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Vigorous Deep Learning Models ™
for Identifying Tomato Leaf Diseases fectie

Rajeev Karothia and Manju K. Chattopadhyay MIEEE

Abstract Identifying and detecting a plant disease is a primary challenge in the
farming segment. Specifically, for tomato farming: Early Blight, Late Blight, Mosaic
Virus, Target Spot, Yellow Leaf Curl Virus (YLCV), Bacterial Spot, Leaf mold,
Septoria leaf spot and two-spotted spider mite are nine general diseases that severely
affect the yield. In this work, we propose convolutional neural networks (CNNs)
based deep learning (DL) model for the identification of tomato leaf diseases. In
our study, we take the Tomato Leaf Disease Dataset (TLDD) consisting of 18,160
images of the infected and the healthy tomato leaves from PlantVillage. We first
select the most suitable and accurate deep learning models for disease identification
experiments. Four popular models viz. SqueezeNet, ResNet50, InceptionV3 and
DenseNet are chosen for the analysis. Lastly, using ImageAl library on Google
Colaboratory (Colab), we train all the four models on the collected tomato-leaf-
image dataset to identify the presence of above mentioned nine common tomato
leaf diseases. Results from our experiments on the comparative study of the selected
deep learning models identify nine different tomato leaf diseases. We infer that the
InceptionV3 model provides the highest accuracy of 99.64%. Our chosen model
provides faster detection with higher accuracy as compared to the other models. In
future work, we intend to modify the algorithm to develop our own model for disease
identification for other crops as well.

Keywords Deep learning - Convolutional neural network - Tomato leaf disease -
ImageAl

1 Introduction

Many natural parameters affect production quality and quantity of crop yield viz.
moisture, humidity, temperature, soil, etc. Crop diseases associated with these param-
eters play a major hindrance in good crop yield. Consequently, disease management

R. Karothia (&) - M. K. Chattopadhyay MIEEE
School of Electronics, Devi Ahilya University, Madhya Pradesh, Indore 452017, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 131
M. Saraswat et al. (eds.), Proceedings of International Conference on Data Science

and Applications, Lecture Notes in Networks and Systems 288,
https://doi.org/10.1007/978-981-16-5120-5_11



132 R. Karothia and M. K. Chattopadhyay

is one of the key issues in agro-economics to be taken care of. Diseases need to be
detected at the initial stage itself to control their further spread with the help of proper
treatment. With the advances in the technology, it is now possible to detect specific
diseases by utilizing and monitoring the images of the diseased leaves of infected
crop. Traditionally, plant diseases have been detected by experts by visual observa-
tion. This method besides being sluggish in nature, involves risk of misinterpretation.
To expedite the process and make it more error-free, a variety of spectroscopic and
imaging methods has been developed for plant leaf diseases recognition [ 1]. However,
many such techniques deploy accurate instruments and precise sensors which make
the system expensive and, often, infeasible.

Machine learning (ML) and deep learning are demonstrating their significance
and usefulness in vast fields ranging from IT division to agriculture sector to web
administrations and many other application areas. ML and DL are recent popular
methods for image processing and data analysis that have gained strong foothold
in the agriculture-domain for leaf infection detection [1-3]. Traditional ML algo-
rithms have limitations in processing natural data in raw form. CNN based DL algo-
rithms incorporate computational models that significantly enhance the cutting edge
in visual, audio, video recognition, object and images processing [4—6]. CNNs algo-
rithms are excellent choice for feature-extraction from the input images, with less
complex preprocessing of images. Hence, these methods have set a research trend in
image recognition and identification [7, 8]. They are also implemented for disease
detection of crops such as potato, rice, mango, apple, maize, cassava, cucumber
and tomato [9-19]. Nonetheless, the tomato leaf disease detection is still stubborn
because of its peculiar characteristics: Firstly, the size of the visual spots on the
infected leaves differ with the same as well as with the different diseases. Maximum
numbers of spots are very tiny in size. Secondly, multiple diseases may occur on a
single leaf. Lastly, ecological factors such as air temperature, air humidity, UV index,
solar radiation and soil health also hamper the disease detection.

To deal with these challenges, we compare and train DL algorithms based on
CNN, to investigate and identify leaf diseases in tomato. The major roles of this
paper are summarized as follows:

e We have collected healthy and diseased tomato leaf dataset from PlantVillage by
Kaggle [20]. This provides promise of generalization potential of our proposed
model. As the numbers of available diseased tomato leaf images is insufficient,
we perform data augmentation to overcome the overfitting problem in the model
training process.

e An application is developed to train our disease detection model based upon
Python library ImageAl [21]. It has classes and methods to train image dataset
and to generate a new model that can be used to perform prediction or detection
on custom leaf objects. First, we use ModelTraining() class to train our dataset on
DL algorithms viz. SqueezeNet, ResNet50, InceptionV3 and DenseNet [21]. A
JSON file is generated after the model training process. This file contains detail
of all the object-types contained in the dataset. Based upon the training output
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and results, the model with the maximum accuracy is chosen. Using the chosen
model, we do image-identification and then, generate the JSON file.

e All of our selected models are based on CNN. Our proposed new custom model
identifies the different features of the diseased tomato leaf and detects the nine
types of tomato leaf diseases with best accuracy. In addition, our proposed
approach can handle multiple images for disease detection.

e Our experiments show that the different models have different accuracies. For
chosen dataset, we have achieved highest 99.64% accuracy with InceptionV3
model and lowest 99.41% accuracy in ResNet50 model. Our proposed all new
models also demonstrate strong recognition results.

Remaining part of this paper has been structured in the following manner: In
Sect. 2, literature survey and related works are summarized. Details about our mate-
rials and methods are given in Sect. 3. Section 4 describes different detection models
for tomato leaf diseases in detail. In Sect. 5, analysis and discussion of experimental
results for performance evolution of our approach are provided. Finally, the paper
concludes with Sect. 6.

2 Literature Review

Mohanty et al. used leaf dataset of 54, 306 photographs to train a convolutional
neural network which recognized 26 diseases and 14 crop species [9]. Their model
achieved a precision of 99.35%. They measured the performance of trained models
based on correct crop disease-pair detection. Lu et al. described a new CNNs tech-
nique to identify rice diseases [10]. They used total 500 natural images in dataset
of healthy and infected leaves of rice. This model was trained to detect 10 common
rice diseases. To train their CNNs model, they have used back gradient-descent algo-
rithm with an accuracy of 95.48% which is much superior to traditional machine
learning model. Singh et al. presented an innovative model named multilayer convo-
lutional neural network to detect fungal disease Anthracnose for the classification of
Mango [11]. They captured real-time dataset which consist of 1,070 images. There
model achieved performance with accuracy of 97.13%. In Ref. [12], Barbedo et al.
studied deep learning in the plant pathology. Their experiment was performed on
an open source dataset which contained 50,000 samples of 171 different diseases
for 21 type’s species. However, the authors selected only corn diseases images for
their study. They explained extrinsic factors such as limited annotated dataset, image
background, image capture conditions and covariate shift with some intrinsic factors
such as symptom variations, simultaneous disorders and symptom segmentation.
These factors impact the performance of CNNs.

Jaing et al. used an apple leaf diseased dataset containing 26,377 images and
proposed single shot detector (SSD) which includes inception and rainbow concate-
nation (INAR-SSD) model to train dataset [13]. Their results show that this model
recognizes a detection accuracy of 78.80% mAP on apple leaf disease dataset. In
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Ref. [14], authors worked on maize leaf diseases detection. They proposed CNN
based two improved models, viz. GoogLeNet and Cifar10, for nine different type of
diseases in maize leaves. The disease detection accuracy of the GoogLeNet model
and Cifar10 model was 98.9% and 98.8%, respectively. In Ref. [15], Ferentinos et al.
trained AlexNet, AlexNetOWTBn, GoogLeNet, Overfeat and VGG CNN architec-
tures using database of 87, 848 samples consisting of 25 diverse plants that contained
58 combinations of plants and diseases. They trained and tested all models on torch
ML scientific computing framework. Their experimental results demonstrated that
the VGG model has a recognition rate of 99.53%.

Ramcharan et al. have used transfer learning methods to trainInceptionV3 model
to detect 3 different types of cassava leaf diseases [16]. They trained this model on
11,670 cassava images and found overall accuracy of 93%. Ma et al. have used deep
CNN (DCNN) techniques to recognize four major cucumber diseases (i.e., Anthrac-
nose, Target leaf spots, Powdery mildew and Downy mildew) [17]. Author used
cucumber leaf datasets containing 14,208 photographs, and trained model accuracy
of DCNN is 93.4% on unbalanced data.

Single shot multibox detector (SSD), faster region-based and region-based fully
CNN deep learning network’s comparative study were done by Fuentes et al. to recog-
nize tomato leaf diseases [18]. Their trial results show that this technique efficiently
catches tomato disease and might handle background variations. Furthermore, they
state that by using data annotation and augmentation, and they can achieve better
performance. They have used only 5000 images of tomato leaf to perform this study.
Kumar et al. [19] deployed SVM for plant disease identification with swarm-based
approach.

All these varied studies show that the CNNs have been used broadly in the field
of plant leaves disease identification and are producing acceptable results. Table 1
summarizes the various findings discussed above.

For our research work, we have chosen tomato plant for the studies, as it is
viewed as one of the most beneficial crops in India. This crop can be produced and
delivered throughout the year and its demand in domestic and worldwide markets
keeps the business alive. After China, India is the second largest producer of tomatoes
crop in the world. Total tomato production, worldwide, is around 1300 lakh tones
[22]. Tomatoes are the most important protective food used for soup, salad, pickles,
ketchup, puree, sauces and in many other ways because of its special nutritive value.

Therefore, in our work, we trained four different disease detection CNNs models
using ImageAl python library on Google Colab to increase the tomato leaf disease
detection accuracy. To achieve better performance and accuracy, we use total 18,160
images and four CNN models with data annotation and augmentation techniques.
With this experiment, we achieve accuracy of 99.64% in InceptionV3 Model. After
identifying the best model, we intend to modify it in our future work, for detection
of disease in other crops.
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Table 1 Summary of research work on plant/leaf disease recognition using CNNs techniques
Author Network used | Plant name | Number of Dataset used Accuracy
diseases achieved
detected
Mohanty et al. | CNN 14 crop 26 Public dataset | 99.35%
species
Yang Lu et al. | CNN Rice 10 Self 95.48%
U. P. Singh Multilayer CNN | Mango single Self 97.13%
etal.
Barbedo et al. | GoogLeNet Multiple Multiple Digipathos 80.75%
Jiang et al. INAR-SSD Apple 5 Self and 78.80%
PlantVillage mAP
Zhang et al. GoogleNet and | Maize Multiple PlantVillage 98.9% and
Cifar10 and Google 98.8%
Ferentinos CNN Multiple Multiple PlantVillage 99.53%
et al.
Ramcharan CNNs Inception | cassava 3 PlantVillage 93%
etal. v3
Ma et al. DCNN cucumber Multiple Self 93.4%
Fuentes et al. | SSD, R-FCN Tomato 9 Self 85.98%
and Faster mAP
R-CNN

3 Materials and Methods

3.1 Opverview

For image recognition based research, an appropriate dataset is required throughout
the model training for performance evolution of the algorithm [15]. The detailed
disease detection flowchart is presented in Fig. 1. First, the TLDD is prepared by
collecting infected and healthy photographs from PlantVillage [20]. TLDD is anno-
tated and expanded via a sequence of data augmentation procedures. Then, the dataset
is separated into two sections: (i) The training data, which is used to train the different
CNNs models and (ii) the testing data, which is used for performance valuation. Then,
we validate and compare the results of all our selected CNNs models with each other.

3.2 Tomato Leaf Disease Dataset (TLDD)

We take the images from PlantVillage Dataset [20] corresponding to following ten

classes:
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Figure 2a—j depicts the diseased and healthy tomato leaves images. The nine
general tomato leaf diseases are selected for following reasons: Foremost, these
viruses can be visually recognized on leaves—an important aspect with respect to
CNNs application. Besides, these diseases cause considerable crop diminution in
the tomato industry. This dataset includes images of wide-ranging resolutions, at
different stages of disease (like at early, medium, or severe infection), of diverse leaf
sizes. And, images have different infected areas on the leaf.
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Fig. 2 Tomato leaves:
a-i Diseased leaves,

j healthy one (Emmanuel
2018)
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3.3 Data Augmentation

This is a very important process in deep learning, especially, when the numbers
of pictures in the data are inadequate. This method is generally used to enhance
the image dataset. Data augmentation also helps to overcome the drawback of deep
neural networks system, i.e., the overfitting problem. Overfitting frequently refers
to the number of total images that are used for training dataset or for the hyper-
parameters’ selection [13]. Many techniques are used for data augmentation: image
rotation, vertical and horizontal flips, changes in color intensity, changes in intensity,
contrast and sharpness. As depicted in Fig. 3, with the help of data augmentation,
we can generate new images from original images. This process helps to increase
images in dataset and provide better results for training models. To perform data
augmentation, we use the Keras library which provides the capability of image data
augmentation using following class:
from keras.preprocessing.image import ImageDataGenerator
NewdataGen = ImageDataGenerator(
rotation_range = 90, width_shift_range = 0.1,
height_shift_range = 0.1, rescale = 1./255,
shear_range = 0.1, zoom_range = 0.1,
horizontal_flip = True, fill_mode = ‘nearest’).

4 Disease Detection Models for Tomato Leaf

Artificial intelligence has been frequently used to improve agricultural produce,
storage and analytics since the rise of machine learning and deep learning [23]. This
helps effectively to:

Get accurate health of crops

Detect plant diseases

Automate harvesting and crop sorting

Acquire real-time data on soil conditions

Support the implementation of precision irrigation

Here, we explain how we can implement artificial intelligence using computer
vision and deep learning to automate tomato leaf disease detection of damaged ones.
In this study, we use imageAl python library which provides simple and easy way to
use classes to train CNN based deep learning algorithms like SqueezeNet, ResNet50,
DenseNet and InceptionV3, on user’s datasets using only a small number of lines
of program to generate custom models [21]. After we train our dataset using these
libraries, we generate new models for image detection. Later, we can apply the
“CustomImagePrediction” class to predict /identify a picture or a set of pictures.
The “ModelTraining” class allows user to train the four different deep learning
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Fig. 3 Augmentation of tomato leaves: (1) simple image; (2) horizontal flip; (3) vertical flip; (4)
90° shift; (5) 180° shift; (6) 270° shift; (7) gamma adjustment; (8) blurred image; (9) high intensity;
(10) image inversion; (11) sigma corrected image and; (12) logarithmic corrected image
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algorithms (ResNet50, InceptionV3, SqueezeNet and DenseNet) on any image
data to create new models for prediction.

4.1 SqueezNet Model

The SqueezeNet [24] is a tiny CNN architecture that requires less number of param-
eters to maintain the accuracy. This architecture has 26 convolutional layers (with 34
other types of layers) and about 860 million multiply-accumulate operations. This
CNN architecture suggests following advantages:

e It needs less communication between servers throughout distributed training.

e This model needs less bandwidth to export a new model from the cloud to the
client.

e [t requires limited memory resources to get installed on hardware.

The building brick of SqueezeNet is also termed as fire module. This architecture
has various expanded and squeezed layers [24].

Figure 4 depicts the detailed architecture of SqueezeNet. SqueezeNet (Left) that
starts with a single-convolution layer (conv1), then eight fire modules (fire2 to fire9).
Last layer is also the convolution layer (conv10). The number of filters after every
fire module gradually increases from start to the end of the complete network. Also,
we add and implement max-pool function with a stride of two, after convl, fire4,
fire8 and conv10 layer. SqueezeNet with simple bypass (Middle) and SqueezeNet
with complex bypass (Right) are also shown in Fig. 4.

4.2 Residual Network (ResNet) Model

It is a convolutional neural network that builds from pyramidal cells in the cerebral
cortex. ResNets breaks down a deep plain neural network into tiny chunks of network
connected through skip or shortcut connections to make an even bigger network [23].
Generally, these models are constructed with two or three layer skips which contain
nonlinearities (ReLU) and the batch normalization function in between weight layers.

Microsoft developed a deep residual learning framework to overcome degradation
disadvantage in deep CNN. Rather than hoping for each stacked layer to directly
fit into a desired underlying mapping, they explicitly let these layers fit a residual
mapping. The theory of F(x) 4 x is completed y feed-forward networks with “shortcut
connections” shown in Fig. 5. In ResNet, shortcut skips one or more layers and these
connections do not add extra parameter so as to avoid computational complexity.
To understand the mathematical equation of the above mentioned ResNet block, we
consider the X as the output of its previous (/)th layer in Eq. 1. Next, we calculate
F(X) for (I + 1)th layer (weighted layer 1) using Eq. 2. Now, Eq. 3 is the output of
(I 4+ Drth layer where we use ReLu as an activation function. Equation 4 calculates
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F(X) for (I + 2)th layer (weight layer 2).

ay = x (D
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a™ = ReLu(z!"*1) 3)
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Finally, we take the ReLu of F(X) + X in Eq. 5, as the output of this residual
block.

4.3 InceptionV3 Model

This micro-architecture was first initiated by Szegedy et al. in 2014 and was origi-
nally introduced as GoogLeNet, which is actually the Inception-v1. Afterward, the
inception design was polished in different manners. First, modification involved an
introduction of batch normalization by inserting extra factorization thoughts in the
third cycle. This was called InceptionV3 [25]. In Fig. 6a, b, one can see two 3 x 3
convolutions replace the 5 x 5 convolution. This reduces the number of parameters
for calculation. The purpose of this architecture is to reduce computational resources
in DL based high-accuracy image classification.

4.4 DenseNet Model

DenseNet (densely connected convolutional network) is the latest neural network for
visual object recognition. It is quite similar to ResNet. However, in DenseNet, every
layer takes additional inputs from all previous layers and transfers them to all the
successive layers along with the feature-maps [26].

In Fig. 7, detailed architecture of DenseNet is shown with a five-layered dense
block (X0-X4) with a growth rate of k = 4. Where k is the growth rate of additional
features generated by each layer. Each layer takes all preceding feature-maps (H1-
H4) as input. Every layer is receiving “collective information” from all former layers.
In this type of architecture, network can be narrow and dense with fewer channels
[27].
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Filter Connections

(a) Original InceptionV3 module structure

Filter Connections

(b) InceptionV3 module with expanded filter banks

Fig. 6 Graphical structure ofInceptionV3 modules

5 Results and Discussions

In this section, we discuss about the hardware and software setup used for this study,
followed by dataset description. In the later part, we analyze our experimental study.
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Fig. 7 Five layer DenseNet block architecture

5.1 Experimental Setup

For this experimental research, we used Windows Operating System with an Intel R
Core(TM) i5-9300H CPU @ 2.40 GHz (8 CPUs) that was powered by an NVIDIA
GTX1050 GPU. This GPU has 640 CUDA cores and 4 GB memory. The core
frequency is up to 1354 MHz and the floating-point performance is 10.5 TFLOPS. We
have used cloud-based Google Colab environment for python algorithm writing and
execution. We use ImageAl which utilizes Tenser Flow as the backbone of computer
vision operation along with the python libraries with Python 3.5.1, Tensorflow 1.4.0,
OpenCV and Keras 2.x.

5.2 Dataset

To perform the experiment, we divide the dataset in 80: 20 ratios for training
and testing, respectively. Detailed data of training and testing images of diseased
and healthy leaves is given in Table 2. Our image dataset contains 10 different
classes/types of images. To achieve highest accuracy, we must have minimum 500
images in each class. For the training process, we first create a folder for dataset. In
that, we have to create two subfolders named Test and Train. In these two folders, we
create subfolders of each object name, where images of object name are kept. Refer
Fig. 8 for the arrangement of dataset folders. To perform all training and testing
experiments, we use colaboratory (Colab) online cloud-based Jupyter notebooks
environment which is developed by Google research project team to make work
of researchers, students or data scientists easier. It allows user to execute python
programs in any browser with zero configuration and provides online GPUs and
TPUs to train our machine learning and deep learning algorithms and models.
Once dataset is prepared, we can initiate the model training process. We execute
this training process on Google Colab with learning rate of 0.01, total 10 objects,
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Table 2 Training and testing Disease Images Total number
sets of the tomato leaves
Train Test
Target spot 1124 280 1404
Mosaic virus 299 74 373
YLCV 4286 | 1071 5357
Bacterial spot 1702 425 2127
Early blight 800 200 1000
Late blight 1528 381 1909
Leaf mold 762 190 952
Septoria leaf spot 1417 354 1771
Two-spotted_spider_mite 1341 335 1676
Healthy 1273 318 1591
Total 14,532 | 3628 | 18,160
Tomato Dataset
L v
GaD Test
\ 4
[ Target spot \ / Target spot \
Mosaic virus Mosaic virus

Bacterial spot
Early blight
Late blight
Leaf mold

\ Healthy

Yellow leaf curl virus

Septoria leaf spot
Two-spotted_spider_mite

Yellow leaf curl virus
Bacterial spot
Early blight
Late blight
Leaf mold
Septoria leaf spot

Two-spotted_spider_mite

7

Fig. 8 Dataset folder arrangement

Healthy

.

0.5 as dropout rate and total 25 Epochs. This process generates a JSON file which
contains information of all the objects types in dataset and start creating new models.
The process is continued till model with the highest accuracy is identified. Later,
prediction process using the generated model is performed. Then, the performance
of the proposed model is validated, and comparison of the outcomes of all trained

models is done.
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Fig. 9 Comparison of CNN 1.1+
model accuracy 1.0
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Table 3 . List of models S. No. Model type Accuracy
recognition accuracy
1 DenseNet 99.50
2 ResNet50 99.41
3 InceptionV3 99.64
4 SqueezeNet 96.85

5.3 Model’s Accuracy

Here, we discuss model’s image detection accuracy for SqueezeNet, ResNet and
InceptionV3 and DenseNet deep convolution networks trained on TLDD. Training
accuracy and training epoch graph are plotted in Fig. 9, where accuracy is on y-axis
and iteration is on the x-axis. Please refer Table 3 for data related to maximum accu-
racy achieved by different models after training iteration. In our proposed approach,
InceptionV3 model achieved the highest training model accuracy.

5.4 Training and Validation Accuracy and Loss

Once the model is built, it needs to be validated by inducing different datasets.
Usually, constraints are faced in terms of amount of accurate data available for
training. Validating the model is necessary so that reliability of the model can be eval-
uated through the validation dataset. We, therefore, evaluate trained model on valida-
tion dataset before testing on training dataset. During model training process, epoch
accuracy (val_acc) should be increased and losses (val_loss) should be decreased.
We have following possible cases for losses and accuracy:
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1 If accuracy (val_acc) starts decreasing and losses (val_loss) start increasing, it
means model is cramming values, and it is not learning.

2 Ifaccuracy (val_acc) starts increasing and losses (val_loss) also starts increasing,
it also means model is cramming values and not learning. This could be due to
overfitting or diverse probability.

3 If accuracy (val_acc) starts increasing and losses (val_loss) start decreasing, it
means model built is learning and is working fine.

Refer Fig. 10a-h for relationship between training and validation accuracy; and
training and validation losses for a total of 50 epochs of each model.

5.5 Prediction

After training the models, image has to be checked to predict the disease. For image
checking, we use prediction python library “Prediction.ImagePrediction” from
ImageAl. In this, we need to configure the JSON file path, which was generated
during the training process, to specify the number of classes of healthy or diseased
leaf images. As already shown in Fig. 10, we have achieved maximum accuracy for
prediction using InceptionV3 model. But if we talk about prediction accuracy, then
the DenseNet model has the highest prediction accuracy among all the models for
selected images of diseased and healthy leaves. Comparisons of accuracy for test-
results of different models are given in Table 4 for healthy leaves and leaves affected
by Septoria leaf spot disease. Detailed comparisons of test results of different models
are given in Table 5 for healthy leaves and leaves affected by various diseases.

6 Conclusion

In this paper, we have trained datasets on different CNN models and have demon-
strated the efficacy of all selected models using tomato leaf diseases images data
for categorization. These CNN based approaches identify the distinctive features of
the tomato leaf pictures and detect the nine common forms of tomato leaf diseases.
Throughout this learning, to test different models and to achieve satisfactory result
for generalization, a total of 18,160 images with uniform and complex background
are used. We then trained the models using four different types of CNN algorithms
viz. DenseNet, ResNet50, InceptionV3 and SqueezeNet for categorizing nine types
of tomato plant diseases. We have used ImageAl libraries and classes for training
and prediction on Google Colab to train and test accuracies of these models. Our
experiments demonstrate a significant pull off in the prediction of accuracy for leaf
disease using InceptionV3 as compared to other three models. We conclude that the
best suitable model is InecptionV3 with the accuracy of 99.64%. The results demon-
strate that the process will identify the nine common forms of tomato leaf diseases
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Fig. 10 a-h Training and
validation accuracy and
losses graph of all chosen
models
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Fig. 10 (continued)
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Fig. 10 (continued) 104
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Table 4 Model testing results on healthy and diseased leaves

S. No. |Model type | Test result of healthy leaf accuracy | Test result of Septoria Leaf Spot
Disease accuracy

1 ResNet50 99.9983 99.9966
2 SqueezeNet | 99.9753 99.9809
3 InecptionV3 | 99.9909 99.9980
4 DenseNet 99.9991 99.9997

with high accuracy. In future, we shall create our own dataset and build new CNN
models for disease identification in other locally relevant crops like Soybeans, Jowar
and Groundnut.
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Table S Comparison of test-results of different models

Leaves status Models and their test results
ResNet50 DensNet | InceptionV3 | SqueezeNet

Healthy 99.9986 99.9992 | 99.9914 99.9771
Bacterial_spot 98.8272 98.1760 | 95.5207 99.8872
Early_blight 96.6901 90.6388 | 99.7619 99.4452
Late_blight 99.9963 99.9992 | 99.9999 99.9997
Leaf _Mold 99.9998 99.9998 | 99.9310 95.7853
Mosaic_virus 99.9999 99.9968 | 99.9996 99.9998
Septoria_leaf_spot 99.9933 99.9995 | 99.9930 99.9784
Two-spotted_spider_mite | 99.9992 99.9995 | 99.6819 98.1829
Target_Spot 90.1588 95.6996 | 90.8067 99.0921
Yellow_Leaf_Curl_Virus |99.9920 99.9993 | 100.0000 100.0000
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