
artificial neural network, and numerical weather prediction of physical models by satellite images and
hybrid method that is combination of the different methods.

2. Background

Solar panels are designed with the help of PV cells which is created by semi-conductors. The sun’s energy
is absorbed by the cell and these cells convert irradiance into electrical energy. The photons strike on the
cell and knock out electrons. These electrons with great kinetic energy flows in the form of electrical current
[18]. The higher electricity will flow when the light intensity is more. This generated solar electricity
produced by Panels stored in batteries to use power in the night. Solar panel generated electricity could be
On-grid or Off-grid [19].
Machine learning may be a sub-field of computing and is assessed as man-made intelligence. The
relationship between inputs and outputs features is Machine learning models. Supervised learning,
unsupervised learning, and Reinforcement learning are three types of machine learning. Generally we use
supervised learning and unsupervised learning for predicting the power.

3. Literature Work

Sunghyeon Choi and et.al [3] explain to predict solar energy output using Bagging model. Choice tree is
used as a base learner in bagging model. Author explain bagging model and add the previous results as a
new data and its result defined that model using previous results shows more accuracy as compared to model
with single model learner. In this model simulation concludes that in the bagging predictor using an
ensemble model as a base learner overall performance was improved than using a decision tree-based
bagging predictor. The error rate reduced near fifty percent by adding previous results along weather
conditions. The ensemble models were random forest, LightGBM and XGBoost. In these models
performance was not changed very effectively. Main issue is that the high mean absolute error metric
achieved. For optimum condition author could not match each model’s hyper parameter. To improve the
model’s accuracy required optimization of the hyper parameter and data cleaning.

Peder Bacher et. al [4]describes about forecasting of PV power production in online manner. Author
presented the PV power prediction of data on hourly basis for up to thirty six hour. The data is used to
observe the solar energy from 21 rooftops PV panel system in Denmark. Method defined a two-stage process
of statistic reorganization of the solar power from very clear sky. Forecast the standard solar power are
evaluated with linear time series system. In this literature autoregressive (AR) and AR with exogenous input
(ARX) models also evaluated then consider for predictions of numerical weather as input. Results defined
forecasted two hours of solar power for predictions of numerical weather input.

Dongha Shin et. al [5] takes a data of Korea. Temperature, precipitation, humidity, wind direction,
cloudiness and sunshine are the various parameters which takes in process and he also apply various learning
algorithms for weather forecast on three days period. This paper defines weather forecast and the model like
Recurrent Neural network, artificial neural network, Dynamic neural network and long short term memory
including sunshine and solar radiation data of past two hours, just to achieve the best prediction results.
Performance is evaluated using Root mean squared error, Correlation , Mean absolute Error and BIAS.

Farid Touati, Amith Khandakar et. al [7] describes a customized PV system to analyzing, monitoring and
evaluation of the working of PV system using different weather attribute. To neglect the issue of Overfiting

ICSTSD-2021
Journal of Physics: Conference Series 2286 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2286/1/012010

3

many techniques of feature selection were showed. For PV power forecasting various parameters of
environment and electrical have taken consideration and compare between the different Machine Learning
method and distinct feature selection methods. It support to resemble an Artificial Neural Network (ANN)
model. Author also depicted opportunities of tuning the ANN by changing the hidden layers by altering the
algorithm for training. Author showed that describing the calibration tools and developing an in house
customized Data acquisition system can improve the performance that is feasible for observing Photovoltaic
model in Qatar’s weather datasets with the help of hardware and software.

Zhi-Feng Liu , Ling-Ling Li et. al [9] in this Literature Chicken swarm optimizer (CSO) has been changed
to Improved Chicken swarm optimizer (ICSO). Author proposes a prediction model for short term PV
power. This input model first determines the correlation coefficient and then chicken swarm optimizing is
done. The ICSO-ELM model suggested prediction of the short-term PV output in 3 different climatic
situations. Effective solar PV prediction can support the power grid to schedule the dispatch of power and
support the evolution and application of clean energy.

Gangqiang Li et. al [10] combined deep learning convolutional neural network (CNN) with long-short term
memory recurrent neural network (LSTM) in PV output power forecasting using historical dataset of past
one year. This paper presents the continuous days PV output power and shows past power data having
different dates, modifying performance of PV systems predictions, showing the forecast with scattered plot
as per season. Using PV real dataset of Belgium, the numerical results demonstrated it to be very efficient
. Performance evaluation for 15 min ahead and 45 min ahead forecast data through different metrics such
as RMS Error and MA Error.

Dan A. Rosa de Jesus et. al [11] sponged a new idea for predicting solar photovoltaic power using Hybrid
Deep Neural Network (HDNN) model. Also including, rainy and cloudy days for PV power prediction and
integrating HDNN model with dispatching algorithms simulated, the transactive energy scenarios with high
level of uncertainty. It takes a dataset of Ashland Oregon region for PV power. In this paper approach is
improved in prior one hour forecast to next three days in a season.

Debasish Patnaik et. al [12] explored a different method for solar photovoltaic forecasting along with
comparison. He gathered a real time data model from Odisha, India and predicted output of solar PV system.
It was found that the Genetic algorithm based forecasting was better precise than statistical analysis. Solar
PV Output Optimization took temperature as well as Solar Radiation as variables. It predicted about
eighteen year Statistical analysis of temperature histogram and provided improved fitness value of PV
system for month wise in a year .

Usman Munawar et. al [13] In this paper a method is proposed on quantitative evaluation using numerous
models of machine learning like artificial neural network, random forest, extreme gradient boosting
(XGBoost) and some feature selection techniques having the feature importance for principle component
analysis (PCA). The best method for power prediction of solar in Hawaii, US stated results showing that the
XGBoost method with features selected by the PCA method, was a better approach. The random forest and
XGBoost models have a lesser use in short-term solar forecasting. Simulation results and case studies show,
R2 score on every repetition using feature as an important method.
Rachit Srivastava et. al [14] has defined, one to six day-ahead hourly radiation of solar forecasting using
the Multi adaptive regression splines , M5, Classification and Regression tree and random forest model. The
dataset needed for forecasting, was from Gorakhpur, India , a solar radiation resource setup. Results

ICSTSD-2021
Journal of Physics: Conference Series 2286 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2286/1/012010

4

determined on all four models and the random forest model gave improved results, whereas the CART
model gave poor output. All models were provided by precise results for one-day to 6-day-ahead forecasting.

Javier López Gómez et. al [15] combined the dataset from a Numerical Weather Prediction model and
machine learning tools for predicting accurate power generation, with 10% less error . A real dataset was
used in Artificial Neural Network (ANN) model to forecast the power, which is located in Puglia using solar
radiation and temperature data retrieved, the Global Data Assimilation System. Three different scenarios
are designed for training and testing cases: first one input dataset from the GDAS was compared with that
of the monitoring dataset, and found it best for performance of error metrics and second one is used for
predicting the results, which was retrieved from the monitoring data. For the second dataset error values are
high third one complete replace the weather data from the monitoring dataset. Author defined that in cloudy
season forecasting error were high because the variation in solar insolation and error is low in winter and
summer season.

Yi Zhou , Nanrun Zhou et. al [16] said , for prediction of hourly solar power output , the hybrid model which
was invented for solar power output forecasting, hourly and correlation coefficient of Pearson was used to
calculate the difference of distinct days on the basis of meteorological factors and the dataset alike those
from the target forecast day, are selected as the training set of ELM. This operation effectively increased
the amount of useful samples while reducing the time for training data. The optimal values of the hidden
bias and thus the input weight were searched through GA , just to enhance the prediction accuracy in ELM.
The performance of this proposed forecast model was evaluated using coefficient of determination (R2),
mean absolute error (MAE) , normalized root mean square error (nRMSE) and the result showed that day-
ahead PV power prediction, with the SDA-GA-ELM model had higher accuracy & stability.

Marcello Anderson F.B. Lima et. al [17] proposed , solar forecasting ,using Multilayer Perceptron, Support
Vector Regression ,Radial Base Function and with ML combination approach towards improving solar
forecast power. In PT, correlation coefficient between the assets and one of the assets defined prediction
errors, are counter balanced by another asset present. Results show that the Errors for datasets of Spain and
Brazil, deep learning is used as a solar resource predictor, had significant gain with respect to other
individual forecasting methods. For better management of solar energy PrevPT tools show, Positive impact
on different weather conditions, solar resource availability and different places.

4. Research Gaps:

Many research gaps were identified in the literature review and there is a strong need to improve the
predicting results, which can be seen by considering different machine learning methods and input variable.
In three weather conditions such as: fog, snow and rain. Researchers predicted that short-term PV power,
which is not taken into consideration, must be considered. In future, we can study the PV power prediction
under extreme weather conditions, for improving the stability of the prediction model.
For PV power forecasting an integration of the HDNN model and dispatching algorithms, can help to
simulate transactive energy scenarios.
The effect of different weather attribute may be studied such as wind effects, on the cooling of the solar
modules, removing possible depositions of fine dust in rainfall etc.

5. Conclusion

Solar photovoltaic arrangement generate the solar electrical power. It depends on the weather condition in
which it operate and it depends on some parameters like the amount of solar radiation and temperature.

ICSTSD-2021
Journal of Physics: Conference Series 2286 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2286/1/012010

5

These parameters depend on weather data. Solar Photovoltaic either On grid or Off grid both issues based
on the Forecasted result.

· Based on primary literature review following research objectives may be set for investigation.
· We will use machine learning approaches on annual data for next year short and long term power

generation forecasting.
· For management of reduction of the forecasting error we design the forecasting model which can

predict the solar power generation.
· We can find new methods for improving the model accuracy, such as optimization of the hyper

parameter, data cleaning.
· In future study, researcher can predict PV power for extreme climate conditions for improvement

of efficiency, in prediction model.

References:

[1] GTM Research/SEIA. U.S. Solar Market Insight, Report Q2. In Executive Summary; National
Renewable Energy Lab. (NREL): Golden, CO, USA, 2015.

[2] IEA. Renewables 2018—Market Analysis and Forecast from 2018 to 2023. Available online:
https://www.iea.org/renewables2018.

[3] Sunghyeon Choi and Jin Hur, Ensemble Learner-Based Bagging Model Using Past Output Data for
Photovoltaic Forecasting, MDPI Journal of Energy, 2020.

[4] Paulescu, M.; Paulescu, E.; Gravila, P.; Badescu, V., Weather Modeling and Forecasting of PV Systems
Operation; Springer: London, UK, 2013.

[5] Peder Bacher, Henrik Madsen, Henrik Aalborg Nielsen, Online short-term solar power forecasting,
Solar Energy, July 2009.

[6] Dongha Shin · Eungyu Ha · Taeoh Kim · Changbok Kim, Short-term photovoltaic power generation
predicting by input/output structure of weather forecast using deep learning, Springer-Verlag GmbH
Germany, part of Springer Nature 2020.

[7] Farid Touati, Amith Khandakar, Muhammad E.H. Chowdhury, Antonio Jr. S.P. Gonzales, Christian
Kim Sorino and Kamel Benhmed , Photo-Voltaic (PV) Monitoring System, Performance Analysis and
Power Prediction Models in Doha, Qatar, Renewable Energy - Technologies and Applications,
IntechOpen , 2020.

[8] Chayut Tubniyom,Watcharin Jaideaw, Rongrit Chatthaworn, Amnart Suksri, Tanakorn
Wongwuttanasatian, Effect of partial shading patterns and degrees of shading on Total Cross-Tied
(TCT) photovoltaic array configuration, Elsevier, Energy Procedia 153 (2018) 35–41.

[9] Zhi-Feng Liu , Ling-Ling Li , Ming-Lang Tseng , Ming K. Lim, Prediction short-term photovoltaic
power using improved chicken swarm optimizer - Extreme learning machine model, Journal of Cleaner
Production, Elsevier(2019).

[10] Gangqiang Li ,Sen Xie , Bozhong Wang , Jiantao Xin, Yunfeng Li , And Shengnan Du , “Photovoltaic

Power Forecasting With a Hybrid Deep Learning Approach”, IEEE access(2020), 175871-80.
[11] Dan A. Rosa de Jesus, Paras Mandal, Shantanu Chakraborty and Tomonobu Senjyu, Solar PV Power

Prediction Using A New Approach Based on Hybrid Deep Neural Network,IEEE(2019).

ICSTSD-2021
Journal of Physics: Conference Series 2286 (2022) 012010

IOP Publishing
doi:10.1088/1742-6596/2286/1/012010

6

[12] Debasish Pattanaik, Sanhita Mishra, Ganesh Prasad Khuntia, Ritesh Dash, and Sarat Chandra Swain,
“An innovative learning approach for solar power forecasting using genetic algorithm and artificial
neural network”, De Gruyter,Open Engg(2020),630-641.

[13] Usman Munawar, Zhanle Wang, A Framework of Using Machine Learning Approaches for Short
Term Solar Power Forecasting”, Springer 13 Janurary 2020.

[14] Rachit Srivastava, A.N. Tiwari, V.K. Giri, Solar radiation forecasting using MARS, CART, M5, and
random forest model: A case study for India, Heliyon (2019).

[15] Javier López Gómez Ana Ogando Martínez , Francisco Troncoso Pastoriza , Lara Febrero Garrido ,
Enrique Granada Álvarez and José Antonio Orosa García ,Photovoltaic Power Prediction Using
Artificial Neural Networks and Numerical Weather Data , Sustainability ,MDPI, (2020).

[16] Yi Zhou, Nanrun Zhou, Lihua Gong, Minlin Jiang, Prediction of photovoltaic power output based on
similar day analysis, genetic algorithm and extreme learning machine, Energy (2020).

[17] Marcello Anderson F.B. Lima , Paulo C.M. Carvalho , Luis M. Fernandez-Ramírez , Arthur P.S.
Braga, “ Improving solar forecasting using Deep Learning and Portfolio Theory integration” Elsevier,

Energy(2020).
[18] Washington State University Extension Energy Program, Solar Electric System Design, Operation and

Installation, An Overview for Builders in the Pacific Northwest, October 2009.
[19] J Sreedevi , Ashwin N , M Naini Raju ,A Study on Grid Connected PV system, IEEE (2016).

	Crow Search Algorithm with Improved Objective Function for Test Case Generation and Optimization
	Introduction
	Related Work
	Background
	Proposed Method
	Experimental Setup and Evaluation
	Results and Discussion
	Conclusions and Future Work
	References

	Sentiment analysis based on aspect and context fusion using attention encoder with LSTM
	Abstract
	Introduction
	Literature survey
	Methodology Attention encoder with LSTM
	Dataset
	Preprocessing
	Removal of Hash Tags, mentions and special characters
	Removal of Html links and lower case the text
	Removal of stop words

	Context retrieval using Paragraph2vec
	Aspect retrieval using encoder attention
	Fusion of aspect and context
	Long short term memory
	Architectural design of LSTM

	Preliminary environment for experiment
	Results and comparison
	Experiments on balanced dataset
	Experiments on imbalanced dataset
	Result comparisons with other baseline models

	Conclusion
	References

