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Advancement in the fields of electronic communication, data processing, and internet technologies
enable easy access to and interaction with a variety of physical devices throughout the globe. Our whole
world is enveloped by a blanket of innumerable smart devices equipped with the sensors and actuators.
Extensive research on the Internet of things (IoT) with cloud technologies, make it possible to accumulate
tremendous data created from this heterogeneous environment and transform it into precious knowledge
by utilizing data mining technologies. Furthermore, this generated knowledge will play a key role in
intelligent decision making, system performance boosting, and optimum management of resources
and services. With this background, this paper presents a systematic and detailed review of various data
mining techniques employed in the large and small scale IoT applications to formulate an intelligent
environment. It also presents an overview of cloud-assisted IoT Big data mining system to better under-
stand the importance of data mining for an IoT environment.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. IoT Applications: from Small scale to Large scale.
1. Introduction

MANY research communities and industries all over the globe
are vigorously pursuing research and contributing a lot in lifeless
objects (things) to make them live and work smartly. The global
giants including Apple, Microsoft, Google, IBM, Cisco, Siemens,
Huawei and Research communities including Internet of Things
(IoT), Mobile Computing (MC), Wireless Sensor Networks (WSN),
Machine to Machine communication (M2M), Pervasive Computing
(PC), Cyber-Physical System (CPS) etc., around the globe, are work-
ing persistently for the formation of new Concepts and Standards
to create Smart environment (Stankovic, 2014; Kravchenko et al.,
2017; Miorandi et al., 2012).

The basic idea of Internet of Things is that the things/ objects
can be connected to the internet. They should have a unique iden-
tity, should be identified automatically, and should communicate
with each other and the humans. They should make decision by
themselves or follow the human commands (Tsai et al., 2014). So
it’s not wrong if we say, in IoT, internet can be considered as a glo-
bal platform which powers machines and smart things to commu-
nicate, compute, make decisions and coordinate with the humans
globally(Miorandi et al., 2012; Bandyopadhyay and Sen, 2011).

The question now arises that why Research communities and
Industries around the globe have a sudden interest in the Internet
of Things? Researchers around the world hold a view that the cities
and world itself will be overlaid with the sensing and actuation
devices in the next 5–10 Years. The density of sensing and actuat-
ing devices will increase many more times than the population of
the world. Ericsson and Cisco predicted that ‘‘50 billion of small
embedded sensors and actuators will be connected to the internet
by the end of year 2020 and Internet of Things will create 14.4 Tril-
lion dollars of value at stake for industries in the next decade”
(Google, 2017). So we can say, an ultra large number of connected
heterogeneous devices will form the Internet of Things environ-
ment (Stankovic, 2014; Kravchenko et al., 2017; Miorandi et al.,
2012; Uusitola, 2006; Ortiz et al., 2014: Bijarbooneh et al., 2006;
Yue et al., 2014).

The heterogeneous smart IoT environments generate enormous
amount of data. This data is initially a raw data that needs to be
processed to be of any use. This raw data either belongs to the
Infrastructure i.e. it is an infrastructure centric data containing
devices and network related information; or the data belongs to
the environmental parameters of IoT constructed environment
(Tsai et al., 2014) i.e. it contains sensor – recorded outputs, actua-
tor actions etc. Both types of data here are inherently heteroge-
neous in nature. If processed well with an appropriate data
mining algorithm, one can dig out valuable knowledge from it
(Chen et al., 2015).

A challenging part of any IoT enabled smart environment is to
select or synthesize the most appropriate data mining algorithm.
Such an algorithm should produce valuable analytics, predict
future events precisely and manage the network and services effi-
ciently within all constrains. To understand this in depth, observe
Fig. 1. The figure depicts several IoT applications ranging from
small to large scale. Each block represents an IoT application that
performs a particular task. For e.g., Ambient Assistant Living
(AAL) (Youngblood and Cook, 2007; Samarah et al., 2017;
Joergschmalenstroeer, 2010) where we provide technologically
supported smart environment, such as healthcare assistant, in
home itself. AAL utilizes number of smart sensors, actuators, wear-
able’s, smart gadgets, CCTV cameras and communication devices
with inter-network connectivity. The devices in AAL environment
have different capabilities and limitations. They are connected to
each other via a variety of communication mediums (like Blue-
tooth, Wi-Fi etc.). The raw data produced from these devices also
differ in characteristics. Converting this raw data into semantically
meaningful corresponding activities so as to identify the user’s pre-
sent state, requires data mining. Therefore, when we process this
new sort of data with the traditional data mining algorithms, it
does not provide an accurate insight. And, our system may not
establish an intelligent and responsive environment. Discussion
of this single IoT application highlights the diversity of devices
and their respective data.

If move diagonally up from left side lower corner in Fig. 1, we
find IoT applications that comprise of several other small scale
applications. For example, the smart home envelopes four applica-
tions viz. the smart metering, the smart environment control, the
AAL, and the security. A multistoried smart building may have in
it: multiple smart apartments, smart offices, a library, classrooms,
a waste management system, a surveillance system, a smart lift
and a fire safety and access control management (Pacheco et al.,
2019). So a smart building can be defined as a fusion of technolo-
gies which give thinking capability to the building so as to provide
a convenient, comfortable, efficient and healthy environment to its
habitants.

Smart transport and healthcare Application has a number of
smart buildings (residential, hospital, commercial, schools and col-
leges) along with the other applications such as smart vehicles,
real-time traffic control, metro-train sevices, emergency corridors,
disease diagnostics and healthcare being operated together for
improved quality of living. Last one in Fig. 1 is the smart city appli-
cation that envelops all: smart home, smart building, smart trans-
port, smart healthcare and the other essential applications viz.
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environmental monitoring, weather prediction, disaster manage-
ment, IoT network management, smart grid, urban farming, smart
watering, smart warehouse, supply chain and logistics, and impor-
tantly, the device, network privacy and security control
management.

Smart objects like sensors, actuators and embedded devices, in
this complex environment of IoT applications, produce and con-
sume huge amount of data. Hence, the knowledge extraction (Data
Mining) mechanism can be considered as the heart of the complete
system. Better information extraction provides efficient value-
added services to the end users.

Huge numbers of devices, with basic to advanced features, are
being connected in small to large scale application environments.
In such a scenario, it is possible that a single device may serve more
than one applications. Such situations require a centralized mid-
dleware so as to ease the development process, create useful ana-
lytics, provide privacy, security and trust mechanism as well asto
support interoperability within diverse applications and services
(Razzaque et al., 2016). Consequently, we predicted astronomically
huge heterogeneous network of IoT devices with data mining algo-
rithms to subsist as a seamless fabric, covering and synthesizing
the intelligent environment (Miorandi, et al., 2012).

1.1. Characteristics and challenges

There are several characteristics of IoT infrastructure and IoT
data mining algorithms/technologies. These include unique identi-
fication of each device, ultra large scale network of things, devices
and network level heterogeneity, ubiquitous integration, interac-
tion and interoperability, robust data and devices management,
dynamic entry and exiting of devices to the network at very fast
rate, service oriented computing, Real-Time/Resource-constrained
devices and privacy, security and trust management (Razzaque
et al., 2016; Xu and Helal, 2016; Kantarci and Mouftah, 2014;
Stojmenovic, 2014). All these characteristics are converting
research and development of the diverse applications and services
into newer challenges:

Unique Identification of each device
� IoT infrastructure: Identification is the basic need to establish
communication between smart objects. Generation and man-
agement of unique Id’s globally for trillions of devices is a very
challenging task. From internet perspective, IPV6 may be help-
ful but what about the devices communicating via alternate
mediums like Bluetooth, NFC, Zigbee and many others? Can
RFIDs, QR codes or similar IDs be the solution? Or should we
adopt name centric network architecture instead of host cen-
tric? Robust naming protocols are lacking and are required
globally.

� IoT data mining: From IoT data mining perspective too, unique
identification play a very crucial role. Better understanding of
data related to infrastructure (like unique id, device features
etc.) can result in better actuation control from derived knowl-
edge. Acquiring, storing and managing unique id of trillions of
devices and related features is another big challenge.
Ultra large scale network of things

� IoT infrastructure: The blanket of IoT infrastructure is fabricated
with ultra large scale of sensors, actuators and embedded
devices where they serve human needs intelligently. To develop
a mechanism that supports globally unique identification,
authenticate access during operation, maintenance, and protec-
tive utilization on such an ultra large scale are creating several
challenges. There are even more issues that need to be
addressed while dealing with massive scaling are the longitudi-
nal studies for the deployment of smart devices, environment
changes over the time, and self- management/automation with
maximum service utilization of resource constraint devices
(Stankovic, 2014; Kravchenko et al., 2017; Miorandi et al.,
2012).

� IoT data mining: The huge network of devices generates a new
type of data known as the IoT big data. The biggest challenge
in today’s data mining world comes with several issues like data
storage, management, privacy, security, and processing limita-
tions such as real-time/streaming data. Instead of gathering
all data in the servers, the data pre-processing techniques like
the data filtering, dimension reduction, feature selection, pat-
tern reduction play crucial role.
Devices and network level heterogeneity

� IoT infrastructure: IoT is a network of versatile devices, where
the devices from very few features, basic computing, low mem-
ory, low power and energy consumption (like RFID, QR codes,
nano-sensors and actuators, MEMS etc.) to the devices having
advanced features, extraordinary processing capabilities and
larger memories are internetworked and slog together for a
specific or multiple purposes. In many applications, sensor
nodes, devices and machines are interconnected using limited
communication mode (for e.g. Bluetooth and NFC) that make
network cluster, and any one higher end device of that cluster,
connect to a global network. Therefore, IoT is a highly dynamic
and radically distributed network of things. Synthesizing the
robust architectures and protocols support and accommodate
heterogeneity. How to provide better management at all level
of technologies, services and applications, is a new challenge
for the future research. Concurrent and massive access commu-
nication between machines over radio access networks (i.e. 5G
networks) may cause subsequent performance degradation,
including service unavailability, intolerable delay, and packet
loss (Oh et al., 2015). Ubiquitous parallel computing and storage
with improved existing techniques and algorithms seem to be
the feasible solutions here.

� IoT data mining: Compared to the data mining results of tradi-
tional huge data set, heterogeneous IoT big data mining maxi-
mize overall potential with finer knowledge and insight of
targeted application area. Thais creates series of new opportu-
nity and challenges. It an obligation not option, that one has
to deal with the structured, the semi-structured and the
unstructured data all together. Applying data mining in sensor
networking and device management yield superior results for
resource constraint environment (e.g. LEACH (Ankerst et al.,
1999), DataCloud (Yue et al., 2014)). But yet, it is limited to only
particular applications and hence is one of the biggest chal-
lenges. Heterogeneous network here not only access or extract
information from larger scale data, but it also needs to deal with
the dynamic, uncertain and incomplete data.
Ubiquitous integration, interaction and interoperability

� IoT infrastructure: The ubiquitous embedded sensors/actuators
with highly versatile characteristics and protocols participate,
and, are shared among many applications in an IoT environ-
ment. The distinctly critical part is to make automated device
integration at immensely large scale, and to ensure interoper-
ability among them. Research is needed to incorporate a cen-
tralized middleware core that can resolve dependencies across
the applications; support trans-coding between the assorted
protocols; perform efficient interaction among the devices;
and dynamically create and provide innovative services.

� IoT data mining: Human to human, human to machine and
machine to machine are the three type of interactions that nor-
mally happen in an IoT network. The data from the same device
may have different meaning according to the type of interac-
tion, application and service. Secondly, the same type of data
from various devices, applications and services may also not
pose exactly the same meaning. And there is not a single device
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or application, it’s a huge network. Creating the data mining
algorithm for such a huge environment is highly critical. Algo-
rithm should have the capability to extract knowledge as per
the specific service and application needs, so that the keen
interaction and interoperability can be fabricated.
Service oriented intelligence

� IoT infrastructure: Always ON responsive services are the inher-
ent property of IoT environment. It supports every day user
needs. There are cases where number of devices are either
mobile or battery powered that may leave and rejoin network
many times or they may even randomly join network for a
specific purpose. In this ubiquitous ever-changing environment,
IoT infrastructure also sometimes demand ad-hoc applications
and services which can be composes, executed and demolished
in runtime irrespective of whether they have been considered
while architecting the system.

� IoT data mining: The IoT applications environment equipped and
deployed with a lot of IoT sensors, utilizes tremendous services
viz. real-time interaction among connected devices, system
management, ad-hoc applications management, privacy and
security management and many more. The management of flex-
ible, dynamic and open ad-hoc IoT services becomes possible
due to highly precise data mining algorithm. Incorporating
dynamic knowledge synthesizing capability for a randomly
originated ad-hoc services is one of the most challenging part
of an IoT data mining algorithm.
Privacy, security and trust management

� IoT infrastructure: Privacy, security and trust should be inte-
grated at all levels in a system. Many IoT applications like
healthcare, emergency systems, Physical access control and
many more are serving human in critical conditions. If someone
hacks the devices and network, it will be a big threat for many
lives. Not only the security but maintaining privacy and trust is
equally important. Let us take example of a smart phone; that
has number of apps installed including banking, social media,
healthcare, entertainment along with other personal data.
Wearable sensor, healthcare gadgets, smart appliances and
other devices are connected to this phone via variety of medi-
ums. The phone is maintaining not only one’s privacy and secu-
rity, but is also sharing many important details with the
network connected devices for uninterrupted smart environ-
ment services. Now, if any of the devices has leakage, the per-
son’s data will no more remain private (Pacheco et al., 2019;
Qiu et al., 2019). Developing an interface that can detect attacks
and enforce privacy, trust and security in this diverse environ-
ment is a challenging task.

� IoT data mining: As the privacy and security mechanisms are
designed for a certain amount of data with specific characteris-
tic. IoT systems with huge data also poses highly divers features
set. It contains larger features set of our private data. The data
mining algorithms are applied over input data that can extract
several useful and personal information too. This can enable
the attacker to weaponize the data. Ad-hoc services in web
based systems are one of the major threats for privacy and secu-
rity applications which can be resolved using deep learning for
data mining (Pacheco et al., 2019). Consecutively, one needs to
address this issue at each level in a distributed manner with
adequate mining and management solutions.

Therefore with the specified characteristics, IoT infrastructure
and Machine Learning creates robust intelligence i.e. the capability
to perceive, reason, decide, perform actions, learn and interact
(Youngblood and Cook, 2007). Research communities and indus-
tries are persistently diligent in making this possible in the real
world. Often, researchers around the world find some good imple-
mentable ideas, but these ideas are tested on small/limited
problems or simulated on virtual platforms which do not scale
appropriately for the larger and complex real-world problem
(Yue et al., 2014; Joergschmalenstroeer, 2010; Rashidi et al.,
2011; Saives et al., 2015; Zdravevski et al., 2017; Virone et al.,
2008). Also, the research on IoT is highly fragmented and so think-
ing of global solution may not be achievable. We require some
standards that should be stated globally to lead researches in par-
ticular direction.

1.2. Literature review and contribution

Numerous good surveys over IoT and its data have been pre-
sented from different perspectives. Stankovic (2014) highlighted
the vision and characteristics of IoT from a global perspective with
strong and a very informative discussion over eight research areas.
It also suggested an architectural approach for IoT to borrow from
Smart-Phone world i.e. enabling App-Store like environment to ace
the development, authentication, installing and uninstalling appli-
cations and services. (Miorandi et al., 2012) and (Bandyopadhyay
and sen, 2011) presented the survey from the viewpoint of tech-
nologies utilized in IoT with the possible research and applications.
Reference (Bandyopadhyay and sen, 2011) also presented generic
five-layer architecture for IoT system design. Five layers from bot-
tom to up include edge technology, an access gateway, Internet,
Middleware and application, whereas in (Razzaque et al., 2016),
the survey is dedicated to IoT middleware. It focuses on computing,
interoperability and communication within the heterogeneous
environment of applications and services. Dai et al. (2019), have
investigated the integration of Blockchain technology into IoT
Architecture. They introduced in-depth, the blockchain technolo-
gies with IoT and also presented Blockchain of things (BCoT) archi-
tecture with several benefits of 5G connectivity environment.
Phuttharak and Loke (2019) imparted an extensive survey on
mobile crowd sourcing research, highlighting the aspects of imple-
mentation needs during the development, architectures, and key
considerations for their development. All abovementioned surveys
are centered on architectural challenges of IoT infrastructure, with
not much concern about the data mining algorithms.

There are several more researches that surveyed the conver-
gence of data mining with IoT. References (Tsai et al., 2014; Chen
et al., 2015; Marjani et al., 2017; Mohammadi et al., 2018) pre-
sented a strong and systematic review of data mining algorithms
from IoT perspective. Considering IoT environment, Tsai et al.
(2014) introduced core data mining algorithms from ‘‘data about
things” and ‘‘data generated by things” perspective with a unified
framework that included scan, construct and update functions.
Chen et al. (2015) presented knowledge, technical and application
view. A one step forward, (Marjani et al., 2017; Mohammadi et al.,
2018; Nahar et al., 2019) discussed the upcoming research chal-
lenges due to a new type of big data i.e. the heterogeneous and
devices engendered IoT big data. Marjani et al. (2017) investigated
the Power of IoT big data analytics in IoT applications. With the
discussion of IoT big data analytics, method and techniques, they
also presented a cloud oriented IoT big data architecture.
(Marjani et al., 2017; Mohammadi et al., 2018) carried out survey
on IoT real time big data streams and provided an in-depth over-
view of deep learning algorithms and architectures that foster bet-
ter analytics and learning. In (Mohammadi et al., 2018), authors
also summarized in detail the major research attempts that lever-
aged deep learning and the approaches supported by Fog and cloud
in an IoT application environment. Although the above surveys on
the IoT and data mining are strong enough and provide anin-depth
learning and utilization of data mining in IoT, they have high-
lighted the IoT applications part only briefly.

Because of fragmented research on IoT, the solutions developed
while considering one application environment may not support
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other. Therefore, there are diverse survey papers presented on IoT
and data mining from the perspective of multiple applications. The
few are:

� M. Rashid et al. (2020) discussed and critically analyzed the
existing behavioral pattern mining algorithms. They also pro-
posed knowledge based framework for real-time stream data
of numerous sensors in WSN and IoT.

� Qolomany et al. (2019) conducted a very knowledgeable survey
on smart building from the viewpoints of applications, data
analytics, and machine learning.

� Qi Chen et al. (2019) provided technical-oriented and
application-oriented review of smart city convergence with
the deep learning.

� References (Shu et al., 2018; Pacheco et al., 2019) surveyed big
data mining and machine learning integrated healthcare and
large scale petrochemical plant applications, respectively.

� Pacheco et al. (2019) conducted a systematic survey to explore
the deployment of machine learning techniques to achieve the
network traffic classification.

� As most of the knowledge extracted contains highly private
data of any user, Qiu et al. (2019) attempted survey in the field
of access control for search engines of IoT environment data
from security perspective.

Survey papers mentioned above pursue effective and knowl-
edge generating research. Most of the research is technology,
knowledge extraction or analytics oriented. Some presented the
applications view also, but were specific to a particular application
viz. smart vehicle or smart city. As we discussed, a wide range of
applications are fortified by IoT. Many large scale applications
may comprise lots of small scale applications within it.

Therefore, this paper presents an application-oriented system-
atic and detailed review of various Data mining algorithms and
their variants that are well utilized in an IoT environment. In this
application-oriented survey, the major contributions of our
research work are:

� The article explores the numerous IoT applications environ-
ments and identifies their potential integration with diverse
data mining algorithms.

� In the introduction part, we present edinter-correlation of IoT
applications for better understanding of the convergence of
IoT and data mining. Here we have also highlighted the charac-
teristics and its associated challenges.

� We propose an IoT big data mining system that provides an
overview of overall complex intellective environment for appli-
cations ranging from data extraction to the processing and then
service execution.

� Introduction to key data mining algorithms with their variants
and their utilization for assisting several intelligent operations
related to the applications like Smart Home, Ambient Assistant
Living, and Smart Healthcare, Smart Grid, Industrial IoT, Smart
Manufacturing, Smart Agriculture and Smart transportation.

� Lastly, we summarize the applications environment and related
open research issues with suggestions for the research aspects
of data mining and IoT with application perspective.

The remaining part of the paper is organized as follows.
Section 2 gives an IoT big data mining system overview containing
six layers viz. sensing and actuation, Gateways or pre-processors,
Internet, decentralized data centers, decentralized data processing
and control (knowledge discovery), and centralized processing and
control. Section 3 discusses the key data mining algorithms with
simple examples. Section 4 provides an in-depth survey of IoT
Applications including Smart Home, Ambient Assistant Living,
and Smart Healthcare, Smart Grid, Industrial IoT and Smart Manu-
facturing, Smart Agriculture and Smart transportation with data
mining perspective. Section 5 summarizes all in tabular form with
open research issues and finally the paper is concluded in
Section 6.
2. IoT big data mining system overview

Billions of devices in smart environments can interact and com-
municate with devices all around and humans as well. This engen-
ders a plethora of heterogeneous data. As very well explain in (Tsai
et al., 2014), the knowledge extracted from this raw data can be
categorized as the data of IoT infrastructure (i.e. unique ID, type
of device, limitations, location, connectivity and mobility etc.)
and the data measured by the IoT environment (i.e. measured
external parameters, device to device and device to human inter-
communication, data interchange and data use logs etc.). The
knowledge extracted from both type of data, are equally important
as the former if optimized properly can drastically improve the
performance whereas the later qualitatively enhance the services
of IoT infrastructure (Tsai et al., 2014). So the most paramount
question that arises now is how to extract higher-level useful
information from raw data. Representations of these raw data as
Machine interpretable and human understandable information
become the need for current IoT infrastructure (Ganz et al.,
2015). For constructing knowledge from the raw data we require
various data mining and knowledge discovery algorithms. As the
data is heterogeneous by nature, it demands more than one pro-
cessing (data mining and knowledge discovery) algorithms to work
in parallel.

In this section, we present IoT big data mining system architec-
ture. There are a number of architectures already been proposed
from different IoT domain perspectives (Bandyopadhyay and Sen,
2011; Dai et al., 2019; Marjani et al., 2017; Mohammadi et al.,
2018; Rashid et al., 2020). For example, Dai et al. (2019) presented
Blockchain of things (BCoT) architecture where they introduced
Blockchain chain composite layer between the network layer and
application layer with benefits of 5G connectivity environment.
Marjani et al. (2017) presented a cloud oriented IoT big data five
layer architecture (from bottom to up IoT devices, network devices,
gateway, cloud and data analytics) that investigated the Power of
IoT big data analytics in IoT applications. By considering above ref-
erences in our big data mining system architecture we undertake
relationship among various applications like Smart home, Ambient
Assisted living, Smart healthcare, Smart Traffic and Parking sys-
tems, Industrial IoT, Smart Agriculture as the key contribution
areas of IoT to shape the Smart world. Fig. 2 shows a cloud-
assisted system architectural overview for the IoT infrastructure.
The lowest layer of system architecture comprises of various sens-
ing and actuation devices. It includes sensors, actuators, a camera
and several small embedded systems for home automation, health-
care, traffic, parking, automobile, Industries and Agriculture, serv-
ing various applications to perform intellectively. The raw data
produced from various devices like time-series data and sequence
of events detected, visual and audio data etc. was accumulated by
gateway layer and pre-processed to remove noise. Repeated
sequence/events use various types of Gateway processing unit’s
viz.Wi-Fi, Bluetooth or ZigBee routers with other electronic devices
like smartphones and small scale embedded systems. Even the
local server can be a gateway. Other than noise removal, the
heterogeneous data of IoT environment requires feature extraction
and data fusion and projection to be performed by the gateway
layer.

The abundance of data generated from the IoT, gives birth to
the new challenge - known as Big IoT data. The inherent charac-



Fig. 2. Cloud assisted system architecture for Internet of Things.
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teristics of such raw data are large volume, heterogeneity, veloc-
ity of generation and fast changing data (GGL, 2017). IoT Big data
have time as an integral dimension i.e. it should be processed in
real time or in particular short period of time otherwise after a
certain deadline, the result of processing will of no use
(Che et al., 2013).

After gateways, the pre-processed data is sent to decentralized
data centers via internet. Decentralized processing and controlling
stations then extract knowledge by putting into service the diverse
data mining algorithms and the machine learning mechanism at
their respective ends. This is the most important part, as the single
applications are many times composed of several other applica-
tions and services. The knowledge extraction and analytics gener-
ation can vary according to the task. If the applications or the
services are known beforehand, a well-defined existing mining
algorithm can extract the knowledge. But in the case of ad-hoc
applications or services, the system should have dynamic machine
learning capabilities that can handle outliers, do modification in
the model and select appropriate algorithm or a set of algorithms
to extract knowledge and prepare relevant analytics.

After knowledge extraction and analytics creation, the decen-
tralized units provide services and perform required intelligent
actions in their own restricted environment. At-last, the extracted
higher-level useful data of IoT infrastructure is converted into
Machine interpretable and human understandable information
by Centralized Processing and Controlling station in coordination
with the Decentralized Data processing and control servers and,
if required, can be adapted to make sensible decisions to optimize
performance and the quality of services for the IoT applications and
its infrastructure.

The Centralized Processing and Controlling station with the
Decentralized data processing and control servers can amend the
Privacy and Security. As the number of smart devices (like wear-
ables) connect to the network through various other higher end
devices (like smart phones), to establish initial communication lots
of data is shared among all. Lee et al. (2018) have performed
research on several smart gadgets and found that the huge private
information was being shared among devices. Therefore, there can
be a big threat for the privacy. Other than this, several ad-hoc ser-
vices need to be served. The search engines can generate numerous
queries and tasks. Not only the device data, but also our social net-
work and healthcare data is accumulated and processed. In cloud
based system architecture, the complete data is collected and pro-
cessed centrally. This can invite abuse of the information collected
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and of the concentrated web servers (Tian et al., 2020a). The large
scale enterprises also require a robust access control mechanism to
manage physical access (Geepalla et al., 2013). Therefore, high
security and privacy should be maintained in hybrid fashion at
each level. Tian et al. (2020a,b) propose the web attack detection
system that utilized distributed deep learning mechanism. Inspired
by (Tian et al., 2020a) in our system architecture also we proposed
a cloud based centralize management in coordination with decen-
tralized control of privacy, security and services (Tian et al., 2020a,
b; Geepalla et al., 2013; Lee et al., 2018).

Concluding this section, several research groups around the
globe are vigorously pursuing research to invent smarter knowl-
edge discovery techniques that will extract higher-level useful
information from the big IoT data.

3. KeyData mining methods

The environment around us is filled with a plethora of heteroge-
neous data. It does seem infeasible to make this environment
keenly intellective without appropriately utilizing the data mining
technologies. Data mining can be a supervised, unsupervised or
reinforcement learning with automation today. The computer-
assisted learning grows more precisely when performed in multi-
ple layers in a hierarchical manner. This automatic feature extrac-
Fig. 3. Knowledge disc

Fig. 4. Data Mining process for Int
tion through supervised or unsupervised learning in a hierarchical
manner is known as Machine Learning (ML).

Che et al. (2013) survey for big data mining brings focus on the
challenges like variety, heterogeneity, scalability, velocity, accu-
racy, trust, provenance, privacy crises, instructiveness and most
importantly on garbage mining. The necessity of applying data
mining is consequential not only for knowledge discovery but also
for the Garbage elimination from the internet. Ganz et al. (2015)
suggested Data Abstraction as one of the appropriate methods.
They reviewed various Abstraction techniques and proposed a
piece of advice to preserve only abstracted results instead of whole
data in the data centers. Data mining is an integral part of knowl-
edge discovery, as shown in Fig. 3. Data accumulated from various
IoT devices are first sent to a pre-processing unit where several
actions (like feature selection and extraction, noise abstraction,
Normalization dimension reduction etc.) take place to mold raw
data into the appropriate format for analysis. Formatted data is
then sent to Data Mining unit where various data mining tech-
niques perform their task to extract higher-level useful informa-
tion. The combination of both i.e. data pre-processing and Data
mining units come under a single box of DL. Further, the output
of DL is evaluated and represented into machine interpretable
and human understandable knowledge which is utilized further
by the IoT infrastructure (See Fig. 4).
overy overviewed.

ernet of Things environment.
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3.1. Classification

Classification is a process of assigning the objects to previously
defined categories. It aims at predicting accurately the destination
class for each object of data (Kesavaraj and Sukumaran, 2013). As
the targeted labels are assumed to be known before processing,
it is a supervised learning process (Han et al., 2007; Tan et al.,
2006; Kesavaraj and Sukumaran, 2013; Liu, 2011). The prediction
function (classifier) in classification requires training before being
used to classify unlabeled or unknown objects/data. And so, one
can use labeled or known data to train prediction function. For
example in a certain medical care centre, there are data related
to patients suffering from a disease having three stages as primary,
moderate, critical with three specific methods to cure them as
Treatment_p, Treatment_m and Treatment_c respectively. First,
the classifier/prediction function is constructed from a set of rules
defined by a medical researcher or by data recorded previously
during the treatment. The data available is divided into two parts
i.e. Training set (labeled) and testing set (unlabeled). The training
set first constructs the classifier and then the test set validates it.
After that, the classifier analyzes the patient data (unlabeled data)
to put them into classes (Treatment_p, m or c) according to a stage
identified by the constructed classifier.

Most algorithms are classified in two steps: first compute the
probability of item belonging to the particular class. Second, com-
pare it to the cutoff value and classify accordingly. Performance
evaluation (Tan et al., 2006) of the classification model is defined
based on the number of instances that are assigned to the right cat-
egory (i.e. Accuracy) and assigned to the false category (i.e. Error
rate) given as:

Accuracy ¼ Number of correct predictions ðTpþ FpÞ
Total number of predictions ðTpþ Fpþ Tnþ FnÞ

ð1Þ

Error Rate ¼ Number of wrong predictions ðTnþ FnÞ
Total number of predictions ðTpþ Fpþ Tnþ FnÞ

ð2Þ
There are also alternate Accuracy measures of classification

algorithm results i.e. precision: defined as the probability that a
randomly selected result is relevant and Recall: defined as the
probability that a randomly selected relevant object is retrieved.
This can be mathematically described as:

PrecisionðPrÞ ¼ Tp
Tpþ Fp

ð3Þ

RecallðRÞ ¼ Tp
Tpþ Fn

ð4Þ

where Tp, Tn, Fp, Fn can be defined using below confusion matrix:
Prediction Class = 0
 Prediction Class = 0
Actual Class = 0
 True Negative (Tn)
 False Positive (Fp)

Actual Class = 1
 False Negative (Tn)
 True Positive (Tp)
On the basis of Precision and Recall, the overall classification results
are described by F-score, given as:

F� score ¼ 2 � Pr � R
Prþ R

ð5Þ

There are many classification models available to classify data
into various classes depending on data characteristics and
situations viz. Decision Tree Induction, Bayesian classification,
Rule-based classification, classification by Backpropagation, Sup-
port vector machine, k-Nearest Neighbor, Deep Neural Network
and Ensemble methods. A set of classifier can also deploy the
fusion of various classification techniques for complex large scale
IoT Application problems (Chen et al., 2015; Marjani, et al., 2017;
Han et al., 2007; Tan et al., 2006; Kesavaraj and Sukumaran,
2013; Liu, 2011; Alsabti et al. 1998). Some majorly used top-
rated classification methods include C4.5 (Alsabti et al. 1998), a
descendant of CLS and ID3. It engenders classifier in the form of
a more comprehensible set of rules. C4.5 was then superseded by
C5.0 with much-improved efficiency, scalability and boosted per-
formance by overcoming the disadvantages like large CPU Time
and Memory requirement (Tsai et al., 2014). Rule-based classifica-
tion, Support vector machine, Association rule analysis based clas-
sification type models of classification are highly suited for today’s
IoT environment. In references (Lai et al., 2013; Fleury et al., 2010;
Brdiczka et al., 2007; Li et al., 2017a–c), researchers use Classifica-
tion models with frequent data mining techniques like Hidden
Markov Model for creating a more keenly intellective and respon-
sive environment. The Naive Bayes, Gaussian naive Bayes, Bayesian
belief network, Bayesian network, Artificial Neural Network and
Ensemble methods are used over various sensors and actuators
data in the applications majorly related to Biomedical, Environ-
mental Prediction, smart building access controlling and user
activity recognition, improving Sensor network Efficiency, Opti-
mization, and Artificial Intelligence (Misgeld et al., 2016; Rad
et al., 2017; Wu, 2009; Abedin et al., 2017; Rad et al., 2014;
Perera and Dias, 2011).

3.2. Clustering

A cluster is represented as a group of like objects. Clustering
algorithm classifies the collected objects into certain numbers of
clusters where the objects in a particular cluster pose similar fea-
tures. Unlike Classification, Clustering is an unsupervised learning
technique (Yue et al., 2014; Tsai et al., 2014) i.e. it will not require
prior knowledge to guide the partitioning process (Han et al., 2007;
Tan et al., 2006). For example in certain medical care centre, it is
found that a number of patients are suffering from an unknown
disease. The medical researchers have the data available only about
the observed symptoms and the progress made by the patient after
pursuing numbers of treatments. In this kind of situation, the clus-
tering will help through classifying the patients into a number of
groups for proper treatment as per recognized symptoms and past
treatment data available. The output of the clustering is repre-
sented by the set of centroids (cn) and quality of clustering mea-
sures in Sum of the Squared Error (SSE) as given below (Han
et al., 2007):

cn ¼ 1
mn

X
x2Cn

x ð6Þ

SSE ¼
XK

n¼1

X

x2Cn

distðcn;xÞ2 ð7Þ

where x is an object, Cn is an nth cluster, cn is a centroid of the nth

cluster, mn is the number of objects in nth cluster, K is a number
of clusters and dist is the standard Euclidean distance between
two objects.

Most of the clustering methods like k-mean, K-Nearest Neigh-
bor (Dhillon et al., 2004; Jin et al., 2006), k-medoids (Li et al.,
2017a–c),Hierarchical clustering (CURE (Guha et al., 1998), SVD
(Berry and Browne, 2005), ROCK (Guha et al., 1999), BIRCH
(Zhang et al., 1997)), Density based clustering (DBSCAN (Ester
et al., 1996), OPTICS (Ankerst et al., 1999), DENCLUE (Hinneburg
and Keim, 1998)), Grid based clustering (STRING (Wang et al.,
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1997), WaveCluster (Sheikholeslami et al., 1998)), are designed
from a single system perspective where centralized data more or
less belong to certain characteristics.

With the advancement in sensor technologies, IoT andWSN for-
mulate the user environment to be smart enough to detect user
activities and act accordingly. References (Samarah et al., 2017;
Rashidi et al., 2011; Brdiczka et al., 2007; Saives et al., 2015; Li
et al., 2017a–c; Zdravevski et al., 2017; Virone et al., 2008) used
clustering as a core technology to classify numerous features that
identify an individual’s daily activities and automate their tasks
to increase comfort and security. In an environment such as IoT
and WSN, cloud-based distributed clustering is more important
than centralized clustering as the data and the devices are highly
heterogeneous and hence may require different processing tech-
niques (Younis and Fahmy, 2004; Uckelmann et al., 2011;
Heinzelman et al., 2000). Saives et al. (2015) proposed model to
discover activity and to detect behavior deviation. They perform
activity discovery by binary sensor events data and then cluster
the activities into original final state models using Extended Finite
Automation for further activity recognition. Li et al. (2017a–c)
offered sequential behavioral pattern discovery with frequent epi-
sode mining (FEM). Here FEM adapted both categorical and numer-
ical data to mine with DBSCAN clustering algorithm. Clustering can
also be applied in IoT and WSN to make sensor network even more
energy efficient, optimized (Bijarbooneh et al., 2006; Xu and Helal,
2016; Heinzelman et al., 2000) and to reduce transmission distance
(Choi et al., 2004; Lanzisera et al., 2014).

3.3. Association analysis or frequent pattern mining

A data object or a set of data objects or a sequences of events
that appear repeatedly in a system are known as frequent patterns
(Qiu et al., 2019; Che et al., 2013). Mining of these frequent pat-
terns give a good analytical understanding of the user’s activity
in a felicitous environment. Recognition of pattern plays a critical
role in promoting business maneuvers by mining association, cor-
relation and other relationships among the data (Agrawal et al.,
1993; Huang et al., 2004). Association Rule mining has comprehen-
sive applications in the market basket like situations, where after
analysis, one can predict the purchase pattern of the customer
which can further boost the business or the user experience (Han
et al., 2007; Tan et al., 2006). In the frequent pattern mining, order
of events detected, matter as well. Patterns observed with specific
order are called Sequential patterns and mining the same is called
Sequential pattern mining (Zhao and Bhowmick, 2003). Agrawal
and Srikant (1995) introduced sequential mining problem for the
first time, based on the customer purchase sequence of transac-
tions. Sequential pattern mining is preferred over Frequent pattern
mining in the sensor environment as the sequence of events are
observed in particular time span frequently for activity discovery
and recognition (Wren and Munguia-Tapia, 2006), MavHome
(Cook et al., 2003), GreaterTech smart house (Helal et al., 2005).

Technological revolution enables frequent pattern mining in
environments like medical care centers or smart homes to assist
in diagnosing diseases at an early stage. For example, no disease
is developed in human body instantly. Rather, they spread gradu-
ally. And, the symptoms of the same can be identified by means
of daily data recorded by the sensors events, the visuals or the rou-
tine check-up. Frequent pattern mining can extract useful pattern/
sequential information from the daily activities or the routine
check-up data. It can thus find the deviation in user behavior and
health. For e.g. if mining data for few days of an inhabitant can
detect nausea, vomiting, fatigue, weakness, sleep problems,
changes in urine cycle, decreased mental sharpness, muscle
twitches and cramps, persistent itching, shortness of breath, high
blood pressure problems, then, it will calculate the minimum
Support and Confidence level to indicate that the inhabitant may
be suffering from some Kidney disease (Han et al., 2007). Tsai
et al. (2014) defined support and confidence as given in Eqs. (5)
and (6) for Items set I = {i1, i2. . . ,im} and Transactions set
T = {t1, t2,. . ., tn}.

SupportðA ¼> BÞ ¼ PðAUBÞ ¼ vðAUBÞ
n

ð8Þ

ConfidenceðA ¼> BÞ ¼ PðAjBÞ ¼ vðAUBÞ
vðAÞ ð9Þ

where number of transactions T that contain w is denoted by v (w),
i.e., w = A [ B or w = A. ndenotes the total number of transactions.

Till now, we have witnessed some of the examples showing
effective applications of frequent pattern mining. There are many
more applications possible and served by various frequent pattern
mining algorithms. A simplest well-known algorithm was pro-
posed by Agrawal and Srikant (1994) for mining frequent patterns
for Boolean association rule i.e. Apriori Algorithms. As the name
itself says one should have a set of prior knowledge before apply-
ing the Apriori Algorithm. Later on, many variations of Apriori
Algorithms (Park et al., 1995; Huang and Chang, 2008) were pro-
posed to improve efficiency. Apriori achieves good performance
gain but suffers when a huge number of candidate set are gener-
ated and thus increase the processing load. So, alternate methods
(like FP growth, CLOSET + etc.) are proposed in (Park et al., 1995;
Huang and Chang, 2008). Lee and Bang (2013) propose a track-
and-trace-based anti-counterfeiting solution to discover a valid
supply chain pattern for detecting counterfeit products. They first
constructed a sequence tree from a trace record of EPCIS events
and then applied alternative frequent pattern mining to discover
valid supply chain patterns and classification to detect counterfeit-
ing. Shukla et al. (2017) developed a system for Emotion Extrac-
tions from the text, independent of any type of dataset. They
employed Class sequential rule mining which is a special case of
association rule mining to extract emotions from the text. Gole
and Tidke (2015) proposed hybrid method ClustBigFIMa modified
version of BigFIM (Moens et al., 2013) algorithm for extracting
meaningful information of association, emerging patterns, sequen-
tial pattern, correlations and other significant data mining tasks
with scalability and speed. ClustBigFIM algorithm uses K-mean
(Dhillon et al., 2004; Jin et al., 2006) and Apriori (Agrawal and
Srikant, 1994) for generating frequent item sets and Eclat (Zaki
et al., 2013) for finding potential extensions.

3.4. Other mining methods

Sometimes, exceptions faced by data mining methods are due
to the unexpected useful information present in raw data known
as anomalous objects or outliers (Han et al., 2007). Outlier data
objects possess properties that are much different from the typical
data objects. These properties may provide a good insight into
some interesting inherent features. IoT applications like smart
home, smart agriculture, smart traffic and parking systems, health-
care etc. benefited a lot by deviation/ outlier detection. Variety of
outlier detection approaches are characterized into four categories
(Tan et al., 2006) viz. Statistical Distribution-based outlier detec-
tion (Barnett and Lewis, 1994), Distance-based outlier detection
(Knorr and Ng, 1997; Knorr and Ng, 1998), Density-based local out-
lier detection (Lee and Bang, 2013) and Deviation-based outlier
detection (Knorr and Ng, 1997). Biswas and Misra (2015) presented
a prototype of an e-health monitoring system, where they use bio-
metric sensors and Arduino UNO board to measure and collect vital
health parameters of individuals. Then they applied outlier detec-
tion mining to extract any anomalous information for health care
emergencies. Yu et al. (2017) proposed outlier detection with
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accuracy and redundant sensor data aggregation in there cluster-
based data analysis framework. They used recursive principal com-
ponent analysis (R-PCA) to improve the effectiveness of IoT based
systems. Zhang et al. (2018) designed a decentralized approach
based on Network anomaly detection to reduce the communica-
tion overhead and achieve much faster convergence.

Furthermore, mining patterns require some other sophisticated
methods too, like mining streams of data and time-series data i.e.
the collection of temporal sequences. Real-time systems, commu-
nication device networks, micro-sensors devices, telemetry devices
and online transactions generate streams and time series data in
Exabyte volume, containing sequences of events obtained over
repeated measurement of time with very fast varying update rate
(Che et al., 2013). So, it is necessary for an algorithm to have one
time scan, multilevel, multi-dimensional parallel real-time stream
processing and analysis capability (Kesavaraj and Sukumaran,
2013). Researchers (Babcock et al., 2002; Xie et al., 2008; Roddick
et al., 2002; Jensen et al., 2017) presented some good surveys on
streams data mining and Time series data mining respectively.
Time series data mining belongs to a Sequential Mining category
which is already discussed in frequent pattern mining and sequen-
tial pattern mining section.
4. I IOT and data mining applications

4.1. J. Smart Home, Ambient Assistant Living and smart healthcare

United Nation report foretold that by the year 2050, 66% of total
world population will get accommodated in an urban area (United
Nation, 2014). Another study by the World Health Organization
predicted that the people with age 60 and more will increase from
12% in 2015 to 22% by 2050 of the total world population (Facts
and The, 2017). With increase in age, health issues increase as well,
demanding more healthcare facilities and significantly increased
health expenses. As the major population of the world belongs to
the urban region, the best solution possible in technology geeky
urban region can be a smart home and an Ambient Assistant Living
(AAL) (Youngblood and Cook, 2007). Smart home and AAL, are the
popular and emerging applications of IoT in the recent times. These
make individual lives easier, technology friendly and even more
comfortable, curable and healthier by fabricating an alive and car-
ing environment from smart objects. Objects with embedded tech-
nologies can interact simultaneously with the other objects,
individuals, internal servers and external environment
(Kravchenko et al., 2017).

Human beings usually work in a cycle of 24 h. One can discover
and then recognize activities and can automate them. Youngblood
and Cook (2007) designed the ProPHeT decision-learning algo-
rithm that learns strategy and controls the smart environment.
They use Episode Discovery sequential pattern mining to observe
activities, Active LeZi algorithm to predict upcoming action and
automatically constructed hierarchical hidden Markov model that
learn an action policy for the smart environment. Researchers in
ref. (Samarah et al., 2017) proposed framework for wireless sensor
network with spatio-temporal mining technique for activity recog-
nition and micro-aggregation approach to enhance the privacy of
user data.

References (Joergschmalenstroeer, 2010; Rashidi et al., 2011)
constructed a system that recognizes and tracks user activities of
daily living for a smart environment. Latter one used audio data
from series of a microphone with online Diarization capability
and face identification from visual data of the camera. Whereas,
former introduced an unsupervised Discontinuous varied-order
Sequential Miner for activity discovery and then clustered them
in groups and recognized them by a boosted version of hidden
Markov model. Likewise, the references (Brdiczka et al., 2007;
Kasteren and Krose, 2007) used Naïve Bayes Classifier for activity
recognition. This classifier yields good accuracy when data is in
enormous volume with greatest probabilities to the observed val-
ues and conditional independence of the features. Li et al.
(2017a–c) pointed towards the ill-suited data collection method-
ologies used for activity recognition and so in their research, they
developed a self-constrained, scalable and energy-efficient
bespoke WSN with a compact data format for episode mining to
overcome this obstacle.

So far, we have discussed activity recognition and tracking in
the smart environment for creating individual life easier and max-
imizing the comfort. This everyday activity recognition and discov-
ery can be utilized in behavior deviation and predictions for the
individuals who need medically monitored patients and healthcare
emergency (Zdravevski et al., 2017; Virone et al., 2008; Yassine
et al., 2017). Saives et al. (2015) proposed a binary sensor-
equipped smart home to improve the autonomy of the medically
monitored patient. The approach contains two sections, first uses
Sequence Pattern Mining with Extended Finite Automation to
model user Activities and second detects behavior deviation using
residual method for any healthcare emergency. Reference
(Zdravevski et al., 2017) used variety of sensor data that was seg-
mented with sliding window, extracted time and frequency
domain features with first deviation, Delta series and Fast Fourier
transformation, then reduced features by Diversified Forward-
Backward Feature selection and finally generate classification
model with machine learning algorithms like Logistic Regression,
Extended Randomize Tree and SVM with Gaussian kernel.
Similarly, references (Virone et al., 2008; Yassine et al., 2017)
extracted behavior deviation information for healthcare facilities
in a smart environment. Where latter develop their own pattern
mining software SAMCAD to mine wireless passive sensor data
streams and former utilized FP-growth and k-mean mining for pat-
tern recognition and clustering respectively and then predicted
activities using Bayesian network.

All the above discussion is carried out for activity detection and
deviation with respect to an individual. References (Gu et al., 2011;
Alam et al., 2016) proposed systems that considered multiple indi-
viduals. Gu et al. (2011) designed a scalable and noise-resistant
Emerging Pattern-based Multiuser Activity Recognizer (epMAR)
with Activity Model included Emerging Pattern, Activity Correla-
tion, Sliding window coverage. Alam et al. (2016) designed a Con-
straints and Correlation mining Engine (CACE) with loosely-
coupled Hierarchical Dynamic Bayesian Network and data mining
approach to discover key spatiotemporal constrain to prune the
overall state space of coupled model. References (Li et al., 2017a–
c; Rosslin and Tai-hoon, 2010) used smart home environment for
helping and caring Dementia and Alzheimer patients respectively.
Data mining techniques with sensors and smart equipment data
can also fulfill the emerging trend towards smart energy manage-
ment (Silva, 2016; Eibl et al., 2015). Silva (2016) presented unsu-
pervised and probabilistic IPCL data fusion technique for multi-
source smart home energy management. References (Angelis
et al., 2013; Anvari-Moghaddam et al., 2015) proposed a Mixed-
integer linear programming approach towards optimization of
energy consumption as a cost reduction mechanism and to create
the balance between consumption and comfort. Eibl et al. (2015)
studied the impact of time granularity on edge detection methods
with low-frequency Nonintrusive Appliance Load Monitoring Ana-
lyzes (NIALM) from the user privacy viewpoint.

4.2. Smart grid

Ubiquitous technological advancement due to sensor and actu-
ator equipped embedded devices and machine dependent modern
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style of living has inflated the electric power demands. British Pet-
roleum Energy Outlook 2017 (Dudley, 2017) predicted 30%
increase in global energy demand by 2035 whereas United State
Energy Information Administration Annual Energy Outlook 2018
(U.S. Energy Information Administration, Annual Energy Outlook,
2018) predicted for the U.S. an average of 0.4% increases in energy
demand every year till 2050. This continuous inflated electric
power demands, engenders huge difficulties and unbalanced situ-
ations for traditional power grid due to their characteristics. With
the technological revolution, the ambient environment with Inter-
net connectivity and communication capabilities becomes more
intelligent and, thus, can measure and control power consumption
interactively. This intelligence and smartness were limited to small
scale applications but now can also be seen in large scale applica-
tion like Smart Grid.

Smart Grid can be defined as globally existent digital grid archi-
tecture integratedwith the enormous number of embedded devices
that can perform a variety of digital computing task with a faster
rate, precision and efficiency. The characteristics like bidirectional
real-time communication, intelligently utilizing distributed power
generations, distributed automatic monitoring, controlling and
recovering from emergencies in real-time are integral part of it.
Tuballa and Abundo (2016) presented their review from develop-
ment and technological perspective, Bayindir et al. (2016) presented
their review from technology and application perspective whereas
Park et al. (2017) reviewed key dynamic characteristics that play a
crucial role in the acceptance of smart grid technology.

With the help of information and communication technology
enabled architecture, the smart grid can intelligently manage the
Demand and Response of electric power. Marah and Hibaoui
(2018) proposed two algorithms, first algorithm paired with
branch and bound algorithm to manage domestic appliances
energy consumptions as per consumer priority and regulate con-
sumption peak to utilize it at the best. The second algorithm man-
ages the power transmission and distribution. Rahim et al. (2018)
with Hybrid Bacteria Harmony algorithm focus on demand-side
management and encourage consumer with Session Time of use
tariff to change consumption pattern that reduces cost and peak
to average ratio. Reference (Jindal et al., 2018) introduced smart
devices data-oriented consumption aware Data Analytical Demand
Response management scheme for peak load reduction of residen-
tial power. Based on the demand–supply theory of economics, ref-
erence (Ferdous et al., 2017) developed an optimal dynamic pricing
mechanism for trading-off between consumer utility and profit.
Using this, a smart grid operator can purchase power from
distributed sources and can encourage consumers with dynamic
pricing. To predict power usage of the user, they applied error-
back-propagation artificial neural network with feed-forward
multilayer perception model.

The distributed variety of smart devices in the smart grid gener-
ates data that possess variety, velocity and volume as the inherent
characteristics. This real-time big data of smart grid if utilized prop-
erly, with various big data mining methodology, can yield an effi-
cient, reliable, sustainable and intelligent real-time monitoring
and controlling. Tu et al., 2017 presented a good comprehensive
big data analytic techniques and applications oriented survey on
smart grid. Reference (Munshi et al., 2017) developed a cloud-
supported open source Hadoop based big data framework for smart
grid analytics, whereas, in (Shah et al., 2015; Yaghmaee et al., 2018)
and [140] developed a summarization paradigm and Fog-Based
Internet of Energy Architecture with real-time energy consumption
pattern monitoring and transactive energy management respec-
tively. This can be later used for various applications including
demand-side management, Direct load control, smart pricing etc.

The massive data induced from the network of the smart device
demand more precise and intelligent communication technologies.
Communication infrastructure is the key factor of smart grid and
this knocks the door of next-generation technologies like low
power wide area network (LPWAN) enabled 5th generation mobile
technology, ZigBee, WiMAX etc. or wired fiber optic, hybrid power
line communication/ wireless channel (HPWC) based communica-
tion. References (Li et al., 2017a–c; Dib et al., 2018) presented a
survey from both quantitative and qualitative perspective of key
wireless and wired communication technologies respectively. Ref-
erence (Dib et al., 2018) suggested a Narrow Band IoT whereas in
(Li et al., 2017a–c) suggested HPWC as the best solution. Refer-
ences (Kaur et al., 2018; Guo et al., 2017) proposed various
schemes and methods to support and manage proper smart grid
communication. For the sake of intelligence, the smart meter and
devices data are accessed by various algorithms of smart grid
infrastructure. This available data can be misused by numerous
physical and cyber-attacks, therefore, it demands security and pri-
vacy preservation at all levels. References (Mahmood et al., 2017;
Lyu et al., 2018; Otuoze et al., 2017; Sushmitaruj, 2013; Brunner
et al., 2017) discussed and presented security and privacy require-
ments and solutions with highlighted problems.

4.3. Industrial IOT and smart manufacturing

The industrial revolution began in the 18th century when steam
powered the industrial machines (Industry 1.0). Then came electric
energy powered mass production in the 19th century (Industry
2.0) based on electronic and information technology. Industrial
automation brings Industry 3.0 in the 20th century. With the
advancement in Information and communication technologies,
Industry 4.0 introduces machines that can connect to the network,
can communicate with each other and can make decisions.
Research communities like IoT, CPS, M2M communication, Addi-
tive Manufacturing and many more are persistently involved in
engendering incipient standards, protocols and system architec-
tures to destroy obstacles and empower industries in this new
era of Smart Manufacturing (SM). Global economic powers like
USA, Germany, Korea and China have already developed a strategic
roadmap for future SM (Commission, 2010; The State Council,
2015). Properties required to achieve SM goal are Ubiquitous dis-
tributed Intelligence, uninterrupted connectivity and deeply inte-
grated networks, Real-time knowledge creation and decision
making, service-oriented standards, protocols and system architec-
tures and knowledge oriented reconfigurable production line (Lee
et al., 2014; Zhang et al., 2018; Wang et al., 2018; Ding and
Jiang, 2018; Yuan et al., 2017; Thibaud et al., 2018; Alam et al.,
2015a,b; Alam and El Saddik, 2017).

Authors in (Da et al., 2014; Ahuett-Garza andKurfess, 2018; Kang
et al., 2016) presented some good research reviews from various
perspectives. They highlighted the key enabling technologies
behindSM including identificationandTrackingTechnologies (RFID,
smart sensors and hologram withWSN), physical wireless commu-
nication technologies (IEEE802.11x, Bluetooth, IEEE802.15.4, ZigBee
and IEEE1451.5, IPv6, 4G/5G), IndustrialHardware control technolo-
gies (DistributedControl Systems, Industrial Robotics, Smart camera
and imaging system, Product life cycle Management systems, Man-
ufacturing Execution Systems and SCADA), Machine or Deep Learn-
ing, Cloudlets, Cloud manufacturing, edge computing, fog
computing, Additive manufacturing, Cyber-Physical Systems, IoT
and Service-oriented architectures (Alam et al., 2015a,b; Alam and
El Saddik, 2017). To achieve SM, Chen et al. (2017) proposed a 4 layer
hierarchical architecture for the smart factory. Four layers combine
Physical Resource Layer, Network layer, CloudApplication Layer and
Terminal Layer from bottom to up. Whereas, Schuh et al. (2014)
deduced basic collaboration mechanism reference system on the
basis of contributor enabler’s analysis to empower productivity in
Industry4.0 context. Themassive attemptsmadebymachineswhile
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communication (especially in radio access networks) will lead to an
intolerable delay, packet loss, and even service unavailability. To
address the performance degradation due to concurrent and mas-
sive access attempts in 5G network environment, (Oh et al., 2015)
proposed a joint optimal Physical Random Access Channel (PRACH)
resource allocation and access controlmechanism. The communica-
tion and interoperability between the heterogeneous machines
plays an important role aswell. Cloud based Cyber Physical Systems
(C2PS) can help a lot from this aspect. The features like scalable stor-
age, interoperability, heterogeneous computation and communica-
tion can excellently compensate by C2PS (Alam et al., 2015a,b; Alam
and El Saddik, 2017). Alam et al. (2015a,b, 2017) proposed the C2PS
architectures for IoT. They designed an interaction controller using a
Bayesian belief network that dynamically considers current con-
texts and also a fuzzy logic rule base Bayes network composition
for enabling reconfiguration capability.

Knowledge discovery in big data algorithms and techniques for
industrial environment play the key role to transform manufactur-
ing into smart manufacturing. Authors in reference (Lee et al.,
2014) reviewed the latest trends of manufacturing for sustainable
innovative services in big data environment and also show big data
management with the smart predictive tool like ‘‘smart remote
machinery maintenance systems with Komatsu”. In ref. (Wang
et al., 2018), authors submitted a comprehensive survey of com-
monly used deep learning algorithms. Whereas (Zhang et al.,
2018) proposed big data feature learning of industrial IoT as adap-
tive dropout deep computational model with crowd sourcing to
cloud. Smart dust to drones, smart automobiles with parking assis-
tance and crash avoidance to smart job shop and even in hazardous
situations like petrochemical plants, industrial IoT applications are
producing a web across the globe (Ding and Jiang, 2018; Yuan
et al., 2017) To empower these globalized industrial IoT applica-
tions, network communication, data storage and access, privacy,
security and safety in the high-risk environment play a very crucial
role. References (Yuan et al., 2017; Thibaud et al., 2018) presented
some latest research articles addressing the above points with
good insight.

4.4. Other applications

4.4.1. Smart agriculture
Steep rise in population, stagnated agriculture production, cli-

mate extremes and weather variability demand instant deploy-
ment of advanced technologies in agriculture. The quantity and
quality needs of future food and nutrition supplements can only
be met when both biotic and a biotic constraints are addressed
with agro-technological research and development boost. With
the characteristics like heterogeneous low power sensors and actu-
ator deployment, ubiquitous network connectivity, knowledge
extraction from big raw data and real-time distributed computing,
IoT with cloud computing and big data mining algorithms can be
the best solution for optimized and improved smart agriculture
(Talavera et al., 2017; Popovic et al., 2017). The applications of
Smart Agriculture are as follows: (Tzounis et al., 2017) used Smart-
Mesh IP enabled technology to predict frost events in a peach orch-
ard, (Severino et al., 2018; Wang, 2014) applied it for
environmental risk reduction with soil moisture dynamics, Mitiga-
tion and Reduction of emission of CH4, CO2, NO and NO2, water
recycling, drip irrigation, hybrid machine learning based automatic
plant phenotyping, smart aquaponics for urban farming and fully
automated support system for non-experienced farmers.

4.4.2. Smart transportation
The racing population expansion, automobile and other routine

utilities in the present and future foster significant and complex
challenges that cannot be handled with current transportation
management systems. Transportation today demands intelligent
technologies with huge number of smart sensors and actuators,
video cameras, smart cards, RFID Tags, GPS, Smartphone’s, internet
and social network with the big data mining techniques and intel-
ligent control unit. The petabytes of complex data collected from
these ubiquitous smart devices can be transformed into useful
knowledge that have profound impact on intelligent decision mak-
ing like vehicle to vehicle communication to avoid accidents and
traffic congestion (Shukla et al., 2017; Saini et al., 2017; Alam
et al., 2015a,b; Chowdhary et al., 2019; Tian et al., 2020a,b). Zhu
et al. (2018) presented a good survey on big data analytic for intel-
ligent transportation services (ITS). They also submitted three lay-
ers architecture of conducting big data analytics in ITS viz. data
collection, analytics and application layer. The smart transporta-
tion applications are the integral part of smart city application
where numerous other field applications devices can also partici-
pate to build smarter transportation. And so there are several ways
to acquire verity of data (Shukla et al., 2017). A survey has been
conducted by (Shukla et al., 2017) on the ways of data collection
by the mobile smart vehicle. Vehicles are accessing and generating
data, either of entertainment type or of informative type (Saini
et al., 2017). Extracting the useful information from it requires a
real time solution. Saini et al. (2017) presented ‘‘InCloud” frame-
work, a cloud base middleware solution for vehicular infotainment
application development. Chowdhary et al. (2019, 2020a,b) Pre-
sented a IoT based battery health monitoring and alert system
for vehicle to avoid malfunctioning condition. To overcome huge
data from an embedded lightweight Clint application installed
with internet connected vehicle, they incorporated data filtering
and fusion functionalities. Not only the infotainment data but vehi-
cle can also exchange several services data (Like safety, comfort
and efficiency) for social good. The Vehicular Ad-hoc Network
(VANETs) plays a very important role here. Alam et al. (2015a,b)
presented architecture that support vehicle to vehicle, vehicle to
infrastructure and vehicle to internet communication based on
cloud oriented Cyber Physical Social Internet of Vehicle (SIoV). It
utilizes the social relationships among the physical components
(instead of device owners) for social services, although the commu-
nication between physical devices without knowing to the device
owner will also create several threats for security and privacy.
Passing a single wrong message may lead to a threat for lives.
Tian et al. (2020a,b) proposed a trust management framework
‘‘Vcash” for Internet of Vehicles. Their mechanism identifies mali-
cious vehicle and also encourage vehicle to provide qualified
sensed traffic events. There were several applications of Smart
Transportation system where data mining play a vital role. These
include: utilizing multivariate logistic regression algorithm for
fatality risk detection for driver (Bédard et al., 2002), Bayesian
inference and Random forest for real-time crash detection, Two
Stage Divide & Conquer (TSDC) algorithm/ Branch and Bound
(BB) algorithm/ Dijkstra’s algorithm to find out the shortest path
(Katre et al., 2017). Fog-FISVER for real-time crime detection on
public bus services (Neto et al., 2018), Dynamic Bayesian Network
for Fatigue Modeling and for categorizing human fatigue expres-
sions and driver distraction detection, cascade classifiers for face
detection (Kaplan et al., 2015), multivariate statistical model for
weather prediction, hierarchical tree-based regression and bino-
mial regression model for accident detection and emergency ser-
vices (Zhu et al., 2018) and many more. There are many
advanced applications like Traffic control and future predictions,
Intelligent transportation planning and execution, logistics, auto-
mated driving, automatic and accurate identification of security
threats with smart transportation safety, smart parking and vehicle
communication are the future research challenges where one can
focus (Shukla et al., 2017; Saini et al., 2017; Katre et al., 2017;
Brunner et al., 2017; Bédard et al., 2002; Alam et al., 2015a,b).



Table 1
Smart Home, AAL and Smart Healthcare Application Objective, and Applied Mining Algorithms.

Application Objectives Raw Data
Sources

Data mining algorithms used for knowledge conversion

Classification Clustering Frequent and
Sequential Pattern
Mining

Other Mining
Algorithms

Smart Home,
Ambient
Assistant
Living and
Smart
Healthcare

� Activity Discovery, Identification, recogni-
tion and Prediction (for single user)
(Youngblood and Cook, 2007; Samarah
et al., 2017; Joergschmalenstroeer, 2010;
Rashidi et al., 2011; Saives et al., 2015)
and for multiple users (Gu et al., 2011;
Alam et al., 2016)

� improve quality and comfort of life, energy
conservation, privacy, safety and security
(Youngblood and Cook, 2007; Samarah
et al., 2017; Joergschmalenstroeer, 2010;
Rashidi et al., 2011; Saives et al., 2015;
Silva, 2016; Angelis et al., 2013; Anvari-
Moghaddam et al., 2015; Eibl et al., 2015)

� Spasticity/ resuscitation/ health care
emergency Detection (Biswas and Misra,
2015; Li et al., 2017a–c; Zdravevski et al.,
2017; Virone et al., 2008; Yassine et al.,
2017; Li et al., 2017a–c; Rosslin and Tai-
hoon, 2010)

� Emotions Extractions or Behavior pattern
deviation detection (Gole and Tidke,
2015; Li et al., 2017a–c; Zdravevski et al.,
2017; Virone et al., 2008; Yassine et al.,
2017)

� Support system for Dementia and Alzhei-
mer patients (Li et al., 2017a–c; Rosslin
and Tai-hoon, 2010)

� Text data
� Series of
Microphones
and video
cameras

� Wireless
sensors

� Wearable
sensors

� Binary
sensors

� Bespoke WSN
� Smart home
appliance
data

� Smart energy
meter data

� Smart phone

� KNN
� hierarchical
HMM,
Boosted
HMM

� Naïve Bayes
� Logistic
Regression

� Extended
Randomize
Tree

� SVM with
Gaussian
kernel

� Loosely-cou-
pled Hierar-
chical
Dynamic
Bayesian
network

� k-mean
� k-
anonymity

� DBSCAN
� Extended
Finite
Automation

� Micro-
aggregation

� FP-growth
� Episode Dis-
covery
sequential pat-
tern mining

� Frequent epi-
sode mining

� unsupervised
Discontinuous
varied-order
Sequential
Miner

� Extended
Finite
Automation

� Residual
method

� Unsupervised
and proba-
bilistic IPCL
data fusion
technique

� eMAR (Gu
et al., 2011)

� CACE (Alam
et al., 2016)
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5. Summary and open research issues in IoT applications

As per the literature reviewed, Tables 1–6 summarize various
objectives of IoT infrastructure, data sources and the utilized data
mining algorithms to extract knowledge. This article significantly
strengthens researchers and developers aiming for fabricating an
interactive environment for the numerous prospective IoT applica-
tions. IoT and cloud-assisted data mining technologies equipped
with sensors and actuators can drastically transform the passive
environment into an intelligent and active environment. In the fol-
lowing text, we summarize and point wise discuss open research
issues from diverse IoT applications’ outlook.

Smart Home, AAL and Smart Healthcare: Research on the intelligent
buildingswith smart home, AAL and healthcare applications,majorly
focuses on activity discovery, behavior change recognition, activity
prediction, optimization and emergency detection. The intelligent
building IoT architecture, extracts information from plethora of raw
data and prepares analytics with the help of data mining algorithms
specific to the given IoT applications task. It gives feedback to the sys-
tem toprovideexceptional comfort andquality of living, energyman-
agement, and establishes a support system for the patients.

Open Research Issues:
� Smart devices (as specified in the raw data sources column of
Table 1) in IoT environment learn daily activities from real-
time information and then manage system according to the per-
sonal pattern. Therefore robust and flawless device integration
and management capabilities are required.

� The diverse components should exchange information and sup-
port each other intelligently, irrespective of whether they were
designed to work together or not. For e.g., healthcare applica-
tions can utilize and control HVAC home appliances but energy
management units should not turn off healthcare devices for
energy saving purposes. Consecutively, these applications
require middleware solution for interoperability.
� Devices connected to the smart house/ building network use
various protocols like NFC, Bluetooth, DASH7, ZigBee, Wi-Fi,
4G, 5G and many more. The key factors that should be consid-
ered here is the network latency and the available bandwidth
as it varies with the protocols. It can highly affect the precision
in time-sensitive restricted environment.

� Heterogeneous big IoT data storing, processing and knowledge
conversion is another key feature that needs to be addressed.
A context aware parallel processing architecture should be
imposed with multiple data mining algorithms, to apply a par-
ticular or an ordered set of algorithms for serving dynamic
application environment.

� The service needs change person to person and even according
to the work environment. So, the research in intelligent building
should focus on service oriented self-adoption mechanism that
can update itself when required.

� As the number of devices communicates, they generate issues
like privacy of personal data and physical location tracking.
Unsafe device behavior, unauthorized access and service modi-
fication can create glitches to the security in any intelligent
building environment. The gaps between the security and pri-
vacy can be minimized with suitable machine learning
researches.

Smart Grid and Smart manufacturing: The development of
smart grid and smart industries is a comprehensive process of
complexity and competence among human to machine and
machine to machine. The research under Smart grid concen-
trates on the management of distributed power generation (like
renewable and non-renewable resources), Demand-side, peak
hour power & home appliances utilization, automated revenue
collection, smart pricing, communication over power line, fault
detection and recovery. Whereas the Smart manufacturing con-
verges on automatic identification, monitoring & controlling of
machines, logistics management, Emergency/ Disaster /Safety



Table 2
Smart Grid Objective and Applied Mining Algorithms.

Application Objectives Raw Data Sources Data mining algorithms used for knowledge conversion

Classification Clustering Frequent and
Sequential Pattern
Mining

Other Mining
Algorithms

Smart Grid � Automated meter reading
(Marah and Hibaoui, 2018;
Munshi et al., 2017)

� Peak hour Power utilization,
quality and Demand side man-
agement with load balancing
(Bayindir et al., 2016) (Marah
and Hibaoui, 2018; Rahim
et al., 2018; Jindal et al., 2018;
Munshi et al., 2017; Shah
et al., 2015; Yaghmaee et al.,
2018; Li et al., 2017a–c)

� Smart domestic appliance
management (Marah and
Hibaoui, 2018; Rahim et al.,
2018; Jindal et al., 2018)

� Always on access with real
time pricing and bidirectional
real-time communication
(Marah and Hibaoui, 2018;
Rahim et al., 2018; Jindal
et al., 2018; Ferdous et al.,
2017; Tu et al., 2017; Munshi
et al., 2017; Shah et al., 2015;
Yaghmaee et al., 2018; Li
et al., 2017a–c; Dib et al.,
2018; Kaur et al., 2018;
Mahmood et al., 2017)

� Smartly utilizing distributed
power generations like renew-
able energy (Ferdous et al.,
2017; Tu et al., 2017; Munshi
et al., 2017; Shah et al., 2015;
Yaghmaee et al., 2018; Li
et al., 2017a–c; Dib et al.,
2018; Kaur et al., 2018)

� Smart fault detection and real-
time recovery (Tu et al., 2017),
Security and Privacy preserva-
tion (Mahmood et al., 2017;
Lyu et al., 2018; Otuoze et al.,
2017)

� Smart meters
� RFID tags and
readers

� WiFi enable WSN
equipped utilities
like smart appli-
ances, smart
power generator
and transmission
devices.

� Renewable energy
sources data like
solar panel, wind
turbine etc.

� Error-back-
propagation
artificial neural
network with
feed forward
multilayer per-
ception model

� Scatter-plot-
based event
classification

� Decision tree
and random
forest

� Hieratical,
portioning
and density
based
approach

� K-mean
� fuzzy c-mean
� eXtended
classifier sys-
tem for
clustering

� Tensor based
data manage-
ment
algorithm

� CC-DADR and UC-
DADR(Jindal et al.,
2018)

� All frequent and
sequential mining
algorithms of
smart home can
be utilized for
smart energy
management

� Branch and
bound
algorithm

� Distributed
Max-Flow
algorithm

� Metaheuristic
hybrid bacteria
harmony
algorithm

� Summarization
algorithm with
stream data
processing
(Shah et al.,
2015)
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management, Automatic Fault diagnosis, raise in productivity,
serviceable life prediction of product and cloud-based manufac-
turing automation.

Open Research Issues:
� Advancement in sensing and actuation has produced ubiquitous
computing environment from an LED bulb to a full-fledged
automated machine. Therefore, a vigorous research is required
on a broader scale for reliable, energy efficient and flexible com-
munication protocol for use in highly heterogeneous and
resource constraint smart grid.

� The existing infrastructure for both in power generation and
manufacturing is inadequate, especially in developing coun-
tries. The issues like clean and distributed energy generation
and management, framework for utilizing the potential of
participatory sensing, bidirectional power flow, self-
reconfigurable machines, and support for generic M2M commu-
nication protocols need to be focused upon.

� The existing technologies ranging from digital to advanced sus-
tainable manufacturing in a connected environment should be
integrated with cloud based machine learning capabilities that
can adopt new algorithms (especially Metaheuristic and greedy
algorithms for unstructured data) with existing realities. This
will benefit the end user and several SCADA/Discrete control
systems with generated analytics

� Resources in both the applications field suffer several restric-
tions. Physical resources should be integrated with the capabili-
ties like efficient data acquisition, analytics visibility to end user
and extensible controller access to the core industrial network.

� With the growing trends, the equipment and systems are get-
ting obsolete. Strategic research is required for system lifecycle
management. This includes designing and manufacturing goals,
maintenance goals, and an assisting model for interoperability
between the old and new generation devices having huge vari-
ation from design to standards and protocols.

� Due to non-uniform power generation in distributed grid, it
demands huge storage capacity. Most of the batteries have very
short life span of a few years, are heavy and of large size.
Research over smarter and lighter batteries while covering all
above aspects is one of the highlighted fields in smart grid.

� Information security and privacy are extremely vital for power and
manufacturing utilities, especially for billing purposes, grid control
and manufacturing/production data. To avoid cyber-attacks, to
prevent unauthorized access to connected control systems and to



Table 3
Industrial IOT and Smart Manufacturing Objective and Applied Mining Algorithms.

Application Objectives Raw Data Sources Data mining algorithms used for knowledge conversion

Classification Clustering Frequent and
Sequential
Pattern Mining

Other Mining
Algorithms

Industrial IOT
and Smart

Manufacturing � Detecting
counterfeit
products (Lee
and Bang,
2013)

� Real-time
Automatic
Identification,
monitoring and
controlling
manufacturing
objects (Da
et al., 2014;
Wang et al.,
2018; Ding
and Jiang,
2018)

� Food supply
chain: quality,
quantity, effi-
ciency and
food safety
management
(Da et al.,
2014; Thibaud
et al., 2018)

� Disaster and
safety manage-
ment in critical
manufacturing
conditions
(Ahuett-Garza
and Kurfess,
2018), smart
maintenance
(Chen et al.,
2017; Lee
et al., 2014;
Wang et al.,
2018),

� Intelligent oil
refinery and
petrochemical
industry (Shu
et al., 2018;
Yuan et al.,
2017)

� Fault diagnosis,
raise produc-
tivity and use-
ful life
prediction of
product
(Ahuett-Garza
and Kurfess,
2018; Schuh
et al., 2014)

� Cloud based
knowledge dri-
ven smart
manufacturing
automation or
Lean automa-
tion (Kang
et al., 2016;
Chen et al.,
2017; Wang
et al., 2018;
Zhang et al.,
2018)

� RFID, PLC
� smart sensors
� Bar-code, hologram with
WSN

� Distributed Control
Systems

� Smart Industrial Robotics
� Smart camera and imagine
system

� Manufacturing Execution
Systems

� Regular
expression
technique

� Artificial neu-
ral network

� Adaptive
neuro-fuzzy
interface
system

� Hierarchi-
cal/convolu-
tional deep
neural
network

� Apriori
algorithm

� Restricted
Boltzmann
machine its
variant

� Recurrent
neural net-
work its
variant

� SLME (Zhang
et al., 2018),
SVM

� Principle
component
analysis

� k-mean
� C 4.5
� C 5.0
� Shape
mining

� Self orga-
nized Map
and Gaus-
sian Mix-
ture model

� Expectation

Maximization
� ID-AVL Tree
and RF Tree

(continued on next page)
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Table 3 (continued)

Application Objectives Raw Data Sources Data mining algorithms used for knowledge conversion

Classification Clustering Frequent and
Sequential
Pattern Mining

Other Mining
Algorithms

� Energy effi-
cient resource
allocation and
advanced com-
munication
framework
(Yuan et al.,
2017; Thibaud
et al., 2018;
Alam et al.,
2015a,b; Alam
and El Saddik,
2017; Tzounis
et al., 2017)

� Alterna-
tive fre-
quent pat-
tern
mining

� Auto enco-
der and its
variant

� Deep
belief
network

� Collaboration Mechanism
� PHM Algorithm (Lee et al.,
2014)

� LPT-DP-K algorithm
� Laplace based noise
enhancement algorithm

� Weighted selection based on
exponential Mechanism
(Tzounis et al., 2017)
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avoid misuse of enterprise data in high level of connectivity, an
efficient security mechanism should be developed. Standardization
efforts regarding the security and privacy should be made.

Smart agriculture and Smart transportation: IoT is gradually
transforming the human operated agriculture and transportation
environment to self-organized automated environment. The
research in the smart agriculture domain include the climate vari-
ation monitoring, forecasting and optimization, environment pre-
dictions, alerting and risk reduction system, keenly intellective
farming, rainwater harvesting, automatic plant phenotyping and
aquaponics urban farming. Smart transportation research objec-
tives include traffic forecasting, intelligent transportation service
planning, accident avoidance and emergency support system, train
and air traffic management, driver behavior analysis, smart parking
and smart automobiles. Both of these application areas are dealing
with large geographical region. While the former has majorly
stable embedded nodes spread over the field and the latter has
majorly mobile nodes with ever changing density.

Open Research Issues:
� Devices in both the application environments handle a harsh
environment with limited power supply. A smart and efficient
power utilization system architecture must be applied that
can program short time slot activation of a devices without
missing any important information.

� Huge number of sensors and actuators are involved in the network.
Heterogeneity in devices, standards, protocols, generated data,
memory, processing and power constraints are handled by the net-
work dynamically. Lot of good research work (like LEACH and its
variants) in this field with WSN has already been published.

� Data gathering is also one of the biggest challenges in a dynamic
environment. There are various types of data like random logis-
tic and traffic data, vehicle to vehicle communication data, road
side unit’s data, environmental monitoring data, linguistic data,
GPS data and many more. The devices occupy diverse method-
ologies to gather this heterogeneous data. Applying mining
technologies to extract useful analytics (like driver behavior
recognition, linguistic identification, automated car support
etc.) and to prepare them in several formats to provide services
to highly divergent devices is an emerging research area.

� The plethora of data generated in the highly resource constraint agri-
cultureand transportationapplicationenvironmentcanbesupported
wellbyCloudbasedinfrastructure.Otherservices includehighquality
analytics, hardware support, interoperability, storage and computa-
tional resources to process the data at the edge of the network.

In summary, an IoT system architecture provides services to sev-
eral applications. It is loaded with the massive data generated from
the intellective sensors and the embedded devices. The big data
transforms into valuable knowledge with data mining techniques,
which later can be utilized for even more intelligent resources and
service management. Advanced classification and clustering tech-
niques are the frequently used data mining algorithms. These
includeSVM,HMM,Bayesiannetwork, logistic regression, deepneu-
ral network, k-mean, DBSCAN, Extended Finite automation, fuzzy c-
meant. Frequent and Sequential Pattern mining algorithms like FP-
growth, Episode Discovery, Varied-order Sequential Miner, Deep
belief network and variants play a significant role when the sequen-
tial real-time events or patterns are discovered. Future IoT infras-
tructure requires a lot of in-depth research and development
integrated with machine learning capabilities.

As depicted in Fig. 3, in high-performance IoT environment,
applications will be benefited with the integratedmultiple data
mining technologies. In most of the applications, classification
and clustering algorithms are used interchangeably or coher-
ently for the complex data set. Some applications perform clus-
tering then classification, some do classification before
clustering. Whereas some applications (Youngblood and Cook,
2007; Alam et al., 2016; Jindal et al., 2018; Zhu et al., 2018)
begin with frequent/sequential patternmining or outlier detec-
tion and then the extracted information is supplied to the clus-
tering and then to the classification algorithm. By repeatedly
employing several data mining algorithms in sequence, appli-
cations can produce and utilize distinct classifiers, clusters or
even can find unpredicted important frequent/sequential



Table 4
Smart Agriculture Objective and Applied Mining Algorithms.

Application Objectives Raw Data Sources Data mining algorithms used for knowledge conversion

Classification Clustering Other Mining
Algorithms

Smart Agriculture � Rainfall Fore-
casting (Wu,
2009)

� Climate moni-
toring and opti-
mization
(Tzounis et al.,
2017), smart
greenhouse gas
emission con-
trol (Talavera
et al., 2017;
Popovic et al.,
2017)

� Environment
predictions,
Alerting and
risk reduction
system
(Tzounis et al.,
2017; Popovic
et al., 2017)

� Agricultural
field, fertilizers
and pesticide
monitoring and
control
(Tzounis et al.,
2017; Popovic
et al., 2017)

� Cloud based
Intelligent
automated irri-
gation system
(Tzounis et al.,
2017; Severino
et al., 2018;
Wang, 2014)

� Food supply
chain manage-
ment (Da et al.,
2014; Talavera
et al., 2017;
Kyaw et al.,
2017)

� Predict frost
events in a
preach orchad
(Popovic et al.,
2017)

� Rain water har-
vesting, drip
irrigation
(Severino et al.,
2018)

� Automatic
plant pheno-
typing (Yahata
et al., 2017)

� Smart
aquaponics
urban farming
(Kyaw et al.,
2017)

� GIS system
� RFID, NFS
� Optical
sensors

� Low power
wireless sen-
sor network

� Smart agricul-
ture sensors
and devices

� Video camera
and process-
ing tool

� Solar panel
� Web data
� Human as
sensor

� Support Vec-
tor Machine

� Scale vector
machine

� Random
forest

� Extremely
randomized
tree

� Decision tree
� Artificial neu-
ral network

� Logistic
regression

� Bayesian
belief
network

� Naïve Bayes
� Convolutional
neural
network

� K-mean
� Farthest first
clustering
algorithm

� Spatial
Fuzzy clus-
tering
algorithm

� Simple lin-
ear iterative
clustering

� Statis-
tical

analysis
� GIS geospatial analysis
� Image processing
� NVDI vegetation Indices
� Branch and bound enumeration
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Table 5
Smart Transportation Objective and Applied Mining Algorithms.

Application Objectives Raw Data
Sources

Data mining algorithms used for knowledge conversion

Classification Clustering Other Mining
Algorithms

Smart transportation � Traffic Sign
Detection
and Recogni-
tion (Abedin
et al., 2017)

� Traffic pre-
dictions and
forecasting
(Zhu et al.,
2018;
Shukla et al.,
2017; Alam
et al., 2015a,
b)

� Identifica-
tion, moni-
toring and
controlling
logistics (Da
et al., 2014;
Shukla et al.,
2017)

� Transporta-
tion service
planning
(Zhu et al.,
2018; Alam
et al., 2015a,
b)

� Smart auto-
mobiles
(Shukla
et al., 2017;
Saini et al.,
2017)

� Vehicle to
vehicle com-
munication
(Alam et al.,
2015a,b;
Alam and El
Saddik,
2017)

� Road traffic
accident
analysis and
emergency
supporting
system (Zhu
et al., 2018;
Shukla et al.,
2017; Saini
et al., 2017)

� Smart train
manage-
ment (Zhu
et al., 2018)

� Driver
behavior
analysis
(Saini et al.,
2017)

� Automated
driving (Tian
et al., 2020a)

� Automatic
and accurate
identifica-
tion of secu-
rity threats
with smart
transporta-

� RFID, GPS
� Smart card
� Smart automobiles
� Road side smart sensors
and actuators

� Camera, GIS
� Mobile phones
� Social media
� Web data
� Smart wearable sensors
� Vehicle sensor devices

� Linear
regression

� Hierarchi-
caltree-based
regression�
Decision trees

� Convolutional
neural net-
works support
vector
machines

� Restricted
Boltzmann
Machine

� Recurrent or
deep Neural
Network

� Haar-like,
HOSVD[188]

� Naïve Bayes
� Bayesian belief
network (Alam
et al., 2015a,b;
Alam and El
Saddik, 2017)

� K-mean
� Markov chain
model

� Gaussian process
regression
algorithm

� Divide and con-
quer algo-
rithmALT
algorithm
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Table 5 (continued)

Application Objectives Raw Data
Sources

Data mining algorithms used for knowledge conversion

Classification Clustering Other Mining
Algorithms

tion safety
(Kaplan
et al., 2015)

� Smart Park-
ing(Katre
et al., 2017)

� Reinforce-
ment
learning

� Discrete
traffic
state
encoding

� Q-
Learning

� Stacked

autoencoders
� Polynomial adaline algorithm
� Heuristic online learningalgorithm�
Gradient-descent based online learning
algorithm

� RL-based online learning algorithm
� Linear Discriminate Analysis (LDA)
� FFT, DWT
� Dijkstra’s, A*, Floyd–Warshall, Johnson
Algorithm

� Shortest path finding algorithm

Table 6
Other Applications Objective and Applied Mining Algorithms.

Application Objectives Raw Data
Sources

Data mining algorithms used for knowledge conversion

Classification Clustering Other Mining Algorithms

Miscellaneous applications � Data fusion
and recov-
ery for
resource
limited
smart
devices

(Bijarbooneh
et al., 2006)

� IoT devices
scalability
management
(Xu and
Helal, 2016)

� Energy effi-
cient and
optimized
sensor net-
work
(Bijarbooneh
et al., 2006;
Xu and Helal,
2016;
Heinzelman
et al., 2000;
Yu et al.,
2017)

� Shorter
transmission
distance
(Choi et al.,
2004;
Lanzisera
et al., 2014)

� RFID Tags, Smart
Card, GPS and GIS

� Low power wire-
less sensor
network

� Audio and visual
devices

� Other smart
devices etc.

� Event driven service ori-
ented Architecture

� Lightweight quarter-
sphere SVM

� Heuristic
based
greedy
algorithm

� LEACH

(Heinzelman et al., 2000)
� Two phase clustering (TPC)
� Scheme in multihop WSN
� Conventional Data Aggregation algorithms
� R-PCA based Outlier Detection Algorithm(Yu
et al., 2017)

� Decentralized Riemannian clusteralgorithm

� Multiphase
adaptive
algorithm
with belief

propagation
� R-PCA with
SPE score
based Outlier
Diagnosis
Algorithm
(Yu et al.,
2017)
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information from huge heterogeneous data of several devices.
Therefore, the cloud-assisted IoT architecture integrated with
deep learning on data mining technologies is the best solution
for today’s smart service-oriented environment.

6. Conclusion

The paper presented a systematic and detailed review of data
mining algorithms like classification, clustering, and frequent/se-
quential pattern mining from IoT applications’ perspective.
The article summarized them in tabular form with the open
research issues. We descriptively analyzed the applications like
Smart Home, Ambient Assistant Living, Smart Healthcare, Smart
Grid, Industrial IoT and Smart Manufacturing, Smart Agriculture
and Smart transportation on the basis of data mining technologies
employed for data to knowledge conversion. This conversion
increases complexity and intellect into today’s huge data produc-
ing IoT environment.

We also presented an overview of cloud assisted system archi-
tecture in Section 2 and Data mining process in Section 5, for IoT
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which shows that pre-processing and knowledge discovery plays
the most important role among all the six layers. For systems that
contain various dissimilar smart devices, and that produce hetero-
geneous data, pre-processing is of great importance. Knowledge
discovery boosts the system performance by more appropriate
and advanced service suggestions.
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