
Master of Computer Application

(Open and Distance Learning Mode)

Semester – I

Data Structures using C++

Centre for Distance and Online Education (CDOE)

DEVI AHILYA VISHWAVIDYALAYA, INDORE
“A+” Grade Accredited by NAAC

IET Campus, Khandwa Road, Indore - 452001

www.cdoedavv.ac.in

www.dde.dauniv.ac.in

CDOE-DAVV

Program Coordinator

Dr. Anand More

School of Computer Science and IT

Devi Ahilya Vishwavidyalaya, Indore – 452001

Content Design Committee

Dr. Pratosh Bansal

Centre for Distance and Online Education

Devi Ahilya Vishwavidyalaya, Indore – 452001

Dr. C.P. Patidar

Institute of Engineering & Technology

Devi Ahilya Vishwavidyalaya, Indore – 452001

Dr. Shaligram Prajapat

International Institute of Professional Studies

Devi Ahilya Vishwavidyalaya, Indore – 452001

 Language Editors

Dr. Arti Sharan

Institute of Engineering & Technology

Devi Ahilya Vishwavidyalaya, Indore – 452001

Dr. Ruchi Singh

Institute of Engineering & Technology

Devi Ahilya Vishwavidyalaya, Indore – 452001

 SLM Author(s)

Mr. Manoj Kumar Pawaiya

B.E., M.E.

IET, Devi Ahilya Vishwavidyalaya, Indore – 452001

Mrs. Sunita Goud

M. Tech.

SCS, Devi Ahilya Vishwavidyalaya, Indore – 452001

Copyright : Centre for Distance and Online Education (CDOE), Devi Ahilya Vishwavidyalaya

Edition : 2022 (Restricted Circulation)

Published by : Centre for Distance and Online Education (CDOE), Devi Ahilya Vishwavidyalaya

Printed at : University Press, Devi Ahilya Vishwavidyalaya, Indore – 452001

Data Structures using C++

Table of Contents

Introduction

Module 1 - INTRODUCTION

Unit 1 – Introduction

1.0 Introduction

1.1 Unit Objectives

1.2 Concept of Data type

1.3 Data structures

1.4 Abstract Data types

1.5 Summary

1.6 Key Terms

1.7 Check Your Progress

Unit 2 – Primitive and Non- primitive Data Structures

2.0 Introduction

2.1 Unit Objectives

2.2 Primitive Data Structures

2.3 Operations on Primitive Data Structures

2.4 Non- primitive Data Structures

 2.4.1 Linear Data Structures

 2.4.2 Non- Linear Data Structures

2.5 Operations on Non- primitive Data Structures

2.6 Summary

2.7 Key Terms

2.8 Check Your Progress

Unit 3 – Linked Lists

3.0 Introduction

3.1 Unit Objectives

3.2 Singly-Linked Lists

3.2.1 Memory Representation

3.2.2 Operations

3.3 Circular Linked Lists

3.3.1 Traversing

3.3.2 Insertion

3.3.3 Deletion

3.4 Doubly-Linked Lists

3.4.1 Insertion

3.4.2 Deletion

3.5 Dynamic Storage Management: Application of a Doubly-Linked List

3.6 Generalized Lists

3.7 Garbage Collection

3.8 Summary

3.9 Key Terms

3.10 Check Your Progress

Module 2 Other Data Structures

Unit 4 – Stacks

4.0 Introduction

4.1 Unit Objectives

4.2 Stacks

4.3 Representation of Stacks

4.4 Stack Operations

4.5 Stack Applications

4.6 Summary

4.7 Key Terms

4.8 Check Your Progress

Unit 5 – Queues

5.0 Introduction

5.1 Unit Objectives

5.2 Basic terminology of Queues

5.3 Queue Operations

5.4 Representation of a Queue

5.4.1 Using an array

 5.4.2 Using a Linked List

5.5 Various Queue Structures

 5.5.1 Circular Queue

 5.5.2 Priority Queue

5.6 Summary

5.7 Key Terms

5.8 Check Your Progress

Unit 6 – Trees

6.0 Introduction

6.1 Unit Objectives

6.2 Basic terminology of Trees

6.3 Binary Trees

6.4 Representation of a Binary Tree

 6.4.1 Array Representation

 6.4.2 Linked Representation

6.5 Binary Tree Traversals

6.6 Binary Search Tree

6.7 Threaded Binary Tree

6.8 Summary

6.9 Key Terms

6.10 Check Your Progress

Unit 7 – Graphs

7.0 Introduction

7.1 Unit Objectives

7.2 Graph Terminologies

7.3 Types of Graphs

 7.3.1 Classification on the basis of Edge Connectivity

 7.3.2 Classification on the basis of Direction

 7.3.3 Classification on the basis of Weight or Level

 7.3.4 Classification on the basis of Connectivity

7.4 Representation of Graphs

 7.4.1 Set Representation

 7.4.2 Linked Representation

 7.4.3 Matrix Representation

7.5 Graph Traversal Algorithms

 7.5.1 Breadth-First Search Algorithm

 7.5.2 Depth-first Search Algorithm

7.6 Shortest Path Algorithms

7.6.1 Minimum Spanning Trees

 7.6.2 Prim’s Algorithm

 7.6.3 Kruskal’s Algorithm

 7.6.4 Dijkstra’s Algorithm

7.7 Summary

7.8 Key Terms

7.9 Check Your Progress

Module 3 - Types of Trees

Unit 8 – Balanced Trees

8.0 Introduction

8.1 Unit Objectives

8.2 Basic Terminology

8.3 AVL Trees

8.4 Weight Balanced Trees

8.5 Summary

8.6 Key Terms

8.7 Check Your Progress

Unit 9 B- Trees

9.0 Introduction

9.1 Unit Objectives

9.2 B- Trees

9.2.1 Operations on a B- Tree

9.3 B+ Trees

9.3.1 Operations on a B+ Tree

9.4 Red-Black Trees

9.4.1 Inserting a Node in a Red-black Tree

9.4.2 Deleting a Node from a Red-black Tree

9.5 Splay Trees

9.6 Summary

9.7 Key Terms

9.8 Check Your Progress

Unit 10 – Advanced Trees

10.0 Introduction

10.1 Unit Objectives

10.2 Interval Trees

10.3 Segment Trees

10.4 KD-Trees

10.5 Quad Trees

10.6 Summary

10.7 Key Terms

10.8 Check Your Progress

Module 4 - Indexing, Searching & Sorting

Unit 11 – Indexing

11.0 Introduction

11.1 Unit Objectives

11.2 File Organization

11.3 Indexing

 11.3.1 Ordered Indices

 11.3.2 Dense and sparse indices

 11.3.3 Cylinder surface indices

 11.3.4 Multi-level indices

 11.3.5 Inverted indices

 11.3.6 B-Tree indices

 11.3.7 Harshed indices

11.4 Summary

11.5 Key Terms

11.6 Check Your Progress

Unit 12- Searching

12.0 Introduction

12.1 Unit Objectives

12.2 Searching and its types

 12.2.1 Linear Search

 12.2.2 Binary Search

12.3 Interpolation Search

12.4 Jump Search

12.5 Comparison of different search algorithms

12.6 Summary

12.7 Key Terms

12.8 Check Your Progress

Unit 13- Sorting

13.0 Introduction

13.1 Unit Objectives

13.2 Sorting

13.3 Internal Sorting

 13.3.1 Insertion Sort

 13.3.2 Bubble Sort

 13.3.3 Selection Sort

 13.3.4 Heap Sort

 13.3.5 Merge Sort

 13.3.6 Quick Sort

 13.3.7 Shell Sort

13.4 Comparison of different sorting algorithms

13.5 External Sorting

13.6 Summary

13.7 Key Terms

13.8 Check Your Progress

INTRODUCTION

A data structure is defined as a set of data elements that represents operations such

as insertion, deletion, modification and traversal of the values present in the data

elements. Data elements are the data entries that are stored in the memory for

organizing and storing data in an ordered and controlled way. The commonly used

data structures in a programming language as C, such as are arrays, linked lists,

stacks and trees. Data structures are of two types, linear and nonlinear.

The study material is divided into four modules each containing units for the relevant

topics.

Module-1 is further divided into three units. Unit-1 & 2 provide the basic introduction

to data structures and its types. Unit-3 discusses linked lists. It explains the various

types of linked lists such as singly linked, doubly linked and circular linked lists. The

unit also discusses how different operations can be performed on different types of

linked lists.

Module-2 describes the data structures like stacks, queues, Trees, and Graphs

including their representations and types. The basic operations performed on these

data structures are explained in detail.

Types of advanced trees, their terminology, basic concepts, and applications are

discussed in Module-3. It includes AVL trees, balanced trees, B-Trees, B+ trees, Quad

trees, and KD trees.

Module-4 depicts the concept of indexing in file organization in the computer’s

memory. Unit-12 & 13 also deals with searching and sorting, including the use of

various data structures for searching and sorting.

This content is designed comprehensively and follows a simple approach, keeping in

mind the syllabus of the program. It exhilarates interest and is sure to stimulate

knowledge among the readers. Numerous figures and tables, key terms help in

simplifying learning about the subject. The ‘Check Your Progress’ section intends the

readers to test their knowledge. It is hoped that the language and the content

demonstration is coherent to the readers and will enhance their learning in the best

way possible.

All the Best!

Module: 1

Introduction

Introduction

1

Unit 1 Introduction
Structure

1.0 Introduction

1.1 Unit Objectives

1.2 Concept of Data type

1.3 Data structures

1.4 Abstract Data types

1.5 Summary

1.6 Key Terms

1.7 Check Your Progress

1.0 Introduction

All computer programs involve operations on data. Data plays an important role in

programming. The data may be defined as a value or a set of values, such as the name

and age of a person, the grade of a student, the salary of an employee, and so on. It is

just a collection of values and no conclusion can be drawn from it. However, after

processing, it becomes information that can help in making decisions. In order to

process data, it should be available in the main memory since the processor can only

act on data in the main memory. In order to represent the data in the main memory,

some model is needed to process it efficiently. This model is called a data structure.

Various models are available, and this unit will introduce you to these various

structures and the different operations that can be performed on them.

1.1 Unit Objectives

After going through this unit, the reader will be able to:

● Understand the basic concept of data type

● Explain the different types of data structures

● Describe the abstract data types

1.2 Concept of Data type

Data is a value or a collection of values that may be obtained from an experiment,

survey, etc. The term which is used to refer to a single unit of values is called a data

item. A data item may be a group item or an elementary item. A group item is the one

Introduction

2

that can be further divided into sub-items, whereas an elementary item is the one

that cannot be divided further. The address of a person, for example, is a group item

because it is usually divided into sub-items like house number, street, city, state, PIN

code, etc. On the other hand, the state, city, PIN code, etc., are elementary items.

A set of data items are used to represent a thing in the real world with the physical or

the logical existence called an entity. In the context of entities, the data items are

termed as attributes or properties of the entity. The attributes like name, roll number,

marks, and so on, for example, can be used to represent an entity student.

Generally, each attribute of an entity is assigned a particular value, such as the

name is assigned a value ‘James’. A set of entities having similar attributes is called

an entity set, e.g., all the students of a class, all the employees of an organization,

and so on.

Data type refers to the kind of data that may appear in the computation of any

program. Some of the frequently used data types are Real, boolean, character,

complex, numeric (integer), date, alphanumeric, graphics, string, Image, etc.

The syntax for declaring data type and the variable name is given below:

Syntax:

<(data type)><variable names>;

The data types can be broadly classified as Built-in data type and abstract data type.

Every programming language contains a set of data types called built-in data types.

For example,

Data types in C: int, float, char, double, enum, etc.

Data types in FORTRAN: INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE

PRECISION, CHARACTER, etc.

Pascal: Integer, Real, Character, Boolean, etc.

The built-in data types are advantageous in processing various types of data. For

instance, if a variable is declared of the type Real, then several things are

automatically implied, such as how to store a value for that variable, what amount of

memory is required to store, etc.

When a program requires a special type of data that is not available as a built-in data

type, then it is implemented by the user on its own. This implemented special type of

Introduction

3

data is termed as an abstract data type. It is also known as a user-defined data

type. In such a type of data, the user has to give more effort regarding how to store

value for that data, operations to manipulate variables of that kind of data, etc. For

example, to process a date (dd/mm/yy), no built-in data type is available in C,

FORTRAN, and Pascal. This can be accomplished using an abstract data type.

1.3 Data Structures

The logical or mathematical model used to organize the data in main memory is

called a data structure. Various data structures are available each with its special

features. These features should be kept in mind while choosing a data structure for a

particular situation. Generally, the choice of any data structure depends on its

simplicity and effectiveness in processing data. In addition, we also consider how well

it represents the actual relationship between the data in the real world.

Data structures are helpful for programmers to manipulate and store the data

effectively. They help in establishing the relationship of one data element with other

data elements. Various methods are provided by data structures to organize and

represent the data in the computer’s memory. The data structures also govern the

dynamic behavior towards data handling.

Different ways of data organization require different kinds of data structures.

Basically, two complementary goals are implemented by data structures. The first

goal is to develop mathematical entities and operations to solve particular problems.

The second goal is to search for suitable representations for these entities and then

carry out the desired operations. The second goal requires high-level data types to

solve the problems. These high-level data types use existing data types.

Generally, the following additional goals are involved in producing quality data

structure to have quality software implementation:

➔ Correctness: The design of a data structure should be such that it can

operate correctly for all kinds of input, based on the domain of interest. For

example, a data structure designed to store a collection of numbers, in a

specific order, must make sure that the numbers are not stored in an

unorganized way.

➔ Efficiency: The data structure must be efficient to process the data at high

Introduction

4

speed without utilizing much of the computer memory.

On the basis of their implementation, the data structures are divided into two

categories, namely Primitive data structure and Non-primitive data structure. The

primitive data structures further include Integer, Real, Character, and Boolean. The

non-primitive data structures are further divided into two groups, Linear and Non-

linear data structures. Arrays, linked lists, stacks, and queues are linear data

structures while Trees and graphs are non-linear data structures. All these are

discussed in the upcoming units in detail.

Figure 1.1 Classification of Data Structures

1.4 Abstract Data Types

The data type whose behavior is defined as a set of values and a set of operations is

known to be Abstract data type (ADT). ADT only mentions what operations are to be

performed but not about the process of the operations to be implemented. It is

known as “abstract” as it provides an implementation-independent view. Hiding the

main details and providing only the essentials is known as abstraction.

An Abstract Data Type [ADT] consists of two parts, namely, a value definition and

an operator definition. A value definition consists of a definition clause and a

Introduction

5

condition clause. The operator definition consists of three parts: a header,

preconditions, and post-conditions. The preconditions and post-conditions are

optional and can be used depending on the program requirement.

Figure 1.2 Abstract Data Type (ADT) Model

As shown in figure 1.2, the ADT model has two different parts- Functions (public and

private) and Data structures. Both of these parts are confined to ADT and not a part

of the application program. Data is entered, accessed, modified, and deleted through

the external application programming interface. This interface can access only public

functions. Every ADT operation has an algorithm to perform a specific task.

Generally, three types of ADTs are defined: List ADT, Stack ADT, and Queue ADT.

● List ADT

The data is generally stored in a sequence in the form of a list that has a head

structure consisting of count, pointers, and address of compare function

needed to compare the data in the list. The data node contains the pointer to a

data structure and another pointer that points to the next node in the list.

Some of the operations performed on such list ADTs are:

➔ get() – Return an element from the list at any given position.

➔ insert() – Insert an element at any position of the list.

➔ remove() – Remove the first occurrence of any element from a non-empty

Introduction

6

list.

➔ removeAt() – Remove the element at a specified location from a non-empty

list.

➔ replace() – Replace an element at any position by another element.

➔ size() – Return the number of elements in the list.

➔ isEmpty() – Return true if the list is empty, otherwise return false.

➔ isFull() – Return true if the list is full, otherwise return false.

● Stack ADT

In stack ADTs, the pointer to data is stored in the nodes in place of the data

itself. Memory is allocated for the data and the address is sent to the stack

ADT. The head node and data nodes are encapsulated in ADT. Only a pointer to

the stack is displayed to the calling function. The stack head contains a pointer

to the top and also a count of the number of entries present in the stack.

Conceptually, a stack is an arrangement of the same type of elements in

sequential order. The operations take place only at the top end of the stack.

Some of the operations performed on stack ADTs are:

➔ push() – Insert an element at one end of the stack called top.

➔ pop() – Remove and return the element at the top of the stack, if it is not

empty.

➔ peek() – Return the element at the top of the stack without removing it, if

the stack is not empty.

➔ size() – Return the number of elements in the stack.

➔ isEmpty() – Return true if the stack is empty, otherwise return false.

➔ isFull() – Return true if the stack is full, otherwise return false.

● Queue ADT

In a queue ADT, each node contains a void pointer to the data and the link

pointer to the next element in the queue. The same type of elements are

arranged in sequential order and operations take place at both the ends of a

queue. Insertion is done at the end while deletion is done at the front. Some of

the operations performed on stack ADTs are:

➔ enqueue() – Insert an element at the end of the queue.

➔ dequeue() – Remove and return the first element of the queue, if the queue

is not empty.

Introduction

7

➔ peek() – Return the element of the queue without removing it, if the queue

is not empty.

➔ size() – Return the number of elements in the queue.

➔ isEmpty() – Return true if the queue is empty, otherwise return false.

➔ isFull() – Return true if the queue is full, otherwise return false.

1.5 Summary

● Data is a value or a collection of values that may be obtained from an

experiment, survey, etc.

● A set of data items are used to represent a thing in the real world with the

physical or the logical existence called an entity.

● Data type refers to the kind of data that may appear in the computation of any

program. Some of the frequently used data types are Real, boolean, character,

complex, numeric (integer), date, alphanumeric, graphics, string, Image, etc.

The data types can be broadly classified as Built-in data type and abstract

data type.

● The logical or mathematical model used to organize the data in main memory

is called a data structure. The data structures are divided into two categories,

namely primitive data structure and non- primitive data structure.

● The data type whose behavior is defined as a set of values and a set of

operations is known to be Abstract data type (ADT). ADT only mentions what

operations are to be performed but not about the process of the operations to

be implemented.

1.5 Key Terms

● Data item: A single unit of values.

● Entity: A set of data items used to represent a thing in the real world with the

physical or the logical existence.

● Data structure: The logical or mathematical model used to organize the data

in main memory.

● Abstraction: Hiding the main details and providing only the essentials is

known as abstraction.

● Application Program: A program designed to perform a particular function

Introduction

8

directly for the user or for another application program.

1.6 Check Your Progress

Short- Answer type

Q1) Abstract Data types provide an implementation-independent view. True/ False?

Q2) Define a data structure.

Q3) Which of the following is not a linear data structure?

(a) Stack (b) Queue (c) Tree (d) Linked List

Q4) _________ are also known as user-defined data types.

Q5) The two different parts of the ADT model are functions and __________.

Long- Answer type

Q1) Differentiate between Built-in and Abstract Data types

Q2) Explain the basic concept of data types.

Q3) Give the classification of Data structures.

Q4) What are Abstract Data Types? Explain its types.

Q5) Briefly explain the Abstract data type (ADT) model.

References

• Data Structures with C, Lipschutz, Seymour, Delhi: Tata McGraw Hill.

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

Introduction

9

Unit 2 – Primitive and Non-

Primitive Data Structures
Structure

2.0 Introduction

2.1 Unit Objectives

2.2 Primitive Data Structures

2.3 Operations on Primitive Data Structures

2.4 Non- primitive Data Structures

 2.4.1 Linear Data Structures

 2.4.2 Non- Linear Data Structures

2.5 Operations on Non- primitive Data Structures

2.6 Summary

2.7 Key Terms

2.8 Check Your Progress

2.0 Introduction

We are already familiar with the definition of a data structure. Data structure provides

a set of variables being associated with each other in different ways. Various

programming languages utilize these variables to represent relationships between data

elements and help in the easy processing of data. According to their utilization in

distinct programming languages, data structures are classified as Primitive and non-

primitive data structures. This unit explains the use and representation of Primitive

data structures in detail.

2.1 Unit Objectives

After going through this unit, the reader will be able to:

● Understand the basic concept of primitive data structures.

● Explain the use and representation of different primitive data structures.

2.2 Primitive Data Structures

The primitive data structures are used to represent numbers and characters that are

included in the built-in programs. They are the basic data types of any programming

language and are not composed of other data types. They can be manipulated or can

Introduction

10

even be operated directly with the help of machine-level instructions. Primitive data

structures include basic data types like Integer, Real, Character, and Boolean.

1. Integer

The integral or fixed-precision values are represented by integers (denoted as

int). The type INTEGER includes a subset of the whole numbers with a

variation in size for different computer systems. All the operations on this type

of data are precise and also follow the basic laws of arithmetic. Though

arithmetic operations yield accurate results if the result of such operations lies

outside the subset, then the computation might fail.

2. Real

The REAL primitive data type includes a subset of the real numbers. The

arithmetic operations performed on the REAL data types can be incorrect within

the limits of round-off errors while the arithmetics performed on INTEGER type

yield accurate results. This is considered to be the main difference between the

INTEGER and REAL types.

3. Character

Denoted as Char, the character primitive data type consists of a set of

structured and printable characters with 26 upper case letters, 26 lower case

letters, 10 decimal digits, and various other graphic characters like punctuation

marks. Every computer system stores character data in a one-byte field as an

integer value. One byte comprises 8 bits so it has 256 possibilities having

positive values of 0 to 255.

4. Boolean

This primitive data structure is used for Boolean values that are denoted by two

identities TRUE and FALSE. The Boolean operators include logical conjunction

(&), disjunction (OR), and negation (~).

2.3 Operations on Primitive Data Structures

Several operations can be performed on primitive data structures. Some of the general

operations are:

1. Creation Operation: The creation operation creates a data structure. For

example,

int x;

Introduction

11

Here, the above-declared statement will create 2 bytes of memory space for

variable ‘x’. This variable will be used to store only integer values.

2. Destroy Operation: The destroy operation destroys the data structure. In C

language, ‘free()’ operation is used to destroy the data structure. This helps

using the memory of the system efficiently.

3. Selection Operation: The selection operation is used to access data within a

data structure. The significance of the selection operation is provided in a file

data structure.

4. Update Operation: To modify data in the data structure, the update operation

is used.

2.4 Non- primitive Data Structures

The data structures derived from primitive data structures are known as Non-primitive

data structures. These data structures cannot be manipulated or operated directly by

machine-level instructions. A set of either homogeneous (same data type) or

heterogeneous (different data type) data elements are formed. These are further

divided into linear and non-linear data structures based on the structure and

arrangement of data.

2.4.1 Linear Data Structures

The linear data structure is the one in which its elements form a sequence. It means

each element in the structure has a unique predecessor and a unique successor. An

array is the simplest linear data structure. Various other linear data structures are

linked lists, stacks, and queues.

● Arrays

A finite collection of homogeneous elements is termed as an array. Here, the

word ‘homogenous’ indicates that the data type of all the elements in the

collection should be the same, that is, int or char or float or any other built-in

or user-defined data type. However, an array cannot have elements of two or

more data types together.

Elements of an array are always stored in contiguous memory locations

irrespective of the array size. The elements of an array can be referred to by

using one or more indices or subscripts. An index or subscript is a positive

Introduction

12

integer value that indicates the position of a particular element in the array. If

the number of subscripts required to access any particular element of an

array is one, then it is a single-dimensional array. Otherwise, it is a

multidimensional array. The multi-dimensional array may be a two-dimensional

array or even more.

Consider a single-dimensional array Arr with size n, where n is the maximum

number of elements that Arr can store. Mathematically, the elements of Arr

are denoted as Arr1, Arr2, Arr3,…, Arrn. In different programming languages,

array elements are denoted by different notations, such as by parenthesis

notation or by bracket notation. Table 1.1 shows the notation of elements of a

single-dimensional array Arr with size n in different programming languages.

Table 1.1 Different Notations of a Single-dimensional

Array

S.No. Notation Programming Language(s)

1. Arr(1), Arr(2), Arr(3),.... Arr(n) BASIC and FORTRAN

2. Arr[1], Arr[2], Arr[3],...... Arr[n] Pascal

3. Arr[0], Arr[1], Arr[2],.... Arr[n-1] C, C++, and Java

Note that in the languages like BASIC, PASCAL, and FORTRAN, the smallest

subscript value is 1 and the largest subscript value is n. On the other hand, in

languages like C, C++, and Java, the smallest subscript value is 0 and the

largest subscript value is n–1. In general, the smallest subscript value used to

access an array element is the lower bound (Lb) and the largest subscript value

is the upper bound (Ub).

In two-dimensional arrays, the elements can be viewed as arranged in the form

of rows and columns (matrix form). To access an element of a two-dimensional

array, two subscripts are used—the first one represents the row number and

the second one represents the column number. Consider a two-dimensional

array Arr with size m*n, where m and n represent the number of rows and

columns respectively. Mathematically, the array Arr is denoted as Arrij, where i

and j indicate row number and column number with i< = m and j< = n. Table

1.2 shows the notation of elements of a two-dimensional array Arr in different

Introduction

13

programming languages.

Table 1.2 Different Notations of a Two-dimensional Array

S.No. Notation Programming Language(s)

1. Arr(i, j) with 0<i<=m and 0<j<=n BASIC and FORTRAN

2. Arr[i, j] with 0<i<=m and 0<j<=n Pascal

3. Arr [i] [j] with 0<=i<m and 0<=j<n C, C++, and Java

● Linked Lists

A linked list is a linear collection of similar data elements, called nodes, with

each node containing some data and pointer(s) pointing to other nodes (s) in

the list. Nodes of a linked list are not constrained to be at contiguous memory

locations; instead, they can be stored anywhere in the memory. The linear

order of the list is maintained by the pointer field(s) in each node.

Depending on the pointer field(s) in each node, linked lists can be of different

types. If each node of a linked list contains only one pointer and it points to the

next node, then it is called a linear linked list or singly-linked list. In such

types of lists, the pointer field in the last node contains NULL. However, if the

pointer in the last node is modified to point to the first node of the list, then it

is called a circular linked list. In addition to the pointer to the next node,

each node of a linked list can also contain a pointer to its previous node. Such

a type of linked list is called a doubly-linked list. Figure 1.2 shows a singly,

circular, and doubly-linked list with five nodes each.

Introduction

14

Figure 2.1 Various Types of Linked Lists

● Stacks and Queues

A stack is a linear list of data elements in which the addition of a new element

or deletion of an element occurs only at one end. This end is called Top of the

stack. The operation of adding a new element in the stack and deleting an

element from the stack is called push and pop respectively. Since the addition

and deletion of elements always occur at one end of the stack, the last element

that is pushed onto the stack is the first one to come out. Therefore, a stack is

also called a Last-In-First-Out (LIFO) list.

Figure 2.2 A stack

A queue is a linear data structure in which the addition or insertion of a new

element occurs at one end, called Rear, and deletion of an element occurs at the

other ends, called Front. Since insertion and deletion occur at opposite ends of the

queue, the first element that is inserted in the queue is the first one to come out.

Therefore, a queue is also called a First-In-First-Out (FIFO) list.

Introduction

15

Figure 2.3 A queue

2.4.2 Non- Linear Data Structures

A non-linear data structure is one in which its elements do not form a sequence. It

means, unlike linear data structure, each element is not constrained to have a

unique predecessor and a unique successor. Trees and graphs are the two data

structures that come under this category.

● Trees

Usually, we observe a hierarchical relationship between various data elements.

This hierarchical relationship between data elements can easily be represented

using a non-linear data structure called trees. A tree consists of multiple

nodes with each node containing zero, one or more pointers to other nodes

called child nodes. Each node of a tree has exactly one parent except a

special node at the top of the tree called the root node.

Figure 2.4 A Tree

● Graphs

A graph consists of a finite set of nodes (or vertices) and a set of edges

connecting them. The graph is used to represent the non-hierarchical

relationship among pairs of data elements. Let’s say, a graph G(V, E) consists

of a pair of two non-empty sets V and E, where V is a set of vertices or nodes

and E is a set of edges. The data elements become the vertices of the graph

and the relationship is shown by edges between the two vertices. For example,

Introduction

16

assume four places W, X, Y, and Z, such that:

➔ There exists some path from X to Y, X to W, Y to W, Y to Z, and Z to W.

➔ There is no direct path from X to Z.

We can simply represent this situation using a graph where the places W, X,

Y, and Z are represented as the nodes of the graph, and a path from one place

to another place is represented by an edge between them.

Figure 2.5 An example of a graph

It is clear from the figure that each node can have links with multiple other

nodes. This analogy suggests that it is similar to a tree. However, unlike trees,

there is no root node in a graph. Further, graphs show relationships that may

be non-hierarchical in nature. It means there is no parent and child

relationship. However, a tree can be considered as a variant or a special type

of graph.

2.5 Operations on Non- primitive Data Structures

The logical organization of data and their storage structure govern the operations on

the non-primitive data structure. A set of either homogeneous (same data type) or

heterogeneous (different data type) data elements are formed in non-primitive data

structures. Therefore, these data structures cannot be operated or manipulated

directly by the machine-level instructions.

Some of the general operations on non-primitive data structures are:

1. Traversing: The method in which each element of the data structure is

processed exactly once is known as Traversing. This method is used for

checking the availability of data elements in an array. Traversing is even used

to check if the element is successfully inserted or deleted.

Introduction

17

2. Sorting: The method of arranging the data elements in a logical order, maybe

ascending or descending order, is known as sorting. Sorted lists are required by

some algorithms. Thus, efficient sorting becomes essential for optimizing these

algorithms to ensure their accuracy.

3. Merging: Merging is a technique of combining the data elements of two

different sorted lists into a single sorted list. The basic idea behind this method

is based on the divide-and-conquer algorithm.

4. Searching: Searching is the method of finding the location of an element with a

given key value, or finding the location of an element that satisfies a given

condition. Searching helps in finding unambiguous items from the set of

elements, just like a particular file from the memory of the system.

5. Insertion: Insertion operation is used to add a new element to the data

structure. The insertion process may add a new element in the ith position of the

data structure. In addition to insertion, if sorting also needs to be performed,

first we need to assign an item to the given elements and compare it with the

previous elements. If the assigned element is smaller than the previous element,

we need to swap the positions of both these items. This process is repeated

until the correct position of the item is Identified.

6. Deletion: Deletion means removing an item from the structure. When any node

is not required in the data structure, it can be removed using the delete

operation.

2.6 Summary

● The data structure can be classified into two categories: primitive data

structure and non-primitive data structure.

● Basic data types such as integer, real, character, and Boolean are categorized

under primitive data structures. These data types are also known as simple

data types because they consist of characters that cannot be divided.

● Operations like creation, destroy, selection, and update are performed on the

primitive data structures.

● Non-primitive data structures are further divided into linear and non-linear

data structures based on the structure and arrangement of data. Arrays, linked

lists, stacks, queues are examples of linear data structure. Trees and graphs

Introduction

18

are examples of non-linear data structures.

● Some general operations that can be performed on non-primitive data

structures are traversing, sorting, merging, searching, insertion, and deletion.

2.7 Key Terms

● Array: A finite collection of homogeneous elements.

● Linked list: A linear collection of similar data elements, called nodes, with

each node containing some data and pointer(s) pointing to other nodes (s) in

the list.

● Stack: A linear list of data elements in which the addition of a new element or

deletion of an element occurs only at one end.

● Queue: A linear data structure in which the addition or insertion of a new

element occurs at one end, called rear, and deletion of an element occurs at

other ends, called the front.

2.8 Check Your Progress

Short- Answer type

Q1) Deletion operation occurs at the rear end of a queue. True/ False?

Q2) List four major operations on linear data structures.

Q3) A ______ is a linear list of data elements in which the addition of a new element

or deletion of an element occurs only at one end.

Q4) If the number of subscripts required to access any particular element of an array

is one, then it is a _________ array.

Q5) An array always contains similar data elements. True/ False?

Long- Answer type

Q1) Write a short note on:

a) Arrays

b) Trees

Q2) Why is the stack also called a Last-in First-out (LIFO) list?

Q3) Briefly explain the basic operations on Non- primitive data structures.

Q4) Differentiate between a linear data structure and a non-linear data structure.

Q5) Explain the different types of linked lists.

Introduction

19

References

• Data Structures with C, Lipschutz, Seymour, Delhi: Tata McGraw Hill.

• Data Structures Using C, Reddy. A.M Padma (2006), Bangalore: Sri Nandi Publications.

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

Introduction

20

Unit 3 – Linked Lists
Structure

3.0 Introduction

3.1 Unit Objectives

3.2 Singly-Linked Lists

3.2.1 Memory Representation 3.2.2 Operations

3.3 Circular Linked Lists

3.3.1 Traversing 3.3.2 Insertion

3.3.3 Deletion

3.4 Doubly-Linked Lists

3.4.1 Insertion 3.4.2 Deletion

3.5 Dynamic Storage Management: Application of a Doubly-Linked List

3.6 Generalized Lists

3.7 Garbage Collection

3.8 Summary

3.9 Key Terms

3.10 Check Your Progress

3.0 Introduction

In the simplest terms, a list refers to a collection of data items of similar type

arranged in a sequence (that is, one after another), e.g., list of students’ names, list of

addresses, etc. One way to store such lists in memory is to use an array. However,

arrays have certain problems associated with them. As array elements are stored in

adjacent memory locations, a sufficient block of memory is allocated to an array at

compilation time. Once the memory is allocated to an array, it cannot be expanded or

contracted. This is why an array is called a static data structure. If the number of

elements to be stored in an array increases or decreases significantly at run-time, it

may require more memory space or may result in wastage of memory, both of which

are unacceptable. Another problem is that the insertion and deletion of an element

into an array are expensive operations, since they may require a number of elements

to be shifted. As a result of these problems, arrays are not generally used to

implement linear lists; instead, another data structure known as a linked list is used.

A linked list is a linear collection of homogeneous elements called nodes. The

Introduction

21

successive nodes of a linked list need not occupy adjacent memory locations and the

linear order between the nodes is maintained by means of pointers. This unit

discusses different types of linked lists, such as singly-linked lists, circular linked

lists, and doubly-linked lists, and the various operations, such as creation, traversal,

search, insertion, and deletion, that can be performed on them. It also discusses how

data structures, stacks, and queues are implemented using linked lists.

3.1 Unit Objectives

After going through this unit, the reader will be able to:

● Explain the singly linked list data structure.

● Understand the salient features and applications of circular linked lists.

● Understand the salient features and applications of doubly-linked lists,

including dynamic storage management.

● Describe the applications of generalized lists.

● Explain the meaning and applications of garbage collection.

3.2 Singly-Linked Lists

In a singly-linked list (also called linear linked list), each node consists of two fields:

info and next (Figure 3.1). The info field contains the data and the next field

contains the address of the memory location where the next node is stored. The last

node of the singly-linked list contains NULL in its next field that indicates the end of

the list.

Figure 3.1 Node of a linked list

The data stored in the info field may be a single data item of any data type or a

complete record representing a student or an employee or any other entity. In this

unit, however, we assume the info field contains integer data. As each node of the list

contains only a single pointer pointing to the next node (not to the previous node)

thereby allowing traversing in only one direction, it is also referred to as a one-way

list. Figure 3.2 shows a singly-linked list with four nodes.

Introduction

22

Figure 3.2 A Singly-linked List with Four Nodes

The linked list overcomes all the drawbacks of arrays. It is a dynamic data structure,

which implies that the memory is allocated dynamically at run-time. Also, there is no

upper limit on the size of the linked list and new nodes can be inserted into it as far

as memory is available. Moreover, since the successive nodes of a linked list are

stored in non-contiguous memory locations, nodes can be inserted or deleted without

shifting of the existing nodes.

3.2.1 Memory Representation

To maintain a linked list in memory, two parallel arrays of equal size are used. One

array (say, INFO) is used for the info field, and another array (say, NEXT) for the

next field of the nodes of the list. The values in the arrays are stored such that the ith

location in arrays INFO and NEXT contain, respectively, the info and next fields of a

node of the list. In addition, a pointer variable Start is maintained in memory that

stores the starting address of the list. Figure 3.3 shows the memory representation of

a linked list where each node contains an integer.

Figure 3.3 Memory Representation of a Singly- linked list

In this figure, the pointer variable Start contains 25, that is, the address of the first

Introduction

23

node of the list, which stores the value 37 in array INFO and its corresponding

element in array NEXT stores 49, that is, the address of the next node in the list, and

so on. Finally, the node at address 24 stores value 69 in array INFO and NULL in

array NEXT, thus, it is the last node of the list. Note that the values in array INFO

are stored randomly and the array NEXT is used to keep track of the values in the

list.

Memory allocation

As memory is allocated dynamically to the linked list, a new node can be inserted

anytime in the list. For this, the memory manager maintains a special linked list

known as a free-storage list or memory bank or free pool that consists of unused

memory cells. This list keeps track of the free space available in the memory and a

pointer to this list is stored in a pointer variable Avail (Figure 3.4). Note that the end

of the free-storage list is also denoted by storing NULL in the last available block of

memory.

Figure 3.4 Free- storage List

In this figure, Avail contains 22, hence, INFO[22] is the starting point of the free-

storage list. Since NEXT[22] contains 26, INFO[26] is the next free memory location.

Similarly, other free spaces can be accessed and the NULL in NEXT[23] indicates the

end of the free-storage list. While creating a linked list or inserting an element into a

linked list, whenever a request for the new node arrives, the memory manager

searches through the free- storage list for the block of the desired size. If the block of

Introduction

24

the desired size is found, it returns a pointer to that block. However, sometimes there

is no space available, that is, the free-storage list is empty. This situation is termed

as overflow. In this situation, the memory manager replies accordingly.

3.2.2 Operations

A number of operations can be performed on the singly-linked lists. These operations

include traversing, searching, inserting, and deleting nodes, and reversing, sorting,

and merging linked lists. Before implementing these operations, first, we need to

understand how a node of a linked list is created.

Creating a Node

Creating a node means defining its structure, allocating memory to it, and its

initialization. As discussed earlier, the node of a linked list consists of data and a

pointer to the next node. To define a node containing integer data and a pointer to

the next node in C language, we can use a self-referential structure whose definition

is shown here.

typedef struct node

{

 int info; /*to store integer type data*/

 struct node *next; /*to store a pointer to next node*/

} Node;

 Node *nptr; /*nptr is a pointer to node*/

After declaring a pointer nptr to the new node, the memory needs to be allocated

dynamically to it. If the memory is allocated successfully (that is, no overflow), the

node is initialized. The info field is initialized with a valid value and the next field is

initialized with NULL .

Algorithm 3.1 Creation of Node

create_node()

1. Allocate memory for nptr //nptr is a pointer to the new node

2. If nptr = NULL

 Print “Overflow: Memory not allocated!” and go to step 7

 End If

Introduction

25

3. Read item //item is the value to be inserted in the new node

4. Set nptr->info = item

5. Set nptr->next = NULL

6. Return nptr //returning pointer nptr

7. End

Now, the linked list can be formed by creating several nodes of type Node and

inserting them either in the beginning or at the end or at a specified position in the

list.

Traversing

Traversing a list means accessing its elements one by one to process all or some of

the elements. For example, if we need to display values of the nodes, count the

number of nodes, or search a particular item in the list, then traversing is required.

We can traverse the list by using a temporary pointer variable (say, temp), which

points to the node currently being processed. Initially, we make temp point to the

first node, a process that element, then move temp to point to the next node using

statement temp=temp->next, a process that element and move so on as long as the

last node is not reached, that is, until temp becomes NULL.

Algorithm 3.2 Traversing a list
display(Start)

1. If Start = NULL //Start points to the first node of the list

 Print “List is empty!!” and go to step 4

 End If

2. Set temp = Start //initialising temp with Start

3. While temp != NULL

 Print temp->info //displaying value of each node

 Set temp = temp->next //moving temp to point to next node

 End While

Insertion

To insert a node in the linked list, a new node is created (as explained in Algorithm

3.1) and then placed at the desired position by adjusting the pointers. Nodes can be

inserted either in the beginning or at the end or at any specified position in the list as

discussed in this section.

Introduction

26

a) Insertion at the beginning: To insert a node at the beginning of the list, the

next field of the new node (pointed to by nptr) is made to point to the existing

first node and the Start pointer is modified to point to the new node (Figure

3.5).

Figure 3.5 Insertion at the Beginning of a Linked List

Algorithm 3.4 Insertion in Beginning

insert_beg(Start)

1. Call create_node() //creating a new node pointed to by nptr

2. Set nptr->next = Start

3. Set Start = nptr //Start pointing to new node

4. End

b) Insertion at the end: To insert a node at the end of a linked list, the list is

traversed up to the last node and the next field of this node is modified to

point to the new node. However, if the linked list is initially empty, then the

new node becomes the first node, and Start points to it. Figure 3.6(a) shows a

linked list with a pointer variable temp pointing to its first node and Figure

3.6(b) shows temp pointing to the last node and the next field of last node

pointing to the new node.

Introduction

27

Figure 3.6 Insertion at the End of a Linked List

Algorithm 3.5 Insertion at End

insert_end(Start)

1. Call create_node() //creating a new node pointed to by nptr

2. If Start = NULL //checking for empty list

 Set Start = nptr //inserting new node as the first node

 Else

 Set temp = Start

 While temp->next != NULL //traversing up to the last node

 Set temp = temp->next

 End While

 Set temp->next = nptr //appending new node at the end

 End If

3. End

c) Insertion at a specified position: To insert a node at a position (say, pos)

specified by the user, the list is traversed up to the pos-1 position. Then the

next field of the new node is made to point to the node that is already at the

pos position and the next field of the node at the pos-1 position is made to

point to the new node. Figure 3.7 shows the insertion of the new node pointed

to by nptr at the third position.

Introduction

28

Figure 3.7 Insertion at a Specified Position in a Linked List

Algorithm 3.6 Insertion at a Specified Position

insert_pos(Start)

1. Call create_node() //creating a new node pointed to by nptr

2. Set temp = Start

3. Read pos //position at which the new node is to be inserted

4. Call count_node(temp) //counting total number of nodes in count variable

5. If (pos > count + 1 OR pos = 0)

 Print “Invalid position!” and go to step 7

 End If

6. If pos = 1

 Set nptr->next = Start

 Set Start = nptr //inserting new node as the first node

 Else

 Set i = 1

 While i < pos - 1 //traversing up to the node at pos-1 position

 Set temp = temp->next

 Set i = i + 1

 End While

 Set nptr->next = temp->next //inserting new node at pos position

 Set temp->next = nptr

 End If

7. End

Deletion

Like insertion, nodes can be deleted from the linked list at any point of time and from

any position. Whenever a node is deleted, the memory occupied by the node is de-

allocated. Note that while performing deletions, we need to keep track of the node

that is the immediate predecessor of the node to be deleted. Thus, two temporary

pointer variables are used (except in case of deletion from the beginning) while

traversing the list.

a) Deletion from the beginning: To delete a node from the beginning of a linked

list, the address of the first node is stored in a temporary pointer variable

temp and Start is modified to point to the second node in the linked list. After

that, the memory occupied by the node pointed to by temp is de-allocated.

Figure 3.8 shows the deletion of a node from the beginning of a linked list.

Introduction

29

Figure 3.8 Deletion from the Beginning of a Linked List

Algorithm 3.7 Deletion from Beginning

delete_beg(Start)

1. If Start = NULL //checking for underflow

 Print “Underflow: List is empty!” and go to step 5

 End If

2. Set temp = Start //temp pointing to the first node

3. Set Start = Start->next //moving Start to point to the second node

4. Deallocate temp //deallocating memory

5. End

b) Deletion from the end: To delete a node from the end of a linked list, the list is

traversed up to the last node. Two pointer variables save and the temp is used

to traverse the list, where save points to the node previously pointed to by

temp. At the end of traversing, temp points to the last node and save points to

the second-last node. Then the next field of the node pointed to by save is

made to point to NULL, and the memory occupied by the node pointed to by

temp is de-allocated. Figure 3.9 shows the deletion of a node from the end of a

linked list.

Introduction

30

Figure 3.9 Deletion from the End of a Linked List

Algorithm 3.8 Deletion from the End

delete_end(Start)

1. If Start = NULL //checking for underflow

 Print “Underflow: List is empty!” and go to step 6

 End If

2. Set temp = Start //temp pointing to the first node

3. If temp->next = NULL //deleting the only node of the list

 Set Start = NULL

 Else

 While (temp->next) != NULL //traversing up to the last node

 Set save = temp //save pointing to node previously

 //pointed to by temp

 Set temp = temp->next //moving temp to point to next node

 End While

 End If

4. Set save->next = NULL //making new last node to point to NULL

5. Deallocate temp //deallocating memory

6. End

c) Deletion from a specified position: To delete a node from the position (say, pos

) specified by the user, the list is traversed up to the pos position using pointer

Introduction

31

variables temp and save. At the end of traversing, temp points to the node at

the pos position and saves points to the node at the pos-1 position. Then the

next field of the node pointed to by save is made to point to the node at pos+1

position, and the memory occupied by the node pointed to by temp is de-

allocated. Figure 3.10 shows the deletion of a node in the third position.

Figure 3.10 Deletion from a Specified Position in a Linked List

Algorithm 3.9 Deletion from a Specified Position
delete_pos(Start)

1. If Start = NULL //checking for underflow

 Print “Underflow: List is empty!” and go to step 8

 End If

2. Set temp = Start

3. Read pos //position of the node to be deleted

4. Call count_node(Start) //counting total number of nodes in the count variable

5. If pos > count OR pos = 0

 Print “Invalid position!” and go to step 8

 End If

6. If pos = 1

 Set Start = temp->next //deleting the first node

 Else

 Set i = 1

 While i < pos //traversing up to the node at position pos

 Set save = temp

 Set temp = temp->next

 Set i = i + 1

 End While

 Set save->next = temp->next //deleting the node at position pos

 End If

7. Deallocate temp //deallocating memory

Introduction

32

8. End

Program 3.1: A program to illustrate the implementation of a singly-linked list.

#include<stdio.h>

#include<conio.h>

#define True 1

#define False 0

typedef struct node

{

int info;

struct node *next;

}Node;

/* Function prototypes */

Node * create_node();

int isempty(Node *);

void display(Node *);

int count_node(Node *);

void insert_beg(Node **);

void insert_end(Node **);

void insert_pos(Node **);

void delete_beg(Node **);

void delete_end(Node **);

void delete_pos(Node **);

void main()

{

int item,ch,ch1;

Node *Start=NULL;

do

{

clrscr();

printf(“\n\n\tMain Menu”);

printf(“\n1. Insert”);

printf(“\n2. Delete”);

printf(“\n3. Display”);

printf(“\n4. Exit\n”);

printf(“\nEnter your choice: “);

Introduction

33

scanf(“%d”,&ch);

switch(ch)

{

case 1: printf(“\n1. Insert in the beginning”);

printf(“\n2. Insert at the end”);

printf(“\n3. Insert at a specified

position”);

printf(“\n4. Back to main menu\n”);

printf(“\nEnter your choice: “);

scanf(“%d”,&ch1);

switch(ch1)

{

case 1: insert_beg(&Start);

 break;

case 2: insert_end(&Start);

 break;

case 3: insert_pos(&Start);

 break;

case 4: break;

default: printf(“\nInvalid choice!”);

}

break;

case 2 : printf (“ \ n1 . Delete from the beginning”);

printf(“\n2. Delete from the end”);

printf(“\n3. Delete from a specified

position”);

printf(“\n4.

Back to main menu\n”);

printf(“\nEnter your choice: “);

scanf(“%d”,&ch1);

switch(ch1)

{

 case 1: delete_beg(&Start);

 break;

case 2: delete_end(&Start);

 break;

case 3: delete_pos(&Start);

Introduction

34

 break;

case 4: break;

default: printf(“\nInvalid

choice!”);

}

break;

case 3: display(Start);

 break;

case 4: exit();

default: printf(“\nInvalid choice!”);

 }

 getch();

}while(1);

 }

 Node * create_node()

{

Node *nptr;

int item;

nptr=(Node *)malloc(sizeof(Node));

if(nptr==NULL)

{

printf(“\nOverflow: Memory not allocated!”);

exit();

}

printf(“\nEnter the value to be inserted: “);

scanf(“%d”,&item);

nptr->info=item;

nptr->next=NULL;

return(nptr);

}

int isempty(Node *Start)

{

if(Start==NULL)

return True;

else

return False;

}

Introduction

35

void display(Node *Start)

{

Node *temp=Start;

if(isempty(temp))

{

printf(“\nList is empty!!”);

return;

}

printf(“\nThe linked list is: “);

while(temp != NULL)

{

printf(“%d “,temp->info);

temp=temp->next;

}

 }

int count_node(Node *Start)

{

Node *temp=Start;

int count=0;

while(temp != NULL)

{

count++;

temp=temp->next;

}

return(count);

}

void insert_beg(Node **Start)

{

Node *nptr=create_node();

nptr->next=*Start;

*Start=nptr;

printf(“\nNode inserted.”);

}

void insert_end(Node **Start)

{

Node *temp=*Start;

Node *nptr=create_node();

Introduction

36

if(isempty(temp))

*Start=nptr;

else

{

while(temp->next != NULL)

temp=temp->next;

temp->next=nptr;

}

printf(“\nNode inserted.”);

}

void insert_pos(Node **Start)

{

int i,pos,count;

Node *nptr=create_node();

Node *temp=*Start;

printf(“\nEnter the position at which you want to insert:“);

scanf(“%d”,&pos);

count=count_node(temp);

if(pos>count+1 || pos==0)

{

printf(“\nInvalid position!”);

return;

}

if(pos==1)

{

nptr->next=*Start;

*Start=nptr;

}

else

{

for(i=1;i<pos-1;i++)

temp=temp->next;

nptr->next=temp->next;

temp->next=nptr;

}

printf(“\nNode inserted.”);

}

Introduction

37

void delete_beg(Node **Start)

{

Node *temp=*Start;

if(isempty(temp))

{

printf(“\nUnderflow: List is empty!”);

return;

}

*Start=temp->next;

free(temp);

printf(“\nNode deleted.”);

}

void delete_end(Node **Start)

{

Node *temp=*Start;

Node *save;

if(isempty(temp))

{

printf(“\nUnderflow: List is empty!”);

return;

}

if(temp->next==NULL)

*Start=NULL;

else

{

while(temp->next != NULL)

{

save=temp;

temp=temp->next;

}

save->next=NULL;

}

free(temp);

printf(“\nNode deleted.”);

}

void delete_pos(Node **Start)

{

Introduction

38

Node *temp=*Start,*save;

int i,pos,count;

if(isempty(temp))

{

printf(“\nUnderflow: List is empty!”);

return;

}

printf(“\nEnter the position of the node to be deleted:“);

scanf(“%d”,&pos);

count=count_node(temp);

if(pos>count || pos==0)

{

printf(“\nInvalid position!”);

return;

}

if(pos==1)

*Start=temp->next;

else

{

for(i=1;i<pos;i++)

{

save=temp;

temp=temp->next;

}

save->next=temp->next;

}

free(temp);

printf(“\nNode deleted.”);

 }

The output of the program is:

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Introduction

39

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Insert at a specified position

4. Back to main menu

Enter your choice: 1

Enter the value to be inserted: 1

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Insert at a specified position

4. Back to main menu

Enter your choice: 2

Enter the value to be inserted: 3

Node inserted

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Insert at a specified position

4. Back to main menu

Enter your choice: 3

Enter the value to be inserted: 2

Introduction

40

Enter the position at which you want to insert: 2

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 1 2 3

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Delete from a specified position

4. Back to main menu

Enter your choice: 1

Node deleted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 2 3

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Introduction

41

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Delete from a specified position

4. Back to main menu

Enter your choice: 3

Enter the position of the node to be deleted: 2

Node deleted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Delete from a specified position

4. Back to main menu

Enter your choice: 2

Node deleted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

List is empty!!

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 4

Introduction

42

Searching

Searching a value (say, item) in a linked list means finding the position of the node,

which stores the item as its value. If an item is found in the list, the search is

successful and the position of that node is displayed. However, if an item is not

found till the end of the list, then the search is unsuccessful and an appropriate

message is displayed. Note that the linked list may be in sorted or unsorted order.

Therefore, we are discussing two searching algorithms: one for sorted and another for

an unsorted linked list. Only linear search can be performed on linked lists.

a) Searching in an unsorted list: If the data in the linked list are not arranged in

a specific order, the list is traversed completely starting from the first node

towards the last node and the value of each node (that is, node–>info) is

compared with the value to be searched.

b) Searching in a sorted list: The process of searching an item into a sorted

(ascending order) linked list is similar to that of an unsorted linked list.

However, while comparing, once the value of any node exceeds the item (the

value to be searched), the search is stopped immediately. In that case, the list

is not required to be traversed completely.

Algorithm 3.10 Searching in an Unsorted List
search_unsort(Start)

1. If Start = NULL

 Print “List is empty!!” and go to step 7

 End If

2. Set ptr = Start //ptr pointing to the first node

3. Set pos = 1

4. Read item //item is the value to be searched

5. While ptr != NULL //traversing up to the last node

 If item = ptr->info

 Print “Value found at position”, pos and go to step 7

 Else

 Set ptr = ptr->next //moving ptr to point to next node

 Set pos = pos + 1

 End If

 End While

6. Print “Value not found” //search unsuccessful

Introduction

43

7. End

Algorithm 3.11 Searching in a Sorted List
search_sort(Start)

1. If Start = NULL

 Print “List is empty!!” and go to step 7

 End If

2. Set ptr = Start //ptr pointing to the first node

3. Set pos = 1

4. Read item

5. While ptr->next != NULL //traversing up to the last node

 If item < ptr->info //comparing item with the value of current node

 Print “Value not found” and go to step 7

 Else If item = ptr->info

 Print “Value found at position”, pos and go to step 7

 Else

 Set ptr = ptr->next //moving ptr to point to next node

 Set pos = pos + 1

 End If

 End While

6. Print “Value not found” //search unsuccessful

7. End

Reversing

To reverse a singly-linked list, the list is traversed up to the last node, and the links

of the nodes are reversed such that the first node of the list becomes the last node

and the last node becomes the first node. For this, three-pointer variables (say, save,

ptr, and temp) are used. Initially, temp points to Start, and both ptr and save point to

NULL. While traversing the list, temp points to the current node, ptr points to the

node previously pointed to by temp, and save points to the node previously pointed to

by ptr. The links between nodes are reversed by making the next field of the node

pointed to by ptr to point to the node pointed to by save. At the end of traversing,

temp points to NULL, ptr points to the last node, and save points to the second last

node of the list. Then Start is made to point to the node pointed to by ptr in order to

make the last node the first node of the list. Figure 3.11 (a–f) shows the process of

reversing a linked list.

Introduction

44

Figure 3.11 Reverse of a Linked List

Introduction

45

3.3 Circular- Linked Lists

A linear linked list in which the next field of the last node points back to the first

node instead of containing NULL is termed as a circular linked list. The main

advantage of a circular linked list over a linear linked list is that in the former by

starting with any node in the list, we can reach any of its predecessor nodes. This is

because when we traverse a circular linked list starting with a particular node, we

come back to the same node at the end. Figure 3.12 shows an example of a circular

linked list.

Figure 3.12 An example of a Circular Linked List

All the operations that can be performed on linear linked lists can easily be

performed on circular linked lists but with some modifications. Some of these

operations are discussed as follows.

Note: The process of creating a node of a circular linked list is the same as that of a

linear linked list.

3.3.1 Traversing

We can traverse a circular linked list in the same way as a linear linked list except for

the condition for checking the end of the list. Here, the list is traversed until we reach

a node in the list that contains the address of the first node in its next field rather

than NULL as in the case of a linear linked list.

Algorithm 3.13 Traversing a Circular Linked List

display(Start)

1. If Start = NULL

 Print “List is empty!!” and go to step 4

 End If

2. Set temp = Start //initialising temp with Start

3. Do

Introduction

46

 Print temp->info //displaying value of each node

 Set temp = temp->next

 While temp != Start

4. End

3.3.2 Insertion

Like linear linked lists, nodes can be inserted at any position in a circular linked list.

To insert a new node (pointed to by nptr) at the beginning of a circular linked list

[Figure 3.13(b)], the next field of the new node is made to point to the existing first

node and the Start pointer is modified to point to the new node. Now, since the first

node of the list is changed, the next field of the last node also needs to be modified to

point to the new node. However, if initially, the list is empty, a new node is inserted

as the first node and its next field is made to point to itself [Figure 3.13(a)].

 (a) (b)

Figure 3.13 Insertion in the beginning of a circular linked list

Algorithm 3.14 Insertion in the Beginning
insert_beg(Start)

1. Call create_node() //creating a new node pointed to by nptr

2. If Start = NULL //checking for empty list

 Set Start = nptr //inserting new node as the

 first node

 Set Start->next = Start

 Else

 Set temp = Start

 While temp->next != Start //traversing up to the last node

 Set temp = temp->next

 End While

 Set nptr->next = Start //inserting new node in the beginning

 Set Start = nptr //Start pointing to new node

Introduction

47

 Set temp->next = Start //next field of last node pointing to new node

 End If

3. End

While inserting a new node (pointed to by nptr) at the end of a circular linked list,

the list is traversed up to the last node. The next field of the last node is made to

point to the new node and the next field of the new node is made to point to Start.

However, if the circular linked list is empty, a new node becomes the first node, and

Start points to it. In addition, the next field of the new node points to itself as it is the

single node in the list. Figure 3.14 shows the insertion of a new node pointed to by

nptr at the end of a circular linked list.

Figure 3.14 Insertion at the end of a circular linked list

Algorithm 3.15 Insertion at the End

insert_end(Start)

1. Call create_node() //creating a new node pointed to by nptr

2. If Start = NULL //checking for empty list

 Set Start = nptr //inserting new node in the empty linked list

 Set Start->next = Start //next field of first node pointing to itself

 Else

 Set temp = Start

 While temp->next != Start //traversing up to the last node

 Set temp = temp->next

 End While

 Set temp->next = nptr //next field of last node pointing to new node

 Set nptr->next = Start //next field of new node pointing to Start

 End If

3. End

Introduction

48

3.3.3 Deletion

To delete a node from the beginning of a circular linked list, Start is modified to point

to the second node, and the next field of the last node is made to point to the new

first node. For this, two-pointer variables temp and ptr are used. The pointer temp

stores the address of the node to be deleted (that is, the address of the first node),

and Start is modified to point to the second node. The pointer ptr is used for

traversing the list and at the end of traversing, it stores the address of the last node.

Then the next field of the last node is made to point to the new first node. Also, the

memory occupied by the node pointed to by temp is de-allocated. Figure 3.15 shows

the deletion of a node from the beginning of a circular linked list.

Figure 3.15 Deletion from the beginning of a circular linked list

Algorithm 3.16 Deletion from Beginning

delete_beg(Start)

1. If Start = NULL

 Print “Underflow: List is empty!” and go to step 8

 End If

2. Set temp = Start

3. Set ptr = temp

4. While ptr->next != Start //traversing up to the last node

 Set ptr = ptr->next

 End While

5. Set Start = Start->next //Start pointing to the next node

6. Set ptr->next = Start //last node pointing to new first node

7. Deallocate temp //deallocating memory

8. End

Introduction

49

To delete a node from the end of a circular linked list, two-pointer variables save and

the temp is used. The pointer variable temp is used to traverse the list and save

points to the node previously pointed to by temp. At the end of traversing, temp

points to the last node and save points to the second-last node. Then the next field of

save is made to point to Start, and the memory occupied by the last node (that is,

pointed to by temp) is de-allocated. Figure 3.16 shows the deletion of a node from

the end of a circular linked list.

Figure 3.16 Deletion from the end of a circular linked list

Algorithm 3.17 Deletion from the End

delete_end(Start)

1. If Start = NULL //checking for underflow

 Print “Underflow: List is empty!” and go to step 5

 End If

2. Set temp = Start

3. If temp->next = Start //deleting the only node of the list

 Set Start = NULL

 Else

 While temp->next != Start//traversing up to the last node

 Set save = temp

 Set temp = temp->next

 End While

 Set save->next = Start //second last node becomes the last node

 End If

4. Deallocate temp //deallocating memory

5. End

Note: The process of deleting a node from a specified position in a circular linked list

is the same as that of a singly-linked list.

Introduction

50

Program 3.2: A program to illustrate the implementation of a circular linked list.

#include<stdio.h>

#include<conio.h>

#define True 1

#define False 0

typedef struct node

{

int info;

struct node *next;

}Node;

/* Function prototypes */

Node * create_node();

int isempty(Node *);

void display(Node *);

void insert_beg(Node **);

void insert_end(Node **);

void delete_beg(Node **);

void delete_end(Node **);

void main()

{

int item,ch,ch1;

Node *Start=NULL;

do

{

clrscr();

printf(“\n\n\tMain Menu”);

printf(“\n1. Insert”);

printf(“\n2. Delete”);

printf(“\n3. Display”);

printf(“\n4. Exit\n”);

printf(“\nEnter your choice: “);

scanf(“%d”,&ch);

switch(ch)

{

case 1: printf(“\n1. Insert in the beginning”);

printf(“\n2. Insert at the end”);

printf(“\n3. Back to main menu\n”);

Introduction

51

printf(“\nEnter your choice: “);

scanf(“%d”,&ch1);

switch(ch1)

{

case 1: insert_beg(&Start);

break;

case 2: insert_end(&Start);

break;

case 3: break;

default: printf(“\nInvalid choice!”);

}

break;

case 2: printf(“\n1. Delete from the beginning”);

printf(“\n2. Delete from the end”);

printf(“\n3. Back to main menu\n”);

printf(“\nEnter your choice: “);

scanf(“%d”,&ch1);

switch(ch1)

{

case 1: delete_beg(&Start);

break;

case 2: delete_end(&Start);

break;

case 3: break;

default: printf(“\nInvalid choice!”);

}

break;

case 3: display(Start);

break;

case 4: exit();

default: printf(“\nInvalid choice!”);

}

 getch();

 }while(1);

}

Node * create_node()

{

Introduction

52

Node *nptr;

int item;

nptr=(Node *)malloc(sizeof(Node));

if(nptr==NULL)

{

printf(“\nOverflow: Memory not allocated!”);

exit();

}

printf(“\nEnter the value to be inserted: “);

scanf(“%d”,&item);

nptr->info=item;

nptr->next=NULL;

return(nptr);

}

int isempty(Node *Start)

{

if(Start==NULL)

return True;

else

return False;

}

void display(Node *Start)

{

Node *temp=Start;

if(isempty(temp))

printf(“\nList is empty!!”);

else

{

printf(“\nThe linked list is: “);

do

{

printf(“%d “,temp->info);

temp=temp->next;

}while(temp != Start);

}

}

void insert_beg(Node **Start)

Introduction

53

{

Node *nptr=create_node();

Node *temp=*Start;

if(isempty(temp))

{

*Start=nptr;

(*Start)->next=*Start;

}

else

{

while(temp->next != *Start)

temp=temp->next;

nptr->next=*Start;

*Start=nptr;

temp->next=*Start;

}

printf(“\nNode inserted.”);

}

void insert_end(Node **Start)

{

Node *temp=*Start;

Node *nptr=create_node();

if(isempty(temp))

{

*Start=nptr;

(*Start)->next=*Start;

}

else

{

while(temp->next != *Start)

temp=temp->next;

temp->next=nptr;

nptr->next=*Start;

}

printf(“\nNode inserted.”);

}

void delete_beg(Node **Start)

Introduction

54

{

Node *temp=*Start;

Node *ptr=temp;

if(isempty(temp))

{

printf(“\nUnderflow: List is empty!”);

return;

}

while(ptr->next != *Start)

ptr=ptr->next;

*Start=(*Start)->next;

ptr->next=*Start;

free(temp);

printf(“\nNode deleted.”);

}

void delete_end(Node **Start)

{

Node *temp=*Start;

Node *save;

if(isempty(temp))

{

printf(“\nUnderflow: List is empty!”);

return;

}

if(temp->next==*Start)

*Start=NULL;

else

{

while(temp->next != *Start)

{

save=temp;

temp=temp->next;

}

save->next=*Start;

}

free(temp);

printf(“\nNode deleted.”);

Introduction

55

}

The output of the program is:

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Back to main menu

Enter your choice: 1

Enter the value to be inserted: 5

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Back to main menu

Enter your choice: 1

Enter the value to be inserted: 4

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 1

Introduction

56

1. Insert in the beginning

2. Insert at the end

3. Back to main menu

Enter your choice: 2

Enter the value to be inserted: 6

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 4 5 6

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Back to main menu

Enter your choice: 1

Node deleted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 5 6

Main Menu

1. Insert

Introduction

57

2. Delete

3. Display

4. Exit

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Back to main menu

Enter your choice: 2

Node deleted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 5

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 4

3.4 Doubly- Linked Lists

In a singly-linked list, each node contains a pointer to the next node and it has no

information about its previous node. Thus, we can traverse only in one direction, that

is, from beginning to end. However, sometimes it is required to traverse in the

backward direction, that is, from end to the beginning. This can be implemented by

maintaining an additional pointer in each node of the list that points to the previous

node. Such a type of linked list is called the doubly-linked list.

Each node of a doubly-linked list consists of three fields: prev, info, and next (Figure

3.17). The info field contains the data, the prev field contains the address of the

previous node and the next field contains the address of the next node.

Introduction

58

Figure 3.17 Node of a Doubly-linked List

Since a doubly-linked list allows traversing in both forward and backward directions,

it is also referred to as a two-way list. Figure 3.18 shows an example of a doubly-

linked list having four nodes. Note that the prev field of the first node and the next

field of the last node in a doubly-linked list points to NULL.

Figure 3.18 An Example of a Doubly-linked List with Four Nodes

To define the node of a doubly-linked list in the ‘C’ language, the structure used to

represent the node of the singly-linked list is extended to have an extra pointer,

which points to the previous node.

The structure of a node of a doubly-linked list is shown here.

typedef struct node

{

int info; /*to store integer type data*/

struct node *next; /*to store a pointer to next node*/

struct node *prev; /*to store a pointer to previous node*/

}Node;

 Node *nptr; /*nptr is a pointer to node*/

When memory is allocated successfully to a node, that is, there is no overflow, the

node is initialized. The info field is initialized with a valid value and the prev and next

Introduction

59

fields are initialized with NULL.

Algorithm 3.18 Creating a Node of Doubly Linked List
create_node()

1. Allocate memory for nptr //nptr is a pointer to a new node

2. If nptr = NULL

 Print “Overflow: Memory not allocated!” and go to step 8

3. Read item //item is the value stored in the node

4. Set nptr->info = item

5. Set nptr->next = NULL

6. Set nptr->prev = NULL

7. Return nptr

8. End

Note that all the operations that are performed on singly-linked lists can also be

performed on doubly-linked lists. In this section, we will discuss only insertion and

deletion operations on doubly-linked lists.

3.4.1 Insertion

To insert a new node at the beginning of a doubly-linked list, a pointer (say, nptr) to

a new node is created. The next field of the new node is made to point to the existing

first node and the prev field of the existing first node (that has become the second

node now) is made to point to the new node. After that, Start is modified to point to a

new node. Figure 3.19 shows the insertion of a node at the beginning of a doubly-

linked list.

Figure 3.19 Insertion at the beginning of a doubly-linked list

Introduction

60

Algorithm 3.19 Insertion in the Beginning
insert_beg(Start)

1. Call create_node() //creating a new node pointed to by nptr

2. If Start != NULL

 Set nptr->next = Start //inserting node in the beginning

 Set Start->prev = nptr

 End If

3. Set Start = nptr //making Start point to the new node

4. End

To insert a new node at the end of a doubly-linked list, the list is traversed up to the

last node using some pointer variable (say, temp). At the end of traversing, temp

points to the last node. Then, the next field of the last node (pointed to by temp) is

made to point to the new node and the prev field of the new node is made to point to

the node pointed to by temp. However, if the list is empty, the new node is inserted

as the first node in the list.

Figure 3.20 shows the insertion of a new node at the end of a doubly-linked list.

Figure 3.20 Insertion at the end of a doubly linked list

Algorithm 3.20 Insertion at the end

insert_end(Start)

1. Call create_node() //creating a new node pointed to by nptr

2. If Start = NULL

 Set Start = nptr //inserting new node as the first node

 Else

 Set temp = Start //pointer temp used for traversing

 While temp->next != NULL

 Set temp = temp->next

Introduction

61

 End While

 Set temp->next = nptr

 Set nptr->prev = temp

 End If

3. End

To insert a new node (pointed to by nptr) at a specified position (say, pos) in a

doubly-linked list, the list is traversed up to the pos-1 position. At the end of

traversing, temp points to the node at the pos-1 position. For simplicity, we use

another pointer variable (say, ptr) to point to the node that is already at the pos

position. Then, the prev field of the node pointed to by ptr is made to point to the new

node and the next field of the new node is made to point to the node pointed to by

ptr. Also, the prev field of the new node is made to point to the node pointed to by

temp and the next field of the node pointed to by temp is made to point to the new

node.

Figure 3.21 shows the insertion of a new node at the third position in a doubly-

linked list.

Figure 3.21 Insertion at a specified position of a doubly linked list

Algorithm 3.21 Insertion at a Specified Position

insert_pos (Start)

1. Call create_node() //creating a new node pointed to by nptr

2. Set temp = Start

3. Read pos

4. Call count_node(temp) //counting number of nodes in count variable

5. If pos = 0 OR pos > count + 1

 Print “Invalid position!” and go to step 7

Introduction

62

 End If

6. If pos = 1

 Set nptr->next = Start //inserting node at the beginning

 Set Start = nptr //Start pointing to new node

 Else

 Set i = 1

 While i < pos-1 //traversing up to the node at pos-1 position

 Set temp = temp->next

 Set i = i + 1

 End While

 Set ptr = temp->next

 Set ptr->prev = nptr

 Set nptr->next = ptr

 Set nptr->prev = temp

 Set temp->next = nptr

 End If

7. End

3.4.2 Deletion

To delete a node from the beginning of a doubly-linked list, a pointer variable (say,

temp) is used to point to the first node. Then Start is modified to point to the next

node and the prev field of this node is made to point to NULL. After that, the memory

occupied by the node pointed to by temp is de-allocated. Figure 3.22 shows the

deletion of a node from the beginning of a doubly-linked list.

Figure 3.22 Deletion from the beginning of a doubly-linked list

Algorithm 3.22 Deletion from the beginning

delete_beg(Start)

1. If Start = NULL

Introduction

63

 Print “Underflow: List is empty!” and go to step 6

 End If

2. Set temp = Start //temp points to the node to be deleted

3. Set Start = Start->next //making Start to point to next node

4. Set Start->prev = NULL

5. Deallocate temp //de-allocating memory

6. End

Note: The process of deleting a node from the end of a doubly-linked list is the same

as that of the singly-linked list.

To delete a node from a position (say, pos) specified by the user, the list is traversed

up to the pos position using pointer variables temp and save. At the end of

traversing, temp points to the node at the pos position and save points to the node at

the pos-1 position. Here, for simplicity, we use another pointer variable ptr to point

to the node at the pos+1 position. Then, the next field of the node at pos-1 position

(pointed to by save) is made to point to the node at pos+1 position (pointed to by ptr).

In addition, the prev field of the node at pos+1 position (pointed to by ptr) is made to

point to the node at pos-1 position (pointed to by save). After that, the memory

occupied by the node pointed to by temp is de-allocated. Figure 3.23 shows the

deletion of a node at the third position from a doubly-linked list.

Figure 3.23 Deletion from a Specified Position of a doubly-linked list

Algorithm 3.23 Deletion from a Specified Position

delete_pos(Start)

1. If Start = NULL

 Print “Underflow: List is empty!” and go to step 8

 End If

2. Set temp = Start

3. Read pos

4. Call count_node(temp) //counting total number of nodes in count variable

Introduction

64

5. If pos > count OR pos = 0

 Print “Invalid position!” and go to step 6

 End If

6. If pos = 1

 Set Start = Start->next //deleting the first node

 Start->prev = NULL

 Else

 Set i = 1

 While i < pos //traversing up to the node at pos position

 Set save = temp //save pointing to the node at pos-1 position

 Set temp = temp->next //making temp to point to next node

 Set i = i + 1

 End While

 Set ptr = temp->next

 Set save->next = ptr

 Set ptr->prev = save

 End If

7. Deallocate temp //deallocating memory

8. End

Note: A doubly-linked list in which the next field of the last node points to the first

node instead of NULL is termed as a doubly-circular linked list.

Program 4.4: A program to illustrate the implementation of a doubly-linked list.

#include<stdio.h>

#include<conio.h>

#define True 1

#define False 0

typedef struct node

{

int info;

struct node *next;

struct node *prev;

}Node; /* node of a doubly linked list */

/* Function prototypes */

Node * create_node();

int isempty(Node *);

void display(Node *);

Introduction

65

int count_node(Node *);

void insert_beg(Node **);

void insert_end(Node **);

void insert_pos(Node **);

void delete_beg(Node **);

void delete_end(Node **);

void delete_pos(Node **);

/*Main Function*/

void main()

{

int item,ch,ch1;

Node *Start=NULL;

do

{

clrscr();

printf(“\n\n\tMain Menu”);

printf(“\n1. Insert”);

printf(“\n2. Delete”);

printf(“\n3. Display”);

printf(“\n4. Exit\n”);

printf(“\nEnter your choice: “);

scanf(“%d”,&ch);

switch(ch)

{

case 1: printf(“\n1. Insert in the beginning”);

printf(“\n2. Insert at the end”);

printf(“\n3. Insert at a specified position”);

printf(“\n4. Back to main menu\n”);

printf(“\nEnter your choice:“);

scanf(“%d”,&ch1);

switch(ch1)

{

case 1:insert_beg(&Start);

break;

case 2:insert_end(&Start);

break;

case 3:insert_pos(&Start);

Introduction

66

break;

case 4:break;

default:printf(“\nInvalid choice!”);

}

break;

case 2 : printf (“\n1. Delete from the beginning”);

printf(“\n2. Delete from the end”);

printf(“\n3. Delete from a specified position”);

printf(“\n4. Back to main menu\n”);

printf(“\nEnter your choice: “);

scanf(“%d”,&ch1);

switch(ch1)

{

case 1:delete_beg(&Start);

break;

case 2:delete_end(&Start);

break;

case 3:delete_pos(&Start);

break;

case 4:break;

default: printf(“\nInvalid choice!”);

}

break;

case 3:display(Start);

break;

case 4: exit();

default: printf(“\nInvalid choice!”);

}

getch();

}while(1);

}

Node * create_node()

{

Node *nptr;

int item;

nptr=(Node *)malloc(sizeof(Node));

if(nptr==NULL)

Introduction

67

{

printf(“\nOverflow: Memory not allocated!”);

exit();

}

printf(“\nEnter the value to be inserted: “);

scanf(“%d”,&item);

nptr->info=item;

nptr->next=NULL;

nptr->prev=NULL;

return(nptr);

}

int isempty(Node *Start)

{

if(Start==NULL)

return True;

else

return False;

}

void display(Node *Start)

{

Node *temp=Start;

if(temp==NULL)

printf(“\nList is empty!!”);

else

{

printf(“\nThe linked list is: “);

while(temp != NULL)

{

printf(“%d “,temp->info);

temp=temp->next;

}

}

}

int count_node(Node *Start)

{

Node *temp=Start;

int count=0;

Introduction

68

while(temp != NULL)

{

count++;

temp=temp->next;

}

return(count);

}

void insert_beg(Node **Start)

{

Node *nptr=create_node();

if (*Start != NULL)

{

nptr->next=*Start;

(*Start)->prev=nptr;

}

*Start=nptr;

printf(“\nNode inserted.”);

}

void insert_end(Node **Start)

{

Node *temp;

Node *nptr=create_node();

if(*Start==NULL)

*Start=nptr;

else

{

temp=*Start;

while(temp->next != NULL)

temp=temp->next;

temp->next=nptr;

nptr->prev=temp;

}

printf(“\nNode inserted.”);

}

void insert_pos(Node **Start)

{

int i,pos,count;

Introduction

69

Node *nptr=create_node();

Node *temp=*Start,*ptr;

printf(“\nEnter the position at which you want to insert:“);

scanf(“%d”,&pos);

count=count_node(temp);

if(pos==0 || pos>count+1)

{

printf(“\nInvalid position!”);

return;

}

if(pos==1)

{

nptr->next=*Start;

*Start=nptr;

}

else

{

for(i=1;i<pos-1;i++)

temp=temp->next;

ptr=temp->next;

ptr->prev=nptr;

nptr->next=ptr;

nptr->prev=temp;

temp->next=nptr;

}

printf(“\nNode inserted.”);

}

void delete_beg(Node **Start)

{

Node *temp=*Start;

*Start=(*Start)->next;

(*Start)->prev=NULL;

free(temp);

printf(“\nNode deleted.”);

}

void delete_end(Node **Start)

{

Introduction

70

Node *temp=*Start;

Node *save;

if(isempty(temp))

{

printf(“\nUnderflow: List is empty!”);

return;

}

if(temp->next==NULL)

*Start=NULL;

else

{

while(temp->next != NULL)

{

save=temp;

temp=temp->next;

}

save->next=NULL;

}

free(temp);

printf(“\nNode deleted.”);

}

void delete_pos(Node **Start)

{

Node *temp=*Start,*save,*ptr;

int i,pos,count;

printf(“\nEnter the position of the node to be deleted:“);

scanf(“%d”,&pos);

count=count_node(temp);

if(pos>count)

{

printf(“\nInvalid position!\n”);

return;

}

if(pos==1)

{

*Start=temp->next;

(*Start)->prev=NULL;

Introduction

71

}

else

{

for(i=1;i<pos;i++)

{

save=temp;

temp=temp->next;

}

ptr=temp->next;

save->next=ptr;

ptr->prev=save;

}

free(temp);

printf(“\nNode deleted.\n”);

}

The output of the program is:

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Insert at a specified position

4. Back to main menu

Enter your choice: 1

Enter the value to be inserted: 6

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Introduction

72

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Insert at a specified position

4. Back to main menu

Enter your choice: 2

Enter the value to be inserted: 5

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 1

1. Insert in the beginning

2. Insert at the end

3. Insert at a specified position

4. Back to main menu

Enter your choice: 3

Enter the value to be inserted: 8

Enter the position at which you want to insert: 2

Node inserted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 6 8 5

Main Menu

1. Insert

2. Delete

3. Display

Introduction

73

4. Exit

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Delete from a specified position

4. Back to main menu

Enter your choice: 3

Enter the position of the node to be deleted: 4

Invalid position!

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Delete from a specified position

4. Back to main menu

Enter your choice: 1

Node deleted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 8 5

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Introduction

74

Enter your choice: 2

1. Delete from the beginning

2. Delete from the end

3. Delete from a specified position

4. Back to main menu

Enter your choice: 2

Node deleted.

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 3

The linked list is: 8

Main Menu

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice: 4

3.5 Dynamic Storage Management: Application of a Doubly-Linked List

As we know in a multiprogramming environment, multiple programs reside in the

main memory at one time in order to efficiently utilize the memory. Whenever a

program requests a memory block of some specific size, the memory manager

allocates memory to it, if available. Once a program completes its execution, it

releases the memory allocated to it so that other programs may use it. In a dynamic

storage management scheme, the memory requirements of the programs are not

known in advance. In addition, the order in which the memory is de-allocated by the

programs may be different from that of memory allocation.

Initially, when there are no jobs in the memory, the whole memory is available for

allocation and is considered as a single large block of available memory (a hole). As

programs enter the system and request variable-size blocks, the memory manager

Introduction

75

allocates them the memory blocks that are large enough to accommodate the

programs. As soon as any program terminates, the memory occupied by it is de-

allocated. Thus, at a given point of time, some blocks of memory may be in use while

others may be free [Figure 3.24 (a)]. Now to make further allocations, the memory

manager must keep track of the free space in memory. For this, the memory manager

maintains a free-storage list that keeps track of the unused blocks (holes of variable

sizes) of memory. The free-storage list is implemented as a linked list where each

node contains the size of the block and the address of the next available block

[Figure 3.24 (b)].

Figure 3.24 Memory Status and Free- storage List

If any program requests for a block of size n, the memory manager may adopt one of

the following strategies to select a hole from the free-storage list.

● First-fit: In this technique, the memory manager searches the free-storage list

for the first hole of size >= n and allocates its n bytes to the program.

Searching can start either from the beginning of the list or where the previous

first-fit search ended in case the free-storage list has been implemented as a

circular linked list.

● Best-fit: In this technique, the memory manager searches the free-storage list

for the smallest hole whose size is more than or equal to n and allocates its n

bytes to the program. Searching always starts from the beginning of the list

unless the list is sorted by size.

● Worst-fit: In this technique, the memory manager searches the free-storage

list for the largest hole and allocates its n bytes to the program. Searching

always starts from the beginning of the list unless the list is sorted by size.

Introduction

76

Note: If only a portion of a free block and not the entire block is to be allocated, the

allocation is made from the bottom of the block to avoid changing links in the free-

storage list.

Out of the above-mentioned strategies, the first-fit is generally faster and simple

enough to understand. However, both first-fit and best-fit suffer from external

fragmentation which leads to the fragmentation of memory into many small holes of

variable sizes that individually are not large enough to satisfy a request. This

happens when allocating a portion of a free block to a program leaves behind a hole

that is smaller than any requests made to the system. If a program, for example,

requests for a block of size 4400 bytes and a free block of size 4500 bytes is

available, then allocating a portion of this block would result in a hole of 100 bytes

that is too small to satisfy any other request made to the system. Moreover, the

overhead to keep track of this small hole is larger than the hole itself. To get rid of

this problem, some suitable constant (say, α) is chosen such that if the allocation of a

portion of the free block to any program results in a hole of size less than α, then the

entire block is allocated to the program.

Once a program terminates, the block of memory allocated to it gets released and is

returned to the free storage list. Along with the returning of blocks, the operating

system must also check whether its adjacent blocks in the free-storage list can be

combined with it to form a single block. If program P2, for example, terminates

[consider Figure 3.24(a)], then instead of adding this block as a node to the free-

storage list [Figure 3.25(a)], it should coalesce with its left neighbor [first node of the

free-storage list shown in Figure 3.24(b)] as shown in Figure 3.25(b). The coalescing

of free blocks is necessary because the allocation algorithm makes the memory

fragmented into small holes. With small holes, it becomes almost impossible to

satisfy the larger requests even if the total free space is available.

(a)

Introduction

77

(b)

Figure 3.25 Free- storage List

Therefore, it is necessary to check whether the adjacent blocks of the block being

returned are free and if they are so, they should coalesce. To examine the adjacent

blocks of the block is returned, its left and right neighbors in the free-storage list

need to be accessed. Since a singly-linked list is being used, accessing the right

neighbor is easy. However, accessing the left neighbor requires traversing the list

from the first node. This process has to be repeated every time a block is returned to

the free-storage list, which becomes very time-consuming.

Therefore, the memory manager uses a doubly-linked list to manage the memory in

order to facilitate efficient memory de-allocation. Each node of this list consists of

four fields: prev, size, status, and next. The prev field contains the address of the

previous block, the size field contains the size of the block, the status field contains

either 0 or 1 to indicate whether it is a free or allocated block, respectively, and the

next field contains the address of the next block. The use of a doubly-linked list

makes the traversal of the list in both forward and backward directions more

convenient. Therefore, accessing the adjacent nodes of a given node becomes easier.

Moreover, the inclusion of the status field in the node structure helps in determining

whether the adjacent block is free or allocated.

3.6 Generalized Lists

The linked lists that we have discussed so far can contain only atomic values, such

as integers, floating-point numbers, characters, etc. On the other hand, a generalized

list is a general form of a linked list whose elements are either atoms or generalized

lists in themselves (also called sublists). Formally, it is defined as a finite sequence of

zero or more elements {a0, a1,......ak} such that ai is either an atom or a sublist. It can

be represented as a simple linked list; however, to indicate whether the element is an

atom or a sublist, an extra field (say, tag) that takes either 0 or 1 is included in each

Introduction

78

node (Figure 3.26). If the value of the tag is 1, then the element represented by the

node is a sublist, otherwise, it is an atom. In case a node represents a sublist, it

stores the address of the first node of the sub list.

Figure 3.26 Node of a Generalized List

The structure definition of the node of a generalized list in ‘C’ language is as follows:

typedef struct node

{

int tag; /*to indicate atom or sublist*/

struct node *next; /*to store pointer to next node*/

union /*to store either data or pointer*/

{

int info; /*to store data*/

struct node *downptr; /*to store address of the first node of sub list*/

}data_ptr;

}GNode; /*node of a generalized list*/

For example, a generalized list {3, {4,5}, 6, {{7,8,9}, 10}}, whose first and third

elements are atoms while others are sublists, can be represented as shown in Figure

3.27.

Figure 3.27 Representation of Generalized List

An important application of generalized lists is to represent polynomials in multiple

Introduction

79

variables. To understand this, consider a polynomial in two variables

f(x,y)=2x5 y3 + 4x5 -3x3 y2+7x-9y3 +7y.

The polynomial f(x,y) can also be written as

(2y 3 +4)x5 +(-3y 2)x3 +7x+(-9y3 +7y)x0 by factoring out the variable x.

Now, f(x,y) may be viewed as Ax5 +Bx3 +Cx+Dx0, where A, B, and D are polynomials

(or sub-lists) in single variable y and C is a constant (or atom). Thus, this polynomial

can be represented using a generalized list (Figure 3.28), where each node consists of

four fields: tag, coeff, expo, and next.

Figure 3.28 Representation of f(x,y) using Generalized List

3.6 Garbage Collection

Whenever a node of a linked list or the entire list is deleted, some memory space

becomes free which can be reused by adding it to the free-storage list. To do this,

there exists a program in memory called garbage collector, which returns unused

space to the free-storage list so that it can be reused in the future. This process of

collecting unused space and returning it to the free-storage list is called garbage

collection. It may take place at the moment a node releases the memory allocated to

it. Alternatively, the operating system may periodically search the memory to collect

and return the unused memory space to the free-storage list, e.g., whenever there is

some or no space available in the free-storage list or whenever the CPU is idle.

The former method of accomplishing garbage collection is very time- consuming. So,

the latter method can be chosen, which requires two phases to carry out the garbage

collection: in the first phase, the operating system goes through the memory to mark

all those blocks that are still in use; and in the second phase, the operating system

collects all unmarked memory blocks and returns them to the free-storage list.

Introduction

80

3.7 Summary

● A linked list is a linear collection of homogeneous elements called nodes. The

successive nodes of a linked list need not occupy adjacent memory locations,

and the linear order between nodes is maintained by means of pointers.

● In a singly-linked list (also called linear linked list), each node consists of two

fields: info and next. The info field contains the data and the next field

contains the address of the memory location where the next node is stored.

● A linear linked list in which the next field of the last node points back to the

first node instead of containing NULL is termed as a circular linked list. The

main advantage of a circular linked list over a linear linked list is that by

starting with any node in the circular list, we can reach any of its predecessor

nodes.

● A linked list that maintains an additional pointer pointing to the previous node

in each node of the list is termed as a doubly-linked list. Each node of a

doubly-linked list consists of three fields: prev, info, and next. The info field

contains the data, the prev field contains the address of the previous node and

the next field contains the address of the next node.

● A generalized list is a general form of a linked list whose elements are either

atoms or generalized lists in themselves (also called sub-lists).

3.8 Key Terms

● Free-storage list or memory bank or free pool: A special list consisting of

unused memory cells.

● Overflow: A situation when there is no space available, that is, the free-

storage list is empty.

● Underflow: A situation where the user tries to delete a node from an empty

linked list.

● Garbage collection: The process of collecting unused space and returning it

to the free-storage list.

3.9 Check Your Progress

Short- Answer type

Q1) A linked list is a linear collection of homogeneous elements called ______.

Introduction

81

Q2) What is the structure of the node of a singly-linked list?

Q3) A new node can be inserted only at the beginning or at the end of a linked list.

(True/ False?)

Q4) When a new node is inserted in between a linked list, which of these is true?

(a) Only the nodes that appear after the new node need to be moved

(b) Only the nodes that appear before the new node need to be moved

(c) The nodes that appear before and after the new node need to be moved

(d) None of the above

Q5) The process of collecting unused space and returning it to the free-storage list is

called ______________.

Long- Answer type

Q1) Write an algorithm to insert a new node in a singly-linked list.

Q2) Write a brief note on

(a) Garbage collection

(b) Generalized Lists

Q3) Differentiate between a singly linked list and a circular linked list.

Q4) Describe Traversing Operation in singly linked list and circular linked list.

Q5) Write an algorithm to delete a node from a specified position in a doubly-linked

list.

References

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

• Advanced Data Structures, Peter Brass, Cambridge University Press, New York, 2008.

• Data Structures and Algorithms, Aho, Ullman and Hopcroft, Addison Wesley

Module: 2

Other Data Structures

Other Data Structures

82

Unit 4 Stacks
Structure

4.0 Introduction

4.1 Unit Objectives

4.2 Stacks

4.3 Memory Representation of Stacks

4.4 Stack Applications

 4.4.1 Recursion 4.4.2 Reversing Strings

 4.4.3 Polish Notation

4.5 Summary

4.6 Key Terms

4.7 Check Your Progress

4.0 Introduction

A stack is a linear data structure in which an element can be added or removed only

at one end, called the top of the stack. This unit discusses the memory

representation of stacks. Various applications of stacks, such as recursion, string

reversal, and Polish notation are also introduced in this unit. If a function definition

includes a call to itself, it is referred to as a recursive function and the process is

known as recursion or circular definition. Reversing strings is a simple application of

stacks. To reverse a string, the characters of the string are pushed onto the stack one

by one as the string is read from left to right. The evaluation of arithmetic

expressions is another important application of stacks. The general way of writing

arithmetic expressions is known as the infix notation in which the binary operator is

placed between two operands on which it operates.

4.1 Unit Objectives

After going through this unit, the reader will be able to:

● Explain the memory representation of stacks.

● Explain the push and pop operations performed on stacks.

● Describe different applications of stacks, including recursion, string reversal,

and evaluation of arithmetic expressions.

Other Data Structures

83

4.2 Stacks

A stack is a linear list of data elements in which the addition of a new element or

deletion of an element occurs only at one end. This end is called Top of the stack.

The operation of adding a new element in the stack and deleting an element from the

stack is called push and pop respectively. Since the addition and deletion of

elements always occur at one end of the stack, the last element that is pushed onto

the stack is the first one to come out. Therefore, a stack is also called a Last-In-First-

Out (LIFO) list.

A pile of books is one of the common examples of a stack. A new book to be added to

the pile is placed at the top and a book to be removed is also taken off from the top.

The book that is put most recently on the pile is the first one to be taken off.

Similarly, the book at the bottom is the last one to be removed. Therefore, in order to

take out the book at the bottom, all the books above it need to be removed from the

pile.

Although arrays, linked lists, and stacks are linear data structures, the difference

lies in insertion and deletion operations. In arrays and linked lists, insertion and

deletion can take place at any place while in the case of stacks, these operations are

limited to the top of the stack.

Figure 4.1 Schematic representation of a stack

(Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition, Chapter- 4, Page No.- 106)

4.3 Memory Representation of Stacks

A stack can be represented in memory either as an array or as a singly-linked list. In

both cases, insertion and deletion of elements are allowed at one end only. Insertion

Other Data Structures

84

and deletion in the middle of the array or the linked list are not allowed. An array

representation of a stack is static. However, the linked list representation is dynamic

in nature. Though array representation is a simple technique, it provides less

flexibility and is not very efficient with respect to memory utilization. This is because

if the number of elements to be stored in the stack is less than the allocated memory,

then the memory space will be wasted. Conversely, if the number of elements to be

handled by the stack is more than the size of the stack, then it will not be possible to

increase the size of the stack to store these elements.

Array Representation of Stacks

When stacks are represented as arrays, a variable named Top is used to point to the

top element of the stack. Initially, the value of Top is set to –1 to indicate an empty

stack. To push an element onto the stack, Top is incremented by one, and the

element is pushed at that position. When Top reaches MAX-1 and an attempt is

made to push a new element, then stack overflows. Here, MAX is the maximum size

of the stack. Similarly, to pop (or remove) an element from the stack, the element on

the top of the stack is assigned to a local variable, and then Top is decremented by

one. When the value of Top is equal to –1 and an attempt is made to pop an element,

the stack underflows.

Therefore, before inserting a new element onto the stack, it is necessary to test the

condition of overflow. Similarly, before removing the top element from the stack, it is

necessary to check the condition of the underflow. The total number of elements in a

stack at a given point of time can be calculated from the value of Top as follows:

Number of elements = Top + 1

Figure 4.2 shows an empty STACK with size 3 and Top = –1.

Figure 4.2 Initial State of STACK

Other Data Structures

85

To insert an element 1 in the Stack, Top is incremented by one and the element 1 is

stored at Stack [Top]. Similarly, other elements can be added to the Stack until Top

reaches 2 (Figure 4.3). To pop an element from the Stack (data element 3), Top is

decremented by one, which removes element 3 from the Stack. Similarly, other

elements can be removed from the Stack until Top reaches –1. Figure 4.3 shows

different states of Stack after performing push and pop operations on it.

Figure 4.3 Various States of STACK after Push and Pop Operations

To implement a stack as an array in C language, the following structure named stack

needs to be defined.
struct stack

{

int item[MAX];

Other Data Structures

86

int Top;

};

Algorithm 4.1 Push Operation on Stack

push(s, element) //s is a pointer to stack

1. If s->Top = MAX-1 //checking for stack overflow

 Print “Overflow: Stack is full!” and go to step 5

 End If

2. Set s->Top = s->Top + 1 //incrementing Top by 1

3. Set s->item[s->Top] = element //inserting element in the stack

4. Print “Value is pushed onto the stack...”

5.End

Algorithm 4.2 Pop Operation on Stack

pop(s)

1. If s->Top = -1 //checking for stack underflow

 Print “Underflow: Stack is empty!”

 Return 0 and go to step 5

 End If

2. Set popped = s->item[s->Top] //taking off the top element from the stack

3. Set s->Top = s->Top - 1 //decrementing Top by 1

4. Return popped

5. End

Program 4.1: A program to implement a stack as an array.

#include<stdio.h>

#include<conio.h>

#define MAX 10

#define True 1

#define False 0

typedef struct stack

{

int item[MAX];

int Top;

}stk;

/*Function prototypes*/

Other Data Structures

87

void createstack(stk *); /*to create an empty stack*/

void push(stk *, int); /*to push an element onto the stack*/

int pop(stk *); /*to pop the top element from the stack*/

int isempty(stk *); /*to check for the underflow condition*/

int isfull(stk *); /*to check for the overflow condition*/

void main()

{

int choice;

int value;

stk s;

createstack(&s);

do{

clrscr();

printf(“\n\tMain Menu”);

printf(“\n1. Push”);

printf(“\n2. Pop”);

printf(“\n3. Exit\n”);

printf(“\nEnter your choice: “);

scanf(“%d”, &choice);

switch(choice)

{

case 1: printf(“\nEnter the value to be inserted: “);

scanf(“%d”, &value);

push(&s, value);

getch();

break;

case 2: value=pop(&s);

if (value==0)

printf(“\nUnderflow: Stack is empty!”);

else

printf(“\nPopped element is: %d”, value);

getch();

break;

case 3: exit();

default: printf(“\nInvalid choice!”);

}

}while(1);

Other Data Structures

88

}

void createstack(stk *s)

{

s->Top=-1;

}

void push(stk *s, int element)

{

if (isfull(s))

{

printf(“\nOverflow: Stack is full!”);

return;

}

s->Top++;

s->item[s->Top]=element;

printf(“\nValue is pushed onto the stack...”);

}

int pop(stk *s)

{

int popped;

if (isempty(s))

return 0;

popped=s->item[s->Top];

s->Top—;

return popped;

}

int isempty(stk *s)

{

if (s->Top==-1)

return True;

else

return False;

}

int isfull(stk *s)

{

if (s->Top==MAX-1)

return True;

else

Other Data Structures

89

return False;

}

The output of the program is:

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 1

Enter the value to be inserted: 23

Value is pushed onto the stack…

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 1

Enter the value to be inserted: 35

Value is pushed onto the stack...

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 1

Enter the value to be inserted: 40

Value is pushed onto the stack…

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 2

Popped element is: 40

Main Menu

1. Push

Other Data Structures

90

2. Pop

3. Exit

Enter your choice: 2

Popped element is: 35

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 2

Popped element is: 23

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 2

Underflow: Stack is empty!

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 3

Linked List Representation of Stacks

A stack implemented as a singly-linked list is commonly known as a linked stack.

When a stack is implemented as a linked list, a pointer variable Top is used to point

to the top element of the stack. Initially, Top is set to NULL to indicate an empty

stack. Whenever a new element is to be inserted in the stack, a new node is created,

and the element is inserted into the node. Then the Top is modified to point to this

new node. Since the memory is allocated dynamically, a linked stack reaches the

overflow condition when no more memory space is available to be allocated

dynamically.

Consider a linked stack, say, Stack. Each node of Stack has two members, info and

next that represent the element in a stack and a pointer to the next node,

Other Data Structures

91

respectively. The pointer Top points to the top node of Stack and is initially set to

NULL for an empty stack. To push an element onto the Stack, a new node nptr is

created and the element is inserted into it. Then, the Top is modified to point to nptr.

On the other hand, to pop an element from the Stack, a temporary pointer is created

which is made to point to the node pointed to by Top. Then Top is modified to point

to the next node in the Stack, and the temporary node is deleted from the memory.

The different states of Stack after performing push and pop operations on it are

shown in Figure 4.4.

Figure 4.4 Various States of Linked Stack after Push and Pop Operations

Other Data Structures

92

Algorithm 4.3 Push Operation on Linked Stack

push(Top,element)

1. Allocate memory for nptr //nptr is a pointer to the new node

2. If nptr = NULL //checking for stack overflow

 Print “Overflow: Memory not allocated!” and go to step 6

 End If

3. Set nptr->info = element

4. Set nptr->next = Top

5. Set Top = nptr

6. End

Algorithm 4.4 Pop Operation on Linked Stack

pop(Top)

1. If Top = NULL //checking for stack underflow

 Print “Underflow: Stack is empty!”

 Return 0 and go to step 7

 End If

2. Set popped = Top->info //popped is a data item at the top of the stack

3. Set temp = Top //temp is a temporary pointer, initialized with Top

4. Set Top = Top->next //making Top point to the next node in the linked stack

5. Deallocate temp //de-allocating memory

6. Return popped

7. End

Program 4.2: A program to illustrate the implementation of a stack as linked list.

#include<stdio.h>

#include<conio.h>

#define True 1

#define False 0

typedef struct node

{

int info;

struct node *next;

}Node;

void createstack(Node **);

Other Data Structures

93

int isempty(Node *);

void push(Node **,int);

int pop(Node **);

void main()

{

int choice, value;

Node *Top;

createstack(&Top);

do

{

clrscr();

printf(“\n\tMain Menu”);

printf(“\n1. Push “);

printf(“\n2. Pop “);

printf(“\n3. Exit\n”);

printf(“\nEnter your choice: “);

scanf(“%d”, &choice);

switch(choice)

{

case 1: printf(“\nEnter the value to be inserted: “);

scanf(“%d”,&value);

push(&Top,value);

getch();

break;

case 2: value=pop(&Top);

if(value==0)

printf(“\nUnderflow: Stack is empty! “);

else

printf(“\nPopped item is: %d”,value);

getch();

break;

case 3: exit();

default: printf(“\nInvalid choice!”);

}

}while(1);

}

void createstack(Node **Top)

Other Data Structures

94

{

*Top=NULL;

}

int isempty(Node *Top)

{

if(Top==NULL)

return True;

else

return False;

}

void push(Node **Top, int element)

{

Node *nptr;

nptr=(Node*)malloc(sizeof(Node));

if (nptr==NULL)

{

printf(“\nOverflow: Memory not allocated!”);

return;

}

nptr->info=element;

nptr->next=*Top;

*Top=nptr;

printf(“\nValue is pushed onto the stack...”);

}

int pop(Node **Top)

{

int popped;

Node *temp;

if(isempty(*Top))

return 0;

popped=(*Top)->info;

temp=*Top;

*Top=(*Top)->next;

free(temp);

return popped;

}

Other Data Structures

95

The output of the program is:

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 1

Enter the value to be inserted: 23

Value is pushed onto the stack…

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 1

Enter the value to be inserted: 34

Value is pushed onto the stack...

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 2

Popped item is: 34

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 2

Popped item is: 23

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 2

Underflow: Stack is empty!

Other Data Structures

96

Main Menu

1. Push

2. Pop

3. Exit

Enter your choice: 3

4.4 Stack Applications

Stacks are used where the last-in-first-out principle is required, such as

implementing recursion, string reversal, evaluation of arithmetic expressions,

implementing function calls, etc. Some of the applications are discussed below.

4.4.1 Recursion

When a function definition includes a call to itself, it is referred to as a recursive

function and the process is known as recursion or circular definition. A recursive

function is said to be well-defined if it satisfies the following two properties:

● The arguments passed to the recursive function must have certain base values

for which the function does not call itself. In simple words, a recursive

function must include a condition or a statement to terminate the function.

● Each time the function calls itself (directly or indirectly), the argument of the

function must get closer to the base value.

In each recursive call, the current values of the parameters, local variables, and the

return address where the control has to return from the call are required to be

stored. For storing all these values, a stack is maintained. When a recursive function

is called for the first time, space is set aside in the memory to execute this call and

the function body is executed. Then a second call to the function is made; again

space is set for this call, and so on. These memory areas for each function call are

arranged in the stack. Each time the function is called, its memory area is placed on

the top of the stack and is removed when the execution of the call is completed

(Figure 4.5).

Other Data Structures

97

Figure 4.5 Calling Recursive Functions

Recursion is one of the most powerful concepts in computer science. Many

mathematical problems, such as computing factorial of a given number, finding the

Fibonacci series, determining the Greatest Common Divisor (GCD) of two positive

numbers, computing binary equivalent of a decimal number, computing binomial

coefficient, etc., can be solved efficiently using recursion. In this section, we are

discussing some of these problems.

Factorial of a given number

The factorial of a given positive number n is defined as the product of all the

numbers from 1 to n (both inclusive). It is usually denoted by n! that is:

n!=1*2*3*4*...*(n-2)*(n-1)*n

For example, if n=6, then 6! = 1*2*3*4*5*6 = 720

Observe that 6! = 6*5!

Similarly, 5! = 5*4!

In general, for every positive number n, n! = n*(n-1)!. Note that for n=0, we can define

0! = 1. Therefore, when n becomes zero, the recursive function terminates (thus, 0 is

the base value in this case).

Other Data Structures

98

Algorithm 4.5 Factorial of a Number

fact(n)

1. If (n == 0)

 return 1 and go to step 2

 Else

 return (n * fact(n-1)) //recursive call to fact()

 End If

2. End

Program 4.3: A program to implement the recursive function for computing factorial

of a given number.

#include<stdio.h>

#include<conio.h>

/*Function prototype*/

int fact(int);

void main()

{

int n;

clrscr();

printf(“Enter a number: “);

scanf(“%d”, &n);

printf(“\nFactorial of %d is %d”, n, fact(n));

getch();

}

int fact(int i)

{

if(i==0)

return 1;

else

return (i*fact(i-1)); /*recursive call to fact()*/

}

The output of the program is:

Enter a number: 7

Factorial of 7 is 5040

Other Data Structures

99

Fibonacci series

The Fibonacci series up to n terms (generally denoted by F0, F1, F3, ..., Fn), is

generated as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21...

That is, each successive term is the sum of its two preceding terms. That is,

If n = 0 or n=1 (0 and 1 are the base values in this case)

Then

Fn= n,

Else

Fn = Fn-2 + Fn-1

Algorithm 4.6 Fibonacci Series up to n terms

fib(n)

1. If (n == 0 OR n == 1)

 return n and go to step 2

 Else

 return (fib(n-1) + fib(n-2))

fib()

 End If

2. End

Program 4.4: A program to implement the recursive function for finding the

Fibonacci series up to n terms.

#include<stdio.h>

#include<conio.h>

/*Function prototype*/

unsigned fib(unsigned int);

void main()

{

unsigned int n;

int i;

clrscr();

printf(“Enter the number of terms to be generated: “);

scanf(“%d”, &n);

Other Data Structures

100

printf(“\nFibonacci series up to %d terms is: \n\n”, n);

for(i=0;i<n;i++)

printf(“%u “, fib(i));

getch();

}

unsigned fib(unsigned int i)

{

if(i==0 || i==1)

return i;

else

return (fib(i-1)+fib(i-2)); /*recursive call to fib()*/

}

The output of the program is:

Enter the number of terms to be generated: 15

Fibonacci series up to 15 terms is:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Greatest common divisor

Another example of recursive function is to determine the greatest common divisor

(GCD) of two positive numbers using Euclid’s algorithm, which is given below:

GCD(n2, n1), if (n1<n2)

GCD(n1, n2) = n2, if (n1>=n2) and n1 mod n2=0

GCD(n2, n1 mod n2), otherwise

Algorithm 4.7 GCD of Two Numbers

GCD(p, q)

1. Set rem = p % q

2. If (p >= q AND rem == 0)

 return q and go to step 3

 Else

 Call GCD(q, rem) //recursive call to GCD()

 End If

3. End

Other Data Structures

101

Program 4.5: A program to implement the recursive function for finding the GCD of

two positive numbers.

#include<stdio.h>

#include<conio.h>

/*Function prototype*/

int GCD(int, int);

void main()

{

int num1, num2;

clrscr();

printf(“Enter first number: “);

scanf(“%d”, &num1);

printf(“\nEnter second number: “);

scanf(“%d”, &num2);

printf(“\nGCD of %d and %d is: %d”, num1, num2, GCD(num1, num2));

getch();

}

int GCD(int p, int q)

{

int rem=p%q;

if((p>=q) && (rem==0))

return q;

else

GCD(q, rem); /*recursive call to GCD()*/

}

The output of the program is:

Enter the first number: 49

Enter second number: 63

GCD of 49 and 63 is: 7

Decimal to binary conversion

The conversion of decimal number n to its equivalent binary number can also be performed in a

recursive manner. The recursive function, in this case, terminates when n becomes 0 or 1.

Therefore, 0 and 1 are the base values in this case.

Other Data Structures

102

Algorithm 4.8 Decimal to Binary Conversion

binary(n)

1. If (n == 1 OR n == 0)

 Print n and go to step 2

 Else

 Set rem = n % 2

 Set n = n / 2

 Call binary(n) //recursive call to binary()

 Print rem

 End If

2. End

Program 4.6: A program to implement the recursive function for finding the binary equivalent of

a decimal number.

#include<stdio.h>

#include<conio.h>

/*Function prototype*/

void binary(int);

void main()

{

int num;

clrscr();

printf(“Enter a number: “);

scanf(“%d”, &num);

printf(“\nBinary equivalent of this number is “);

binary(num);

getch();

}

void binary(int n)

{

int rem;

if (n==1||n==0)

printf(“%d”, n);

else

Other Data Structures

103

{

rem=n%2;

n=n/2;

binary(n); /*recursive call to binary()*/

printf(“%d”, rem);

}

}

The output of the program is:

Enter a number: 89

Binary equivalent of this number is 1011001

4.4.2 Reversing Strings

Another simple application of stacks is reversing strings. To reverse a string, the

characters of the string are pushed onto the stack one by one as the string is read

from left to right. Once all the characters of the string are pushed onto the stack,

they are popped one by one. Since the character last pushed in comes out first,

subsequent pop operations result in the reversal of the string.

For example, to reverse the string “REVERSE”, the string is read from left to right

and its characters are pushed onto a stack, starting from the letter R, then E, V, E,

and so on as shown in Figure 4.6.

Figure 4.6 Reversing a String using a Stack

Once all the letters are stored in the stack, they are popped one by one. Since the

letter at the top of the stack is E, it is the first letter to be popped. The subsequent

pop operations take out the letters S, R, E, and so on. Thus, the resultant string is

the reverse of the original one as shown in the above figure.

Other Data Structures

104

Algorithm 4.9 String Reversal using Stack

reversal(s, str)

1. Set i = 0

2. While(i < length_of_str)

 Push str[i] onto the stack

 Set i = i + 1

 End While

3. Set i = 0

4. While(i < length_of_str)

 Pop the top element of the stack and store it in str[i]

 Set i = i + 1

 End While

5. Print “The reversed string is: ”, str

6. End

Program 4.7: A program to reverse a given string using stacks.

#include<stdio.h>

#include<conio.h>

#include<string.h>

#define MAX 101

typedef struct stack

{

char item[MAX];

int Top;

}stk;

/*Function prototypes*/

void createstack(stk *);

void reversal(stk *, char *);

void push(stk *, char);

char pop(stk *);

void main()

{

stk s;

char str[MAX];

int i;

Other Data Structures

105

createstack(&s);

clrscr();

do

{

printf(“Enter any string (max %d characters): “, MAX-1);

for(i=0;i<MAX;i++)

{

scanf(“%c”, &str[i]);

if(str[i]==’\n’)

break;

}

str[i]=’\0';

}while(strlen(str)==0);

reversal(&s, str);

getch();

}

void createstack(stk *s)

{

s->Top=-1;

}

void reversal(stk *s, char *str)

{

int i;

for (i=0;i<strlen(str);i++)

push(s, str[i]);

for(i=0;i<strlen(str);i++)

str[i]=pop(s);

printf(“\nThe reversed string is: %s”, str);

}

void push(stk *s, char item)

{

s->Top++;

s->item[s->Top]=item;

}

char pop(stk *s)

{

char popped;

Other Data Structures

106

popped=s->item[s->Top];

s->Top—;

return popped;

}

The output of the program is:

Enter any string (max 100 characters): Hello World

The reversed string is: dlroW olleH

4.4.3 Polish Notation

Another important application of stacks is the evaluation of arithmetic expressions.

The general way of writing arithmetic expressions is known as the infix notation

where the binary operator is placed between two operands on which it operates. (For

simplicity, we have ignored expressions containing unary operators). The expressions

a+b and (a-c)*d, ((a+b)*(d/f)-f) , for example, are in infix notation. The order of

evaluation in these expressions depends on the parentheses and the precedence of

operators. The order of evaluation of the expression (a+b)*c, for example, is different

from that of a+(b*c). As a result, it is difficult to evaluate an expression in infix

notation. Thus, the arithmetic expressions in the infix notation are converted to

another notation, which can be easily evaluated by a computer system to produce

correct results.

A Polish mathematician, Jan Lukasiewicz, suggested two alternative notations to

represent an arithmetic expression. In these notations, the operators can be written

either before or after the operands on which they operate.

The notation in which an operator occurs before its operands are known as the prefix

notation (also known as the Polish notation). For example, the expressions +ab and *-

acd are in prefix notation. On the other hand, the notation in which an operator

occurs after its operands is known as the postfix notation (also known as the Reverse

Polish or suffix notation). The expressions ab+ and ac-d*, for example, are in postfix

notation.

A characteristic feature of prefix and postfix notations is that the order of evaluation

of an expression is determined by the position of the operator and operands in the

expression. In other words, the operations are performed in the order in which the

operators are encountered in the expression. Hence, parentheses are not required for

Other Data Structures

107

the prefix and postfix notations. Moreover, while evaluating the expression, the

precedence of operators is insignificant. As a result, they are compiled faster than the

expressions in infix notation. Note that the expressions in infix notation can be

converted to both prefix and postfix notations. Here we will discuss infix to postfix

conversion only and the evaluation of postfix expressions.

Conversion of infix to postfix notation

To convert an arithmetic expression from infix notation to postfix notation, the

precedence and associativity rules of operators are always kept in mind. The

operators of the same precedence are evaluated from left to right. This conversion

can be performed either manually (without using stacks) or by using stacks. The

three steps for converting the expression manually are given here.

Step1: The actual order of evaluation of the expression in infix notation is

determined by inserting parentheses in the expression according to the precedence

and associativity of operators.

Step 2: The expression in the innermost parentheses is converted into postfix

notation by placing the operator after the operands on which it operates.

Step 3: Step 2 is repeated until the entire expression is converted into a postfix

notation.

For example, to convert the expression a+b*c into equivalent postfix notation, the

following steps are performed:

1. Since the precedence of * is higher than +, the expression b*c has to be

evaluated first. Hence, the expression is written as:

(a+(b*c))

2. The expression in the innermost parentheses, that is, b*c is converted into its

postfix notation. Hence, it is written as bc*. The expression now becomes:

(a+bc*)

3. Now the operator + has to be placed after its operands. The two operands for

the + operator are a and the expression bc*. The expression now becomes:

(abc*+)

Hence, the equivalent postfix expression is:

abc*+

When expressions are complex, manual conversion becomes difficult. On the other

Other Data Structures

108

hand, the conversion of an infix expression into a postfix expression is simple when it

is implemented through stacks. In this method, the infix expression is read from left

to right, and a stack is used to temporarily store the operators and the left

parenthesis. The order in which the operators are pushed onto and popped from the

stack depends on the precedence of operators and the occurrence of parenthesis in

the infix expression. The operands in the infix expression are not pushed onto the

stack; rather they are directly placed in the postfix expression. Note that the

operands maintain the same order as in the original infix notation.

Algorithm 4.10 Infix to Postfix Conversion

infixtopostfix(s, infix, postfix)

1. Set i = 0

2. While (i < number_of_symbols_in_infix)

 If infix[i] is a whitespace or comma

 Set i = i + 1 and continue

 If infix[i] is an operand, add it to postfix

 Else If infix[i] = ‘(’, push it onto the stack

 Else If infix[i] is an operator, follow these steps:

 i. For each operator on the top of the stack whose precedence is greater than or

equal

to the precedence of the current operator, pop the operator from the stack and add

it to the postfix

 ii. Push the current operator to the stack

 Else If infix[i] = ‘)’, follow these steps:

 i. Pop each operator from the top of the stack and add it to postfix until ‘(’ is

encountered in the stack

 ii. Remove ‘(’ from the stack and do not add it to the postfix

 End If

 Set i = i + 1

 End While

3. End

For example, consider the conversion of the following infix expression to postfix

expression:

Other Data Structures

109

a-(b+c)*d/f

Initially, a left parenthesis ‘(’ is pushed onto the stack, and the infix expression is

appended with a right parenthesis ‘)’. The initial state of the stack, infix expression,

and postfix expression is shown in Figure 4.7.

Figure 4.7 Initial State of the Stack, Infix Expression, and Postfix Expression

infix is read from left to right and the following steps are performed.

1. The operand ‘a’ is encountered, which is directly put to postfix.

2. The operator ‘–’ is pushed onto the stack.

3. The left parenthesis ‘(’ is pushed onto the stack.

4. The next element is b which being an operand is directly put to postfix.

5. ‘+’ being an operator is pushed onto the stack.

6. Next, ‘c’ is put to postfix.

7. The next element is the right parenthesis ‘)’ and, hence, the operators on the

top of the stack are popped until ‘(’ is encountered in the stack. Till now, the

only operator in the stack above the ‘(’ is ‘+’, which is popped and put to

postfix. ‘(’ is popped and removed from the stack (Figure 4.8 (a). Figure 4.8 (b)

shows the current position of the stack.

Other Data Structures

110

Figure 4.8 Intermediate States of Postfix and Infix Expressions and the Stack

8. After this, the next element ‘*’ is an operator and, hence, it is pushed onto the

stack.

9. Then, ‘d’ is put to postfix.

10. The next element is ‘/’. Since the precedence of / is the same as the

precedence of *, the operator * is popped from the stack and / is pushed onto

the stack (Figure 4.9).

11. The operand ‘f’ is directly put to postfix after which ‘)’ is encountered.

12. On reaching ‘)’, the operators in the stack before the next ‘(’ is reached are

popped. Hence, / and – are popped and put to postfix as shown in Figure 4.9.

Figure 4.9 The State when – and / are Popped

Other Data Structures

111

13. ‘(’ is removed from the stack. Since the stack is empty, the algorithm is

terminated and a postfix is printed.

The stepwise conversion of expression a-(b+c)*d/f into its equivalent postfix expression

is shown in Table 2.1.

Table 2.1 Conversion of Infix Expression into Postfix

Program 4.8: A program to convert an expression from infix notation to postfix

notation.

#include<stdio.h>

#include<conio.h>

#include<string.h>

#define MAX 102

typedef struct stack

{

char item[MAX];

int Top;

}stk;

/*Function prototypes*/

void createstack(stk *);

void infixtopostfix(stk *, char *, char *);

int precedence(char);

int isOperator(char);

void push(stk *, char);

char pop(stk *);

void main()

{

Other Data Structures

112

stk s;

char infix[MAX], *postfix;

int i, len;

clrscr();

createstack(&s);

do

{

printf(“\nEnter expression in infix notation (max %d characters): “, MAX-2);

for(i=0;i<MAX-1;i++)

{

scanf(“%c”, &infix[i]);

if(infix[i]==’\n’)

break;

}

infix[i]=’)’;

infix[i+1]=’\0';

}while(strlen(infix)==0);

push(&s, ‘(‘);

len=strlen(infix);

postfix=(char*)malloc(len+1);

infixtopostfix(&s, infix, postfix);

printf(“\nThe equivalent postfix expression is %s”, postfix);

getch();

}

void createstack(stk *s)

{

s->Top=-1;

}

void infixtopostfix(stk *s, char *in, char *po)

{

int i,j,len, preStack, preOp;

char popped;

len=strlen(in);

i=j=0;

while(i<len)

{

if (in[i]==’ ‘||in[i]==’\t’ || in[i]==’,’)

Other Data Structures

113

{

i++;

continue;

}

if(in[i]==’(‘)

push(s, in[i]);

else if(isOperator(in[i]))

{

preStack=precedence(s->item[s->Top]);

preOp=precedence(in[i]);

while(preStack>=preOp)

{

po[j++]=pop(s);

preStack=precedence(s->item[s->Top]);

}

push(s, in[i]);

}

else if(in[i]==’)’)

{

while((popped=pop(s))!=’(‘)

{

po[j++]=popped;

}

}

else

po[j++]=in[i];

i++;

}

po[j]=’\0';

}

void push(stk *s, char item)

{

s->Top++;

s->item[s->Top]=item;

}

char pop(stk *s)

{

Other Data Structures

114

char popped;

popped=s->item[s->Top];

s->Top—;

return popped;

}

int isOperator(char op)

{

switch(op)

{

case ‘^’:

case ‘+’:

case ‘-’:

case ‘*’:

case ‘/’: return 1;

}

return 0;

}

int precedence(char op)

{

switch(op)

{

case ‘^’: return 3;

case ‘/’:

case ‘*’:

case ‘%’: return 2;

case ‘+’:

case ‘-’: return 1;

}

return 0;

}

The output of the program is:

Enter expression in infix notation (max 100 characters): A+(B*C- (D/E^F)*)*H

The equivalent postfix expression is ABC*DEF^/*-H*+

Other Data Structures

115

Evaluation of postfix expression

In a computer system when an arithmetic expression in an infix notation needs to be

evaluated, it is first converted into its postfix notation. The equivalent postfix

expression is then evaluated. The evaluation of postfix expressions is also

implemented through stacks. Since the postfix expression is evaluated in the order of

appearance of operators, parentheses are not required in the postfix expression.

During the evaluation, a stack is used to store the intermediate results of the

evaluation. Since an operator appears after its operands in a postfix expression, the

expression is evaluated from left to right. Each element in the expression is checked

whether it is an operator or an operand. If the element is an operand, it is pushed

onto the stack. On the other hand, if the element is an operator, the first two

operands are popped from the stack and the operation is performed on them. The

result of the operation is then pushed back to the stack. This process is repeated

until the entire expression is evaluated.

Algorithm 4.11 Evaluation of a Postfix Expression
evaluationofpostfix(s, postfix)

1. Set i = 0, RES=0.0

2. While (i < number_of_characters_in_postfix)

 If postfix[i] is a whitespace or comma

 Set i = i + 1 and continue

 If postfix[i] is an operand, push it onto the stack

 If postfix[i] is an operator, follow these steps:

I. Pop the top element from stack and store it in operand2

II. Pop the next top element from stack and store it in operand1

III. Evaluate operand2 op operand1, and store the result in RES (op is the current operator)

IV. Push RES back to stack

 End If

 Set i = i + 1

 End While

3. Pop the top element and store it in RES

4. Return RES

5. End

For example, consider the evaluation of the following postfix expression using stacks:

abc+d*f/-

Other Data Structures

116

where, a=6, b=3, c=6, d=5, f=9

After substituting the values of a, b, c, d, and f, the postfix expression becomes:

636+5*9/-

The expression is evaluated as follows:

1. The expression is read from left to right and each element is checked whether

it is an operand or an operator.

2. The first element is ‘6’, which being an operand is pushed onto the stack.

3. Similarly, operands ‘3’ and ‘6’ are pushed onto the stack.

4. The next element is ‘+’, which is an operator. Hence, the element at the top of

stack ‘6’ and the next top element ‘3’ are popped from the stack as shown in

Figure 4.10.

Figure 4.10 Evaluation of the Expression using Stacks

5. The expression 3+6 is evaluated and the result (that is, 9) is pushed back to

stack as shown in Figure 4.11.

6. The next element in the expression, that is 5, is pushed to the stack.

7. The next element is ‘*’, which is a binary operator. Hence, the stack is popped

twice and elements 5 and 9 are taken off from the stack as shown in Figure

4.11.

Other Data Structures

117

Figure 4.11 Popping 9 and 5 from Stack

8. The expression ‘9*5’ is evaluated and the result, that is ‘45’, is pushed back to

the stack.

9. The next element in the postfix expression is ‘9’, which is pushed onto the

stack.

10. The next element is the operator ‘/’. Therefore, the two operands from the top of

the stack, that is ‘9’ and ‘45’, are popped from the stack, and operation ‘45/9’ is

performed. Result ‘5’ is again pushed to the stack.

11. The next element in the expression is ‘–’. Hence, ‘5’ and ‘6’ are popped from the

stack, and operation ‘6-5’ is performed. The resulting value, that is ‘1’, is

pushed to the stack (Figure 4.12).

Figure 4.12 Final State of Stack with the Result

12. There are no more elements to be processed in the expression. The element on

top of the stack is popped, which is the result of the evaluation of the postfix

Other Data Structures

118

expression. Thus, the result of the expression is ‘1’.

The step-wise evaluation of the expression 636+5*9/- is shown in Table 2.2.

Table 2.2 Evaluation of the Postfix Expression

Program 4.9: A program to evaluate a postfix expression.

#include<stdio.h>

#include<conio.h>

#include<string.h>

#include<math.h>

#define MAX 102

typedef struct stack

{

float item[MAX];

int Top;

}stk;

/*Function prototypes*/

void createstack(stk *);

float evaluationofpostfix(stk *, char *);

void push(stk *, float);

Other Data Structures

119

float pop(stk *);

void main()

{

stk s;

char postfix[MAX];

int i;

float result;

clrscr();

createstack(&s);

do

{

printf(“\nEnter expression in postfix notation (max %d characters): “, MAX-2);

for(i=0;i<MAX-1;i++)

{

scanf(“%c”, &postfix[i]);

if(postfix[i]==’\n’)

break;

}

postfix[i]=’\0';

}while(strlen(postfix)==0);

result=evaluationofpostfix(&s, postfix);

printf(“\nThe result of postfix expression is %7.2f”, result);

getch();

}

void createstack(stk *s)

{

s->Top=-1;

}

float evaluationofpostfix(stk *s, char *po)

{

int i, len;

int number;

float operand1, operand2;

float res=0.0;

len=strlen(po);

i=0;

while(i<len)

Other Data Structures

120

{

if (po[i]==’ ‘||po[i]==’\t’ || po[i]==’,’)

{

i++;

continue;

}

if(isdigit(po[i]))

{

number=(int)(po[i]-’0');

i++;

while (isdigit(po[i]))

{

po[i]=(int)(po[i]-’0'); / * converting char to int*/

number=number*10;

number+=po[i];

i++;

}

push(s, number);

}

else

{

operand2=pop(s);

operand1=pop(s);

switch(po[i])

{

case ‘+’: res=operand1+operand2;

break;

case ‘-’: res=operand1-operand2;

break;

case ‘*’: res=operand1*operand2;

break;

case ‘/’: res=(float)operand1/operand2;

break;

case‘%’: res=(int)operand1%(int)operand2;

break;

case ‘^’: res=pow(operand1, operand2);

break;

Other Data Structures

121

default: printf(“\nIllegal expression...”);

getch();

exit();

}

push(s, res);

}

i++;

}

res=pop(s);

return res;

}

void push(stk *s, float item)

{

s->Top++;

s->item[s->Top]=item;

}

float pop(stk *s)

{

float popped;

popped=s->item[s->Top];

s->Top—;

return popped;

}

The output of the program is:

Enter expression in postfix notation (max 100 characters): 7 5 - 9 2 / *

The result of postfix expression is 9.00

4.5 Summary

● A stack is a linear data structure in which an element can be added or

removed only at one end called the top of the stack.

● In stack terminology, the insert and delete operations are known as push and

pop operations respectively. A stack works on the principle of ‘last-in-first-out’

and is also known as a Last-In-First-Out (LIFO) list.

● A stack can be represented in memory either as an array or as a singly linked

Other Data Structures

122

list. An array representation of a stack is static and linked list representation

is dynamic in nature.

● When a function definition includes a call to itself, it is referred to as a

recursive function and the process is known as recursion or circular

definition.

● To reverse a string, the characters of the string are pushed onto the stack one

by one as the string is read from left to right. Once all the characters of the

string are pushed onto the stack, they are popped one by one.

● The notation in which an operator occurs before its operands are known as

the prefix notation (also known as the Polish notation). On the other hand, the

notation in which an operator occurs after its operands is known as the

postfix notation (also known as the Reverse Polish or suffix notation).

4.6 Key Terms

● Recursive function: A function whose definition includes a call to itself.

● Infix notation: The general way of writing arithmetic expressions in which the

binary operator is placed between two operands on which it operates.

● Prefix notation: The notation in which an operator occurs before its operands

(also known as the Polish notation).

● Postfix notation: The notation in which an operator occurs after its operands

(also known as the Reverse Polish or suffix notation).

● Dynamic Allocation: Automatic memory allocation where memory is allocated

as required at run-time.

4.7 Check Your Progress

Short- Answer type

Q1) A stack can be represented as an array as well as a linked list. (True/False?)

Q2) When a function definition includes a call to itself, it is referred to as a ________.

Q3) The condition Top= –1 indicates that:

(a) Stack is empty (b) Stack is full (c) Stack has only one element

(d) None of the above

Q4) An infix expression can be converted into a postfix expression with the help of

stacks. (True/False?)

Other Data Structures

123

Q5) Define String Reversal.

Long- Answer type

Q1) Write a C program to convert an infix expression into a postfix notation.

Q2) What are the two ways of implementing stacks? Which one is preferred over the

other and why?

Q3) Write the algorithm to implement push and pop operations on a stack.

Q4) What are the various applications of stacks? Write a C program to implement

any one of them.

Q5) Differentiate between infix, postfix, and prefix expressions.

References

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

• Data Structures with C, Lipschutz, S. (2011), Delhi: Tata McGraw-Hill.

• Data Structures and Algorithms, Aho, Ullman and Hopcroft, Addison Wesley

(January 1983).

Other Data Structures

124

Unit 5 Queues
Structure

5.0 Introduction

5.1 Unit Objectives

5.2 Basic terminology of Queues

5.3 Queue Operations

5.4 Representation of a Queue

5.4.1 Using an array 5.4.2 Using a Linked List

5.5 Various Queue Structures

 5.5.1 Circular Queue 5.5.2 Priority Queue

5.6 Summary

5.7 Key Terms

5.8 Check Your Progress

5.0 Introduction

A queue refers to a linear data structure in which a new element is inserted at one

end and another element is deleted from the other end. The first element added to

the queue is to be removed first. It means that the queue works on the principle of

‘first-in-first-out’. This is why it is also known as a First-In-First-Out (FIFO) list.

Queues, such as stacks, can be represented in memory by using an array or a singly

linked list. You will learn about two types of queues: circular queue and priority

queue. In a circular queue, as soon as the rear index of the queue reaches the

maximum size of the array, the rear is reset to the beginning of the queue, provided it

is free. A priority queue refers to a type of queue in which each element is assigned a

priority and the elements are added or removed according to that priority.

A common example of a queue is people waiting in line at a bus stop. The first person

in the queue enters the bus first. Any new person has to join at the end of the queue.

In other words, the order in which people take the bus in the order in which they

have joined the queue. The size of the queue is not fixed and it keeps varying as per

the number of people joining and leaving the queue.

5.1 Unit Objectives

After going through this unit, the reader will be able to:

Other Data Structures

125

● Discuss the basic terminology of Queues.

● Representation of a Queue using an array and Linked List.

● Explain different types of Queue structures.

5.2 Basic terminology of Queues

An ordered collection of homogeneous data elements in which insertion and deletion

operations take place at two extreme ends is called a queue. A queue is also a linear

structure like an array, a linked list, and a stack but a queue is a first-in-first-out

(FIFO) list. It means that the data in the queue is processed in the same order as it

had entered. The process of inserting a data element into a queue is termed

ENQUEUE and deletion is termed as DEQUEUE. Both the operations take place at

the two ends of the queue called REAR and FRONT respectively. An element in the

queue is termed as an ITEM. The number of elements a queue can hold is termed as

the LENGTH of the queue. Figure 5.1 shows the schematic of a queue with REAR and

FRONT ends.

Figure 5.1 Schematic representation of a queue

Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition

5.3 Queue Operations

Basically, there are two operations performed on a queue, insertion, and deletion.

The insertion of any item at the REAR end of the queue is referred to as ENQUEUE

and the deletion of any item at the FRONT end of the queue is referred to as

DEQUEUE.

The queue supports the following operations:

● enqueue(obj): Insert obj at the end of the queue, making it the last item.

● dequeue(): Return the first object from the queue and remove it from the

queue.

Other Data Structures

126

● queue empty(): Test whether the queue is empty.

Insert at Rear-End (ENQUEUE)

For inserting an item into a queue, firstly we have to verify whether the queue is full

or not. If the queue is full, then a new item can not be inserted. After verifying this

condition, items can be inserted at the rear end of the queue. After insertion, the

value of the rear is incremented by 1.

Delete from the Front End (DEQUEUE)

To delete an item from the queue, firstly we have to verify that the queue should not

be empty. After verifying this condition that the queue is not empty, the items are

deleted from the front end of the queue. After deleting an item, the value of the front

is incremented by 1.

For example, figure 5.2 represents the basic operations of a queue. The first element

to be inserted into the queue is 10, the second element to be inserted is 15 and so

on. 30 is the last inserted element. Accordingly, the first element to be deleted from

the queue is 10. If we have to add a new element, then it can be inserted after 30 and

it will be at the last place in the queue. We can not insert a new element in the queue

when the queue is full.

Figure 5.2 Example of basic operations in a queue

5.4 Representation of a Queue

Like stacks, queues can also be represented in memory by using an array or a singly

linked list. An array representation of a queue is static. However, the linked list

representation is dynamic in nature. Though array representation is a simple

technique, it provides less flexibility and is not very efficient with respect to memory

utilization. This is because an array reserves a fixed memory for the number of

Other Data Structures

127

elements to be stored in the queue. So, it could result in generating possible overflow

errors. Let's discuss both the methods of representing a queue in detail.

5.4.1 Using an array

When a queue is implemented as an array, all the characteristics of an array are

applicable to the queue. Since an array is a static data structure, the array

representation of a queue requires the maximum size of the queue to be

predetermined and fixed. As we know that the queue keeps on changing as the

elements are inserted or deleted, the maximum size should be large enough for a

queue to expand or shrink.

The representation of a queue as an array needs an array to hold the elements of the

queue and two variables, Rear and Front, to keep track of the rear and the front ends

of the queue respectively. Initially, the value of the Rear and Front is set to –1 to

indicate an empty queue. Before we insert a new element in the queue, it is

necessary to test the condition of overflow. The queue is in a condition of overflow

(full) when Rear is equal to the MAX -1, where MAX is the maximum size of the array.

If the queue is not full, the insert operation can be performed. To insert an element in

the queue, the Rear is incremented by one, and the element is inserted at that

position.

Similarly, before we delete an element from the queue, it is necessary to test the

condition of the underflow. The queue is in the condition of underflow (empty) when

the value of Front is –1. If the queue is not empty, a delete operation can be

performed. To delete an element from the queue, the element referred to by the Front

is assigned to a local variable, and then the Front is incremented by one.

The total number of elements in a queue at a given point of time can be calculated

from the values of the Rear and Front as given here.

Number of elements = Rear – Front + 1

To understand the implementation of the queue as an array in detail, consider a

queue stored in the memory as an array named Queue that has MAX as its

maximum number of elements. Rear and Front store the indices of the rear and front

elements of the Queue. Initially, the Rear and Front are set to –1 to indicate an empty

queue (Figure 5.3 (a)).

Whenever a new element has to be inserted in the queue, the Rear is incremented by

Other Data Structures

128

one and the element is stored at Queue [Rear]. Suppose element 9 is to be inserted in

the queue. In this case, the rear is incremented from –1 to 0, and the element is

stored at Queue [0]. Since it is the first element to be inserted, the Front is also

incremented by one to make it refer to the first element of the queue (Figure 5.3 (b)).

For subsequent insertions, the value of Rear is incremented by one, and the element

is stored at Queue [Rear]. However, the Front remains unchanged (Figure 5.3 (c)).

Observe that the Front and Rear elements of the Queue are the first and the last

elements of the list, respectively.

Whenever an element is to be deleted from the queue, the Front is incremented by

one. Suppose that an element is to be deleted from the Queue. Then, here, it must be

9. It is because the deletion is always made at the front end of a queue. The deletion

of the first element results in the queue as shown in Figure 5.3(d). Similarly, deletion

of the second element results in a queue as shown in Figure 5.3(e). Observe that after

deleting the second element from the queue, values of Front and Rear are equal.

Here, it is apparent that when values of Front and Rear are equal other than –1,

there is only one element in the queue. When this only element of the queue is

deleted, both Rear and Front are again made equal to –1 to indicate an empty queue.

Further, suppose that some more elements are inserted and the Rear reaches the

maximum size of the array (Figure 5.3 (f)). That means Queue is full and no more

elements can be inserted in Queue even though the space is vacant on the left of the

Front. This problem can be resolved using circular queues.

To implement a queue as an array in C language, the following structure named

queue is used.

struct queue

{

int item[MAX];

int Front;

int Rear;

};

Algorithm 5.1 Insert Operation on Queue

qinsert(q, val)) //q is a pointer to structure type queue and val is the value to be inserted

1. If q->Rear = MAX-1 //check if queue is full

 Print “Overflow: Queue is full!” and go to step 5

 End If

2. If q->Front = -1 //check if queue is empty

Other Data Structures

129

 Set q->Front = 0 //make front to refer to first element

 End If

3. Set q->Rear = q->Rear + 1 //increment Rear by one

4. Set q->item[q->Rear] = val //insert val

5. End

Figure 5.3 Various States of a Queue after Insert and Delete Operations

Other Data Structures

130

Algorithm 5.2 Delete Operation on Queue

qdelete(q)

1. If q->Front = -1 //check if queue is empty

 Print “Underflow: Queue is empty!”

 Return 0 and go to step 5

 End If

2. Set del_val = q->item[q->Front] //del_val is the value to be deleted

3. If q->Front = q->Rear //check if there is only one element

 Set q->Front = q->Rear = -1

 Else

 Set q->Front = q->Front + 1 //increment Front by one

 End If

4. Return del_val

5. End

Program 5.1: A program to implement a queue as an array.

/* Function prototypes */

void createqueue(que *);

void qinsert(que *,int);

int qdelete(que *);

int isempty(que);

int isfull(que);

void main()

{

int choice,val,element;

que q;

createqueue(&q);

do

{

clrscr();

printf(“\n\t Main Menu”);

printf(“\n1. Insert”);

printf(“\n2. Delete”);

printf(“\n3. Exit\n”);

printf(“\nEnter your choice: “);

scanf(“%d”, &choice);

switch(choice)

Other Data Structures

131

{

case 1: printf(“\nEnter the value to be inserted: “);

scanf(“%d”, &element);

qinsert(&q, element);

getch();

break;

case 2: val=qdelete(&q);

if(val==0) #include<stdio.h>

#include<conio.h>

#define MAX 4

#define True 1

#define False 0

typedef struct queue

{

int item[MAX];

int Front;

int Rear;

}que;

printf(“\nUnderflow: Queue is empty!”);

else

printf(“\nDeleted item is: %d\n”, val);

getch();

break;

case 3: exit();

default: printf(“Invalid choice”);

}

} while(1);

}

void qinsert(que *q, int val)

{

if(isfull(*q))

{

printf(“\nOverflow: Queue is full!”);

return;

}

if(isempty(*q))

q->Front=0;

Other Data Structures

132

(q->Rear)++;

q->item[q->Rear]=val;

printf(“\nValue is inserted in queue...”);

}

int qdelete(que *q)

{

int del_val;

if(isempty(*q))

return 0;

del_val=q->item[q->Front];

if(q->Front==q->Rear)

q->Front=q->Rear=-1;

else

(q->Front)++;

return del_val;

}

void createqueue(que *q)

{

q->Front=q->Rear=-1;

return;

}

int isempty(que q)

{

if(q.Front==-1)

return True;

else

return False;

}

int isfull(que q)

{

if(q.Rear==MAX-1)

return True;

else

return False;

}

Other Data Structures

133

The output of the program is:

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 2

Underflow: Queue is empty!

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 3

Value is inserted in queue...

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 5

Value is inserted in queue...

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 2

Deleted item is: 3

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 3

Other Data Structures

134

5.4.2 Using a Linked List

A queue implemented as a linked list is known as a linked queue. A linked queue is

represented using two pointer variables Front and Rear that point to the first and the

last node of the queue, respectively. Initially, the Rear and Front are set to NULL to

indicate an empty queue.

To understand the implementation of a linked queue, consider a linked queue, say,

Queue. The info and next field of each node represent the element of the queue and a

pointer to the next element in the queue, respectively. Whenever a new element is to

be inserted in the queue, a new node nptr is created and the element is inserted into

the node. If it is the first element being inserted in the queue, both Front and Rear

are modified to point to this new node. On the other hand, in subsequent insertions,

only the Rear is modified to point to the new node, and the Front remains

unchanged.

Whenever an element is deleted from the Queue, a temporary pointer is created

which is made to point to the node pointed to by Front. Then Front is modified to

point to the next node in the Queue, and the temporary node is deleted from the

memory. Figure 5.4 shows various states of the queue after insert and delete

operations.

Note: Since the memory is allocated dynamically, a linked queue reaches the

overflow condition when no more memory space is available to be dynamically

allocated.

Other Data Structures

135

Figure 5.3 Various States of Linked queue after Insert and Delete Operations

Algorithm 5.3 Insert Operation on Linked Queue

qinsert(q, element)

1. Allocate memory for nptr //nptr is a pointer to the new node to be inserted

2. If nptr = NULL //checking for queue overflow

 Print “Overflow: Memory not allocated!” and go to step 6

 End If

3. Set nptr->info = element

4. Set nptr->next = NULL

5. If Front = NULL //check if queue is empty

 Set (*q)->Rear = (*q)->Front = nptr //rear and front are made to point to new node

 Else

 Set (*q)->Rear->next = nptr

 Set (*q)->Rear = nptr //rear is made to point to new node

 End If

6. End

Other Data Structures

136

Algorithm 5.4 Delete Operation on Linked Queue

qdelete(q)

1. If Front = NULL

 Print “Underflow: Queue is empty!”

 Return 0 and go to step 7

 End if

2. Set del_val = (*q)->Front->info //del_val is the element pointed by the Front

3. Set temp = (*q)->Front //temp is the temporary pointer to Front

4. If (*q)->Front = (*q)->Rear //checking if there is one element in the queue

 Set (*q)->Front = (*q)->Rear = NULL

 Else

 Set (*q)->Front = ((*q)->Front)->next //making Front point to next node

 End If

5. Deallocate temp //deallocating memory

6. Return del_val

7. End

Program 5.2: A program to illustrate the implementation of a queue as linked list.

#include<stdio.h>

#include<conio.h>

#define True 1

#define False 0

typedef struct node

{

int info;

struct node *next;

}Node;

typedef struct queue

{

Node *Front;

Node *Rear;

}que;

void createqueue(que **);

int isempty(que *);

void qinsert(que **, int);

Other Data Structures

137

int qdelete(que **);

void main()

{

que q;

int choice,val,element;

createqueue(&q);

do

{

clrscr();

printf(“\n\tMain Menu”);

printf(“\n1. Insert”);

printf(“\n2. Delete”);

printf(“\n3. Exit\n”);

printf(“\nEnter your choice: “);

scanf(“%d”, &choice);

switch(choice)

{

case 1: printf(“\nEnter the value to be inserted: “);

scanf(“%d”, &element);

qinsert(&q,element);

getch();

break;

case 2: val=qdelete(&q);

if(val==0)

printf(“\nUnderflow: Queue is empty!”);

else

printf(“\nDeleted item is: %d”, val);

getch();

break;

case 3: exit();

default: printf(“Invalid choice!”);

}

}while(1);

}

void createqueue(que **q)

{

(*q)->Front=NULL;

Other Data Structures

138

(*q)->Rear=NULL;

}

int isempty(que *q)

{

if(q->Front==NULL)

return True;

else

return False;

}

void qinsert(que **q,int element)

{

Node *nptr;

nptr=(Node*)malloc(sizeof(Node));

if(nptr==NULL)

{

printf(“\nOverflow: Memory not allocated!”);

return;

}

nptr->info=element;

nptr->next=NULL;

if((*q)->Front==NULL)

(*q)->Rear=(*q)->Front=nptr;

else

{

((*q)->Rear)->next=nptr;

(*q)->Rear=nptr;

}

printf(“\nValue is inserted in the queue... “);

}

int qdelete(que **q)

{

int del_val;

Node *temp;

if(isempty((*q)->Front))

return 0;

del_val=((*q)->Front)->info;

temp=(*q)->Front;

Other Data Structures

139

if((*q)->Front==(*q)->Rear)

(*q)->Front=(*q)->Rear=NULL;

else

(*q)->Front=((*q)->Front)->next;

free(temp);

return del_val;

}

The output of the program is:

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 3

Value is inserted in the queue…

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 5

Value is inserted in the queue…

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 2

Deleted item is: 3

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 2

Other Data Structures

140

Deleted item is: 5

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 2

Underflow: Queue is empty!

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 3

5.5 Various Queue Structures

Apart from representing a queue using an array and a linked list, there are various

queue structures used as per their requirement. These structures are Circular and

priority queues. Let’s discuss these structures in detail.

5.5.1 Circular Queue

As discussed earlier, in the case of a queue represented as an array, once the value

of the rear reaches the maximum size of the queue, no more elements can be

inserted. However, there may be the possibility that space on the left of the front

index is vacant. Hence, in spite of the space on the left of the front is empty, the

queue is considered to be full. This wastage of space in the array implementation of a

queue can be avoided by shifting the elements to the beginning of the array if the

space is available. In order to do this, the values of Rear and Front indices have to be

changed accordingly. However, this is a complex process and is difficult to be

implemented. An alternative solution to this problem is to implement a queue as a

circular queue.

The array implementation of a circular queue is similar to the array implementation

of a general queue. The only difference is that in a circular queue, as soon as the rear

index of the queue reaches the maximum size of the array, the Rear is reset to the

beginning of the queue provided it is free. The circular queue is full only when all the

Other Data Structures

141

locations in the array are occupied. The circular queue is shown in Figure 5.4.

Figure 5.4 A circular queue

Note: A circular queue is generally implemented as an array, though it can also be

implemented as a circular linked list.

To understand the operations on a circular queue, consider a circular queue

represented in the memory by the array CQueue[MAX]. Rear and Front are used to

store the indices of the rear and front elements of CQueue, respectively. Initially,

both Rear and Front are set to –1 to indicate an empty queue.

Whenever an element is to be inserted in the circular queue, the Rear is incremented

by one. However, if the value of the Rear index is MAX-1, instead of incrementing

Rear, it is reset to the first index of the array if space is available in the beginning.

Hence, if any locations to the left of the Front index are empty, the elements can be

added to the queue at an index starting from 0.

The queue is considered full in the following cases.

● When the value of Rear equals the maximum size of the array and Front is at

the beginning of the array.

● When the value of the Front is one more than the value of the Rear.

Whenever an element is to be deleted from the queue, the Front is incremented by

one. However, if the value of Front is MAX-1, it is reset to the 0th position in the

array. When the value of the Front is equal to the value of the Rear (other than –1), it

Other Data Structures

142

indicates that there is only one element in the queue. On deleting the last element,

both Rear and Front are reset to –1 to indicate an empty queue. Figure 5.5 shows

various states of the queue after some insert and delete operations.

Other Data Structures

143

Figure 5.5 Various States of a Circular Queue after Insert and Delete Operations

The total number of elements in a circular queue at any point in time can be

calculated from the current values of the Rear and the Front indices of the queue.

● In case, Front<Rear, the total number of elements = Rear-Front+1. For

instance, in Figure 5.6(a), Front=3 and Rear=7. Hence, the total number of

elements in CQueue at this point in time is 7–3+1=5.

● In case, Front>Rear, the total number of elements = Max +(Rear-Front)+1.

For instance, in Figure 5.6(b), Front=3 and Rear=0. Hence, the total number of

elements in CQueue is 8+(0–3)+1.

Other Data Structures

144

Figure 5.6 Number of Elements in a Circular Queue

Algorithm 5.5 Insert Operation on Circular Queue

qinsert(q, val)

1. If ((q->Rear = MAX-1 AND q->Front = 0) OR (q->Rear + 1 = q->Front))

 Print “Overflow: Queue is full!” and go to step 5

 End If //check if circular queue is full

2. If q->Rear = MAX-1 //check if rear is MAX-1

 Set q->Rear = 0

 Else

 Set q->Rear = q->Rear + 1 //increment rear by one

End If

3. Set q->CQueue[q->Rear] = val //val is the value to be inserted in the queue

4. If q->Front = -1 //check if queue is empty

 Set q->Front = 0

 End If

5. End

Other Data Structures

145

Algorithm 5.6 Delete Operation on Circular Queue

qdelete(q)

1. If q->Front = -1

 Print “Underflow: Queue is empty!”

 Return 0 and go to step 5

 End If

2. Set del_val = q->CQueue[q->Front] //del_val is the value to be deleted

3. If q->Front = q->Rear //check if there is one element in the queue

 Set q->Front = q->Rear = -1

 Else

 If q->Front = MAX-1

 Set q->Front = 0

 Else

 Set q->Front = q->Front +1

 End If

 End If

4. Return del_val

5. End

Program 5.3: A program to implement a circular queue.

#include<stdio.h>

#include<conio.h>

#define MAX 4

#define True 1

#define False 0

typedef struct queue

{

int CQueue[MAX];

int Front;

int Rear;

}que;

/* Function prototypes */

void createqueue(que *);

void qinsert(que *,int);

int qdelete(que *);

void qdisplay(que);

Other Data Structures

146

int isempty(que);

int isfull(que);

void main()

{

que q;

int choice,element,val;

createqueue(&q);

do

{

clrscr();

printf(“\n\n\tMain Menu”);

printf(“\n1. Insert”);

printf(“\n2. Delete”);

printf(“\n3. Exit\n”);

printf(“\nEnter your choice: “);

scanf(“%d”, &choice);

switch(choice)

{

case 1: printf(“\nEnter the value to be inserted: “);

scanf(“%d”, &element);

qinsert(&q, element);

getch();

break;

case 2: val=qdelete(&q);

if(val==0)

printf(“\nUnderflow: Queue is empty!”);

else

printf(“\nThe value of deleted item is: %d\n”, val);

getch();

break;

case 3: exit();

default: printf(“Invalid choice”);

}

} while(1);

}

void createqueue(que *q)

{

Other Data Structures

147

q->Front=q->Rear=-1;

}

void qinsert(que *q, int val)

{

if(isfull(*q))

{

printf(“\nOverflow: Queue is full!”);

return;

}

if(q->Rear==MAX-1)

q->Rear=0;

else

(q->Rear)++;

q->CQueue[q->Rear]=val;

if(isempty(*q))

q->Front=0;

qdisplay(*q);

}

int qdelete(que *q)

{

int del_val;

if(isempty(*q))

return 0;

del_val=q->CQueue[q->Front];

if(q->Front==q->Rear)

q->Front=q->Rear=-1;

else

{

if(q->Front==MAX-1)

q->Front=0;

else

(q->Front)++;

}

return del_val;

}

void qdisplay(que q)

{

Other Data Structures

148

int i;

printf(“\nFront: %d, Rear: %d”, q.Front, q.Rear);

printf(“\n\nQueue is: “);

if(q.Front<=q.Rear)

for(i=q.Front; i<=q.Rear; i++)

printf(“%d “, q.CQueue[i]);

else

{

for(i=0; i<=q.Rear; i++)

printf(“%d “, q.CQueue[i]);

for(i=q.Front; i<MAX; i++)

printf(“%d “, q.CQueue[i]);

}

}

int isempty(que q)

{

if(q.Front==-1)

return True;

else

return False;

}

int isfull(que q)

{

if((q.Rear==MAX-1 && q.Front==0)||(q.Rear+1==q.Front))

return True;

else

return False;

}

The output of the program is:

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 1

Other Data Structures

149

Front: 0, Rear: 0

Queue is: 1

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 2

Front: 0, Rear: 1

Queue is: 1 2

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 3

Front: 0, Rear: 2

Queue is: 1 2 3

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 2

Deleted item is: 1

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 7

Front: 1, Rear: 3

Queue is: 2 3 7

Main Menu

Other Data Structures

150

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value to be inserted: 4

Front: 1, Rear: 0

Queue is: 4 2 3 7

5.5.2 Priority Queue

A priority queue is a type of queue in which each element is assigned a priority and

the elements are added or removed according to that priority. While implementing a

priority queue, the following two rules are applied.

● The element with higher priority is processed before any element of lower

priority.

● The elements with the same priority are processed according to the order in

which they were added to the queue.

A priority queue can be represented in many ways. Here, we are discussing the

implementation of the priority queue using multiple queues.

Multiple Queue Implementation

In multiple queue representation of the priority queue, a separate queue for each

priority is maintained. Each queue is implemented as a circular array and has its

own two variables, Front and Rear (Figure 5.7). The element with the given priority

number is inserted in the corresponding queue. Similarly, whenever an element is to

be deleted from the queue, it must be the element from the highest priority queue.

Note that the lower priority number indicates higher priority.

Other Data Structures

151

Figure 5.7 Queue according to Priority

If the size of each queue is the same, then instead of multiple one-dimensional

arrays, a single two-dimensional array can be used where the row number shows the

priority and the column number shows the position of the element within the queue.

In addition, two arrays to keep track of the front and rear positions of each queue

corresponding to each row are maintained (Figure 5.8).

Figure 5.8 Priority Queue as a Two-Dimensional Array

Other Data Structures

152

Algorithm 5.7 Insert Operation in the Priority Queue

qinsert(q, val, prno) //prno is the priority of val

1. If (q->Rear[prno] = MAX-1 AND q->Front[prno] = 0) OR (q->Rear[prno]+1 = q->Front[prno]) Print

“Overflow: Queue full!” and go to step 5

 End If

2. If q->Rear[prno-1] = MAX-1

 Set q->Rear[prno-1] = 0

 Else

 Set q->Rear[prno-1] = q->Rear[prno-1] + 1

 End If

3. Set q->CQueue[prno-1][q->Rear[prno-1]] = val

4. If q->Front[prno-1] = -1

 Set q->Front[prno-1] = 0

 End If

5. End

Algorithm 5.8 Delete Operation in the Priority Queue

qdelete(q)

1. Set flag = 0, i = 0

2. While i <= MAX-1

 If NOT (q->Front[prno]) = -1 //check if not empty

 Set flag = 1

 Set del_val = q->CQueue[i][q->Front[i]]

 If q->Front[i] = q->Rear[i]

 Set q->Front[i] = q->Rear[i] = -1

 Else If q->Front[i] = MAX-1

 Set q->Front[i] = 0

 Else

 Set q->Front[i] = q->Front[i] + 1

 End If

 End If

 break

 End If

 Set i = i +1

 End While

3. If flag = 0

Other Data Structures

153

 Return 0 and go to step 4

 Else

 Return del_val

 End If

4. End

Program 5.4: A program to implement priority queue using multiple queues.

#include<stdio.h>

#include<conio.h>

#define MAX 5

#define True 1

#define False 0

typedef struct queue

{

int CQueue[MAX][MAX];

int Front[MAX];

int Rear[MAX];

}que;

void createqueue(que *);

void qinsert(que *, int, int);

int qdelete(que *);

void qdisplay(que, int);

int isempty(que, int);

int isfull(que, int);

void main()

{

que q;

int choice,element,pno,val;

createqueue(&q);

do

{

clrscr();

printf(“\n\n\tMain Menu”);

printf(“\n1. Insert”);

printf(“\n2. Delete”);

printf(“\n3. Exit\n”);

printf(“\nEnter your choice: “);

Other Data Structures

154

scanf(“%d”, &choice);

switch(choice)

{

case 1: printf(“\nEnter the value and its priority: “);

scanf(“%d%d”, &element, &pno);

qinsert(&q, element, pno);

getch();

break;

case 2: val=qdelete(&q);

if(val==0)

printf(“\nUnderflow: Queue is empty!”);

else

printf(“\nThe Deleted item is: %d\n”,val);

getch();

break;

case 3: exit();

default: printf(“Invalid choice”);

}

} while(1);

}

void createqueue(que *q)

{

int i;

for(i=0;i<MAX;i++)

q->Front[i]=q->Rear[i]=-1;

}

int isempty(que q, int prno)

{

if(q.Front[prno]==-1)

return True;

else

return False;

}

int isfull(que q, int prno)

{

if((q.Rear[prno]==MAX-1 &&

q.Front[prno]==0) || (q.Rear[prno]+1==q.Front[prno]))

Other Data Structures

155

return True;

else

return False;

}

void qinsert(que *q,int val,int prno)

{

int j;

if(isfull(*q, prno))

{

printf(“\nOverflow: Queue is full!”);

return;

}

if(q->Rear[prno-1]==MAX-1)

q->Rear[prno-1]=0;

else

(q->Rear[prno-1])++;

q->CQueue[prno-1][q->Rear[prno-1]]=val;

if(isempty(*q, prno))

q->Front[prno-1]=0;

qdisplay(*q, prno);

}

int qdelete(que *q)

{

int del_val, i, prno,flag=0;

for(i=0;i<= MAX-1;i++)

{

if(!isempty(*q,i))

{

flag=1;

del_val=q->CQueue[i][q->Front[i]];

if(q->Front[i]==q->Rear[i])

q->Front[i]=q->Rear[i]=-1;

else if(q->Front[i]==MAX-1)

q->Front[i]=0;

else

q->Front[i]++;

prno =i+1;

Other Data Structures

156

break;

}

}

if(flag==0)

return 0;

else

{

printf(“\nPriority of deleted item is: %d\n”,prno);

return del_val;

}

}

void qdisplay(que q, int prno)

{

int i;

printf(“\nFront: %d, Rear: %d”, q.Front[prno-1], q.Rear[prno-1]);

printf(“\n\nQueue for prno %d is: “, prno);

if(q.Front[prno-1]<=q.Rear[prno-1])

{

for(i=q.Front[prno-1];

i<=q.Rear[prno-1]; i++)

printf(“%d “,q.CQueue[prno-1][i]);

}

else

{

for(i=0; i<=q.Rear[prno-1]; i++)

printf(“%d “, q.CQueue[prno-1][i]);

for(i=q.Front[prno-1]; i<MAX; i++)

printf(“%d “, q.CQueue[prno-1][i]);

}

}

The output of the program is:

Main Menu

1. Insert

2. Delete

3. Exit

Other Data Structures

157

Enter your choice: 2

Underflow: Queue is empty!

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value and its priority: 8 3

Front: 0, Rear: 0

Queue for prno 3 is: 8

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 1

Enter the value and its priority: 9 4

Front: 0, Rear: 0

Queue for prno 4 is: 9

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 2

The priority of deleted item is: 3

The Deleted item is: 8

Main Menu

1. Insert

2. Delete

3. Exit

Enter your choice: 3

5.6 Summary

● A queue refers to a linear data structure in which a new element is inserted at

Other Data Structures

158

one end and the other element is deleted from the other end. It works on the

principle of ‘first-in-first-out’ (FIFO).

● Like stacks, queues can also be represented in memory by using an array or a

singly-linked list.

● Before we insert a new element in the queue, it is necessary to test the

condition of overflow. Similarly, before we remove an item from the queue, it is

necessary to test the condition of the underflow.

● There are two types of queue structures: Circular queue and priority queue.

● In a circular queue, as we go on adding elements to the queue and reach the

end of the array, the next element is stored in the first position of the array (if

it is free).

● A priority queue is a data structure in which each element is assigned a

priority and the elements are added or removed according to that priority.

5.7 Key Terms

● Queue: A linear data structure in which a new element is inserted at one end

and the other element is deleted from the other end.

● Circular queue: A data structure in which on adding elements to the queue

and reaching the end of the array, the next element is stored in the first

position of the array, if it is free.

● Priority queue: A data structure in which each element is assigned a priority

and the elements are added or removed according to that priority.

● Dequeue: Process of deleting elements from the queue.

● Enqueue: Process of inserting elements into a queue.

5.8 Check Your Progress

Short- Answer type

Q1) A queue can be represented as an array as well as a linked list. (True/False?)

Q2) For a queue implemented as an array, the initial values of the front and rear set

to _______.

Q3) A queue is a:

(a) linear data structure (b) non-linear data structure (c) Both (a) and (b)

(d) None of the above

Other Data Structures

159

Q4) Which two rules are followed while implementing a priority queue?

Q5) A ______ is a data structure in which each element is assigned a priority and the

elements are added or removed according to that priority.

Long- Answer type

Q1) Write a short note on multiple queues implementation.

Q2) Write an algorithm to insert an element in a circular queue.

Q3) Differentiate between a circular queue and a priority queue.

Q4) How can a queue be implemented using an array and a linked list? Explain.

Q5) Write an algorithm to delete an element from a priority queue.

References

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

• Data Structures with C, Lipschutz, S. (2011), Delhi: Tata McGraw-Hill.

Other Data Structures

160

Unit 6 Trees
Structure

6.0 Introduction

6.1 Unit Objectives

6.2 Basic terminology of Trees

6.3 Binary Trees

6.4 Representation of a Binary Tree

 6.4.1 Array Representation

6.4.2 Linked Representation

6.5 Binary Tree Traversals

6.6 Binary Search Tree

6.7 Threaded Binary Tree

6.8 Summary

6.9 Key Terms

6.10 Check Your Progress

6.0 Introduction

A tree is a widely used non-linear data structure. It resembles a hierarchical tree

structure possessing a set of nodes that are linked to one another. Each node of a tree

store a data value and has zero or more pointers pointing to the other nodes of the tree

which are also known as its child nodes. A binary tree refers to a special type of tree

that can be either empty or has a finite set of nodes. Binary trees are primarily of two

types: complete binary tree and extended binary tree. This unit explains the various

modes of binary tree representation, such as array representation and linked

representation.

This unit will also introduce you to the binary search tree and threaded binary tree. A

binary search tree, also known as a binary sorted tree, is a kind of a binary tree in

which the data value in each node is a key (unique) value, i.e., no two nodes can have

identical values. The structure of the node of a threaded binary tree is similar to the

node of a binary tree, with some additional variables indicating whether the left or

right pointers are normal pointers or threads.

Other Data Structures

161

6.1 Unit Objectives

After going through this unit, the reader will be able to:

● Understand the definition and basic concepts of trees.

● Explain a binary tree and the various terminologies associated with it.

● Discuss the various forms and representations of binary trees.

● Discuss the various operations on a binary tree.

6.2 Basic Terminology of Trees

A tree is a non-linear data structure representing a hierarchical structure of one or

more elements known as nodes. Each node of a tree store a data value and has zero

or more pointers pointing to the other nodes of the tree, which are also known as its

child nodes. Each node in a tree can have zero or more child nodes located at one

level below it. However, each child node can have only one parent node which is at one

level above it. The node at the top of the tree is known as the root of the tree and the

nodes at the lowest level are known as the leaf nodes. The root node is a special node

having no parent node and leaf nodes are nodes having no child nodes. Any node

having a child node as well as parent node is known as an internal node.

Figure 6.1 Structure of a Tree

Trees have the advantage of handling a lot of data together. The operations of

insertion, deletion, sorting, etc. are more efficient in trees than in linear data

structures like stacks, queues, and linked lists.

Some of the important terms regarding trees are discussed below.

● Node: A node is the main component of a tree. It stores actual data and links it

to the other node.

● Parent: The parent of a node is the immediate predecessor of that node. Here in

Other Data Structures

162

figure 6.1, 1 is the parent of 2, 3, 4, and 5.

● Child: All the immediate successors of the parent node are known as Child. The

child on the left side is called the left child and that on the right side is known

as the right child.

● Link: A pointer to a node in a tree is called a link. There may be more than two

links of a node.

● Root: The first node of a tree is called the root. A root does not have any parent.

● Leaf: The end node which does not have any child is known as a leaf. It is also

termed a terminal node.

● Level: The ranking of the hierarchy of the tree is known as level. The root level

is marked as 0. If a node is at level l, then its child is at level l+1 and its parent

is at level l-1.

● Height: The maximum number of nodes possible from the root node to a leaf

node is termed as the height of a tree.

● Degree: The maximum number of children that is possible for a node is known

as the degree of a node.

● Sibling: The nodes with the same parent nodes are called siblings.

6.3 Binary Tree and its properties

A binary tree is a special type of tree, which can be either empty or has a finite set of

nodes, such that one of the nodes is designated as the root node and the remaining

nodes are partitioned into two subtrees of root node known as left subtree and right

subtree. The non-empty left subtree and the right subtree are also binary trees. Unlike

a general tree, each node in a binary tree is restricted to have at most two child nodes.

Consider a sample binary tree T shown in Figure 6.2.

Figure 6.2 A Binary Tree

Other Data Structures

163

In this figure, the topmost node A is the root node of the tree T. Each node in this tree

has zero or utmost two child nodes. The nodes A, B, and D have two child nodes, node

C has only one child node, and nodes G, H, E and F are leaf nodes having no child

nodes. The nodes B, C, D are internal nodes having the child as well as parent nodes.

Before discussing binary trees in detail, let us discuss some basic terminologies that

are used in association with binary trees (refer to Figure 6.2).

● Ancestor and descendant: A node N1 is said to be an ancestor of node N2 if

N1 is the parent node of N2 or parent of the parent node of N1, and so on,

whereas node N2 is said to be a descendant of node N1. The node N2 is said to

be the left descendant of node N1 if it belongs to the left subtree of N1 and is

said to be the right descendant of N1 if it belongs to the right subtree of N1. In

the binary tree, as shown in Figure 6.2, node A is the ancestor of node H, and

node H is the left descendent of node A.

● Degree of a node: The degree of a node is equal to the number of its child

nodes. In the binary tree shown in Figure 6.2, the nodes A, B, and D have

degree 2; node C has degree 1; and nodes G, H, E, and F have degree 0.

● Level: Since the binary tree is a multilevel data structure, each node belongs to

a particular level number. In the binary tree shown in Figure 6.2, the root node

A belongs to level 0, its child nodes belong to level 1, child nodes of nodes B and

C belong to level 2, and so on.

● Depth (or height): Depth of the binary tree is the highest level number of any

node in a binary tree. In the binary tree shown in Figure 6.2, the nodes G and H

are nodes with the highest level number 3. Hence, the depth of the binary tree

is 3.

● Siblings: The nodes belonging to the same parent node are known as sibling

nodes. In the binary tree shown in Figure 6.2, nodes B and C are sibling nodes

as they have the same parent node, that is, A. Similarly, nodes D and E are also

sibling nodes.

● Edge: Edge is a line connecting any two nodes. In the binary tree shown in

Figure 6.2, there exists an edge between nodes A and B, whereas there is no

edge between nodes B and C.

● Path: Path between the two nodes x and y is a sequence of consecutive edges

being followed from node x to y. In the binary tree shown in Figure 6.2, the path

Other Data Structures

164

between the nodes A and H is A->B->D->H. Similarly, the path from A to F is A-

>C->F.

There are various forms of binary trees that are formed by imposing certain

restrictions on them. Some of the variations of binary trees are—complete binary tree

and extended binary tree.

Complete binary tree

A binary tree is said to be a complete binary tree if all the leaf nodes of the tree are at

the same level. Thus, the tree has a maximum number of nodes at all levels (see

Figure 6.3). At any level n of a binary tree, there can be at the most 2 n nodes. That is,

At n = 0, there can be at most 2 0 = 1 node.

At n =1, there can be at most 2 1 = 2 nodes.

At n = 2, there can be at most 2 2 = 4 nodes.

:

At level n, there can be at most 2 n nodes.

Figure 6.3 Complete Binary Tree

Extended binary tree

A binary tree is said to be an extended binary tree (also known as 2-tree) if all of its

nodes are of either a zero degree or two degrees. In this type of binary tree, the nodes

with degree two (also known as internal nodes) are represented as circles, and nodes

with degree zero (also known as external nodes) are represented as squares (Figure

6.4).

Other Data Structures

165

Figure 6.4 Extended Binary Tree

6.4 Representation of a Binary Tree

Like stacks and queues, binary trees can also be represented in the memory in two

ways: memory-array (sequential) representation and linked representation. In an array

representation, memory is allocated at compile-time, while in linked representation,

memory is allocated dynamically.

6.4.1 Array Representation

In an array representation, a binary tree is represented sequentially in memory by

using a single one-dimensional array. A binary tree of height n may comprise utmost 2

(n+1) -1 nodes, hence an array of maximum size 2 (n+1) -1 is used for representing

such a tree. All the nodes of the tree are assigned a sequence number [from 0 to (2

(n+1) -1)-1] level by level. In other words, the root node at level 0 is assigned a

sequence number 0, then nodes at level 1 are assigned sequence number in ascending

order from left to right, and so on. For example, the nodes of a binary tree of height 2,

having 7 (2 (n+1) -1) nodes can be numbered as shown in Figure 6.5 (a).

The numbers assigned to the nodes indicate the position (index value) of an array at

which that particular node is stored. The array representation of this tree is shown in

Figure 6.5 (b). It can be observed that if any node is stored at position p, then its left

child node is stored at 2*p+1 position, and its right child node is stored at 2*p+2

position. In Figure 6.5(b), for example, the node G is stored at position 1, its left child

node D is stored at position 3 (2*1+1) and its right child node is stored at position 4

(2*1+2). Note that if any of the nodes in the tree have empty subtrees (except the leaf

nodes), the nodes forming the part of these empty subtrees are also numbered and

Other Data Structures

166

their values in the corresponding position in the array are NULL.

Figure 6.5 Array Representation of a Binary Tree

Consider an example, a binary tree is shown in Figure 6.6 (a). Its array representation

is shown in Figure 6.6 (b). In this representation, an array of maximum size is

declared (to accommodate the maximum number of nodes for a binary tree of a given

height) before run-time which leads to a wastage of a lot of memory space in the case

of unbalanced trees.

Figure 6.6 Array Representation of Binary Tree with Empty subtrees

Other Data Structures

167

In unbalanced trees, the number of nodes is very small as compared to the maximum

number of nodes for a given height. Consider, for example, an unbalanced tree is

shown in Figure 6.7 (a). Since, this tree is of height 3, an array of size 14 (2 (3+1 -1)

will be declared to store nodes of this tree. The array representation of this tree is

shown in Figure 6.7 (b).

Figure 6.7 Array Representation of an Unbalanced Binary Tree

It can be observed from this array representation that most of the array positions are

NULL, leading to wastage of memory space. Due to this disadvantage of array

representation of binary trees, the linked representation of binary trees is preferred.

6.4.2 Linked Representation

Linked representation is one of the most common and important ways of representing

a binary tree in memory. The linked representation of a binary tree is implemented by

using a linked list having an info part and two pointers. The info part contains the

data value and two pointers, left and right, are used to point to the left and right

subtree of a node, respectively. The structure of such a node is shown in Figure 6.8.

Other Data Structures

168

Figure 6.8 Structure of a Node of a Binary Tree

To define a node of a binary tree in ‘C’ language, a self-referential structure can be

used whose definition is as follows.

typedef struct node

{

int info;

struct node *left;

struct node *right;

}Node;

In linked representation, a pointer variable Root of Node type is used to point to the

root node of a tree. The root variable is used for accessing the root and the subsequent

nodes of a binary tree. Since the binary tree is empty in the beginning, the pointer

variable Root is initialized with NULL. The linked representation of a sample binary

tree is shown in Figure 6.9.

Figure 6.9 Linked Representation of a Binary Tree

Other Data Structures

169

6.5 Binary Tree Traversals

Traversing a binary tree refers to the process of visiting each and every node of the tree

exactly once. The three different ways in which a tree can be traversed are—in-order,

pre-order, and post-order traversals. The main difference in these traversal methods is

based on the order in which the root node is visited. Note that in all the traversals the

left subtree is always traversed before the traversal of the right subtree. To understand

these traversal methods, consider a simple binary tree T, shown in Figure 6.10.

Figure 6.10 A simple Binary Tree T

Pre-order

In pre-order traversal, the root node is visited before traversing its left and right

subtrees. Steps for traversing a non-empty binary tree in pre-order are:

1. Visit the root node R.

2. Traverse the left subtree of root node R in pre-order.

3. Traverse the right subtree of root node R in pre-order.

In the binary tree T (shown in Figure 6.10), for example, the root node A is traversed

before traversing its left subtree and right subtree. In the left subtree T1, the root node

B (of left subtree T1) is traversed before traversing the nodes D and E. After traversing

the root node of binary tree T and traversing the left subtree T1, the right subtree T2 is

also traversed following the same procedure. Hence, the resultant pre-order traversal

of the binary tree T is A, B, D, E, C, F, G.

In-order

In in-order traversal, the root node is visited after the traversal of its left subtree and

before the traversal of its right subtree. Steps for traversing a non-empty binary tree in

in-order are:

1. Traverse the left subtree of root node R in in-order.

Other Data Structures

170

2. Visit the root node R.

3. Traverse the right subtree of root node R in in-order.

In the binary tree T (shown in Figure 6.10), for example, the left subtree T1 is traversed

before traversing the root node A. In the left subtree T1, the node D is traversed before

traversing its root node B (of left subtree T1). After traversing the node D and B, node

E is traversed. Once the traversals of left subtree T1 and the root node A of binary tree

Τ are complete, the right subtree T2 is traversed following the same procedure. Hence,

the resultant in-order traversal of the binary tree T is D, B, E, A, F, C, G.

Post-order

In post-order traversal, the root node is visited after traversing its left and right

subtrees. Steps for traversing a non-empty binary tree in post-order are:

1. Traverse the left subtree of root node R in post-order.

2. Traverse the right subtree of root node R in post-order.

3. Visit the root node R.

In binary tree T (shown in Figure 6.10), for example, the root node A is traversed after

traversing its left subtree and right subtree. In the left subtree T1, the root node B (of

left subtree T1) is traversed after traversing the nodes D and E. Similarly, the nodes of

right subtree T2 are traversed following the same procedure. After traversing the left

subtree (T1) and right subtree (T2), the root node A of binary tree T is traversed. Hence,

the resultant post-order traversal of the binary tree T is D, E, B, F, G, C, A.

In addition to these traversals, there is another way of traversing a tree known as

level-order traversal. In this traversal, every node at one level is visited before moving

onto the next level.

6.6 Binary Search Tree

A binary search tree, also known as a binary sorted tree, is a kind of a binary tree that

satisfies the following conditions (Figure 6.11):

1. The data value in each node is a key (unique) value, that is, no two nodes can

have identical values.

2. The data values in the nodes of the left subtree, if exists, are smaller than the

value in the root node.

3. The data values in the nodes of the right subtree, if exists, are greater than or

Other Data Structures

171

equal to the value in the root node.

4. The left and right subtrees, if exist, are also binary search trees.

In other words, values in the left subtree of a root node are smaller than the value of

the root node, and values in the right subtree are greater than or equal to the value of

the root node. This rule is applicable to all the subsequent subtrees in a binary search

tree. In addition, each and every value in a binary search tree is unique, that is, no

two nodes in it can have identical values.

Figure 6.11 Binary Search Tree

There are various operations that can be performed on the binary search trees. Some

of these are search of a node, insertion of a new node, deletion of a node, and traversal

of a tree.

Searching a Node in Binary Search Tree

Searching an element in a binary search tree is easy since the elements in this tree are

arranged in sorted order. The element to be searched is compared with the value in

the root node. If the element is smaller than the value in the root node, then the

searching will proceed to the left subtree, and if the element is greater than the value

in the root node, then the searching will proceed to the right subtree. This process is

repeated until either the element to be searched is found or NULL value is

encountered.

Consider, for example, a sample binary search tree given in Figure 6.11. The steps to

search element 45 are given here.

1. Compare element 45 with the value in the root node (66). Since 45 is smaller

Other Data Structures

172

than 66, move to its left subtree.

2. Compare element 45 with the value (40) appearing in the left subtree. Since 45

is greater than 40, move to its right subtree.

3. Now, compare element 45 with the value (50) appearing in the right subtree.

Since 45 is smaller than 50, move to its left subtree.

4. In the next step, compare element 45 with the value (45) appearing in the left

subtree. Since 45 is equal to the value (45) stored in this node, the required

element is found. Therefore, terminate the procedure.

In case the value 48 is to be searched, the first four steps are the same. After step 4,

the right subtree of 45 will be accessed. This is NULL indicating the end of the tree.

Therefore, the element is not found in the tree and the search is unsuccessful.

Algorithm 6.1 Searching in a Binary Search Tree

search(item, ptr)

1. If !(ptr)

 Print "Element not found!" and go to step 3

 End If

2. If item < ptr->info

 Call search(item, ptr->left)

 Else If item > ptr->info

 Call search(item, ptr->right)

 Else

 Print "Element found."

 End If

3. End

Inserting a Node

Insertion in a binary search tree is similar to the procedure for searching an element

in a binary search tree. The difference is that in the case of insertion, an appropriate

null pointer is searched where a new node can be inserted. The process of inserting a

node in a binary search tree can be divided into two steps-in the first step, the tree is

searched to determine the appropriate position where the node is to be inserted and

in the second step, the node is inserted at this searched position.

Other Data Structures

173

There are two cases of insertion in a tree-first, insertion into an empty tree, and

second insertion into a non-empty tree. In case the tree is initially empty, the new

node to be inserted becomes its root node. In case the tree is non-empty, an

appropriate position is determined for insertion. For this, first of all, the value in the

new node is compared with the root node of the tree. If the value in the new node is

less than the value in the root node, the new node is added as the left leaf if the left

subtree is empty, otherwise, the search continues in the left subtree. On the other

hand, if the value in the new node is greater than the value in the root node, the new

node is added as the right leaf if the right subtree is empty, otherwise, the search

continues in the right subtree.

Figure 6.12 (a) A sample Binary Search Tree

Figure 6.12 (b) Insertion of a node with value 20

Other Data Structures

174

Figure 6.12 (c) Insertion of a node with value 80

Consider, for example, a sample binary search tree is shown in Figure 6.12 (a). For

inserting elements 20 and 80, follow the steps given here.

Steps for inserting element 20 are as follows:

1. Compare 20 with the value in the root node, that is, 66. Since 20 is smaller

than 66, move to the left subtree.

2. Finding that the left pointer of the root node is non-null, compare 20 with the

value (40) in this node. Since 20 is smaller than 40, move to the left subtree.

3. Again, as the left pointer of the current node is non-null, compare 20 with the

value (30) in this node. Since 20 is smaller than 30, move to the left subtree.

4. Now, the left pointer is null, thus 20 will be inserted at this position. After

insertion, the tree will appear as shown in Figure 6.12 (b).

Steps for inserting element 80 are as follows:

1. Compare 80 with the value in root node 66. Since 80 is greater than 66, move

to the right subtree.

2. Finding that the right pointer of the root node is non-null, compare 80 with

the value (90) in this node. Since 80 is smaller than 90, move to the left

subtree.

3. Again, as the left pointer of the current node is non-null, compare 80 with the

value (75) in this node. Since 80 is greater than 75, move to the right subtree.

4. Now, the right pointer is null, thus 80 will be inserted at this position. After

insertion, the tree will appear as shown in Figure 6.12 (c).

Other Data Structures

175

Algorithm 6.2 Insertion into a Binary Search Tree
insert_node(item, ptr)

1. If !(ptr)

 Allocate memory for ptr

 Set ptr->info = item

 Set ptr->left = NULL

 Set ptr->right = NULL

 Else

 If item < ptr->info

 Call insert_node(item, ptr->left)

 Else

 Call insert_node(item, ptr->right)

 End If

 End If

2. End

Deleting a Node in Binary Search Tree

Deletion of a node from a binary search tree involves two steps—first, searching the

desired node, and second, deleting the node. Whenever a node is deleted from a tree,

it must be ensured that the tree remains a binary search tree, that is, the sorted

order of the tree must not be disturbed. The node being deleted may have zero, one,

or two child nodes. On the basis of the number of child nodes of the node to be

deleted, there are three cases of deletion which are discussed here.

Case 1: If the node to be deleted has no child node, it is deleted by making its

parent’s pointer pointing to NULL and de-allocating memory allocated to it. The node

with value 75, for example, is to be deleted from the tree shown in Figure 6.13 (a).

Since this node has no child node, its parent’s (90) left pointer will be made to point

to NULL and the memory space of the node (75) is de-allocated.

Case 2: If the node to be deleted has only one child node, it is deleted by adjusting its

parent’s pointer pointing to its only child and deallocating memory allocated to it.

The node, for example, with value 110 is to be deleted from the tree shown in Figure

6.13 (b). Since this node has one child node, its parent’s (90) right pointer will be

made to point to its child node (120) and the memory space of the node (110) is

deallocated.

Other Data Structures

176

Case 3: If the node to be deleted has two child nodes, it is deleted by replacing its

value by the largest value in the left subtree (in-order predecessor) or by the smallest

value in the right subtree (in-order successor). The node whose value is used for

replacement is then deleted using case 1 or case 2.

Figure 6.13 (a) Deletion of a Node with No Child Node

Figure 6.13 (b) Deletion of a Node with Only One Child

Figure 6.13 (c) Deletion of a Node with Two Child Nodes

The node, for example, with the value 40 is to be deleted from the tree shown in

Figure 6.13 (c). Since this node has two subtrees or child nodes, a value has to be

searched from its subtrees which can be used for its replacement. The value that will

Other Data Structures

177

be used for replacement can either be the largest value from its left subtree (35) or

the smallest value from its right subtree (45). Suppose the value 35 is selected for

this purpose, then the value 35 is copied in the node with the value 40. After this,

the right pointer of the parent node (30) of the node used for replacement (35) is

made to point to NULL, and memory allocated to the node with value 35 is de-

allocated. As a result of the deletion of this node, the order of the tree is maintained.

The final structure of the tree after the deletion of node 40 will be as shown in Figure

6.14.

Figure 6.14 Binary Search Tree after Deletion

Algorithm 6.3 Deletion from Binary Search Tree

del_node(item, ptr)

1. If !(ptr)

 Print "Item does not exist." and go to step 3

2. If item < ptr->info

 Call del_node(item,&(ptr->left))

 Else

 If item > ptr->info

 Call del_node(item,&(ptr->right))

 Else

 If item = ptr->info

 Set save = ptr

 If save->right = NULL

 Set ptr = save->left

 Deallocate save

 Else

 If save->left = NULL

 Set ptr = save->right

Other Data Structures

178

 Deallocate save

 Else

 Call del(&(save->left),save)

 End If

 End If

 End If

 End If

 End If

3. End

del(p, q) //q is the node to be deleted, p is the node whose value is used for

replacing the value in q and p is de-allocated

1. If p->right != NULL

 Call del(&(p->right),q)

 Else

 Set delnode = p

 Set q->info = p->info

 Set p = p->left

 Deallocate delnode

 End If

2. End

Traversals in Binary Search Tree

Traversing a binary search tree is the same as traversing a binary tree. In other words,

binary search trees can also be traversed in three different ways—pre-order, in-order,

and post-order. It can be observed that when a binary search tree is traversed in-

order, it results in the sequence of elements in ascending order. The algorithms for

traversing trees in pre-order, in-order, and post-order are recursive in nature, which

are given below.

Algorithm 6.4 Pre-order Traversal in Binary Search Tree

preorder(ptr)

1. If ptr != NULL

 Print ptr->info //ptr is temporary pointer initialised with Root

 Call preorder(ptr->left)

 Call preorder(ptr->right)

 End If

2. End

Other Data Structures

179

Algorithm 6.5 In-order Traversal in Binary Search Tree

inorder(ptr)

1. If ptr != NULL

 Call inorder(ptr->left) //ptr is temporary pointer initialised with Root

 Print ptr->info

 Call inorder(ptr->right)

 End If

2. End

Algorithm 6.6 Post-order Traversal in Binary Search Tree

postorder(ptr)

1. If ptr != NULL

 Call postorder(ptr->left) //ptr is temporary pointer initialised with Root

 Call postorder(ptr->right)

 Print ptr->info

 End If

2. End

Program 6.1: A program to illustrate various operations performed on binary search

tree [In case of deletion of a node with two child nodes, the largest value from left

subtree (in-order predecessor) is used for replacement].

#include<stdio.h>

#include<conio.h>

typedef struct node {

int info;

struct node *left;

struct node *right;

}Node;

int nodes, leaves;

/*Function prototypes*/

void insert_node(int, Node **);

void search(int, Node *);

Other Data Structures

180

void print_treeform(Node *, int);

void preorder(Node *);

void inorder(Node *);

void postorder(Node *);

void count_nodes(Node *);

void count_leaves(Node *);

void del(Node **, Node *);

void del_node(int, Node **);

void main()

{

int choice, n;

Node *root=NULL;

do

{

clrscr();

printf(“\nMain Menu”);

printf(“\n1. Insert”);

printf(“\n2. Display in tree form”);

printf(“\n3. Pre-order traversal of tree”);

printf(“\n4. In-order traversal of tree”);

printf(“\n5. Post-order traversal of tree”);

printf(“\n6. Number of nodes”);

printf(“\n7. Number of leaves”);

printf(“\n8. Searching”);

printf(“\n9. Delete”);

printf(“\n10.Exit”);

printf(“\nEnter your choice . . . “);

scanf(“%d”, &choice);

switch(choice)

{

case 1 : printf(“\nEnter data for new node:“);

scanf(“%d”, &n);

insert_node(n, &root);

Break;

case 2 : printf(“\nTree in tree form —>\n”);

if(!root)

print_treeform(root, 1);

Other Data Structures

181

else

printf(“Tree is empty!!”);

break;

case 3 : printf(“\nPre-order traversal of tree —>\n\n”);

if(!root)

preorder(root);

else

printf(“Tree is empty!!”);

break;

case 4 : printf(“\nIn-order traversal of tree —>\n\n”);

if(!root)

inorder(root);

else

printf(“Tree is empty!!”);

break;

case 5 : printf(“\nPost-order traversal of tree —>\n\n”);

if(!root)

postorder(root);

else

printf(“Tree is empty!!”);

break;

case 6 : if(root==NULL)

nodes=0;

else

nodes=1;

count_nodes(root);

printf(“\nNumber of nodes are : %d”, nodes);

break;

case 7 : leaves=0;

count_leaves(root);

printf(“\nNumber of leaves are : %d”, leaves);

break;

case 8 : printf(“\nEnter value of node to be searched : “);

scanf(“%d”, &n);

search(n, root);

break;

case 9 : printf(“\nEnter value of node to be deleted : “);

Other Data Structures

182

scanf(“%d”, &n);

del_node(n, &root);

break;

case 10 : printf(“\nNormal termination of program.”);

break;

default : printf(“\nWrong Choice !!”);

}

getch();

}while(choice!=10);

}

/*Function to insert node in a tree*/

void insert_node(int item, Node **ptr)

{

if(!(*ptr))

{

(*ptr)=(Node*) malloc(sizeof(Node));

(*ptr)->info=item;

(*ptr)->left=NULL;

(*ptr)->right=NULL;

}

if(item<(*ptr)->info)

insert_node(item,&((*ptr)->left));

else if(item>(*ptr)->info)

insert_node(item,&((*ptr)->right));

}

/*Function to print tree in tree format*/

void print_treeform(Node *ptr, int level)

{

int i;

if(ptr)

{

print_treeform(ptr->right, level+1);

printf(“\n”);

for(i=0;i<level;i++)

printf(“ “);

printf(“%d”, ptr->info);

print_treeform(ptr->left, level+1);

Other Data Structures

183

}

}

/*Function to print tree in pre-order*/

void preorder(Node *ptr)

{

if(ptr)

{

printf(“%d “, ptr->info);

preorder(ptr->left);

preorder(ptr->right);

}

}

/*Function to print tree in in-order*/

void inorder(Node *ptr)

{

if(ptr)

{

inorder(ptr->left);

printf(“%d “, ptr->info);

inorder(ptr->right);

}

}

/*Function to print tree in post-order*/

void postorder(Node *ptr)

{

if(ptr)

{

postorder(ptr->left);

postorder(ptr->right);

printf(“%d “, ptr->info);

}

}

/*Function to count number of nodes in a tree*/

void count_nodes(Node *ptr)

{

if(ptr != NULL)

{

Other Data Structures

184

if(ptr->left != NULL)

{

nodes++;

count_nodes(ptr->left);

}

if(ptr->right != NULL)

{

nodes++;

count_nodes(ptr->right);

}

}

}

/*Function to count number of leaves in a tree*/

void count_leaves(Node *ptr)

{

if(ptr != NULL)

{

if((ptr->left==NULL) && (ptr->right==NULL))

leaves++;

else

count_leaves(ptr->left);

count_leaves(ptr->right);

}

}

/*Function to search a node in a tree*/

void search(int item, Node *ptr)

{

if(!ptr)

{

printf(“Element not found.”);

return;

}

else if(item<ptr->info)

search(item, ptr->left);

else if(item>ptr->info)

search(item, ptr->right);

else

Other Data Structures

185

{

printf(“Element found.”);

}

}

/*Function to delete a node from tree*/

void del_node(int item, Node **ptr)

{

Node *save;

if(!(*ptr))

{

printf(“\nItem does not exist.”);

return;

}

else

{

if(item<(*ptr)->info)

del_node(item, &((*ptr)->left));

else

if(item>(*ptr)->info)

del_node(item, &((*ptr)->right));

else if(item==(*ptr)->info)

{

save=*ptr;

if(save->right==NULL)

{

*ptr=save->left;

free(save);

}

else

if(save->left==NULL)

{

*ptr=save->right;

free(save);

}

else

del(&(save->left), save);

}

Other Data Structures

186

}

return;

}

/*Called from Del_node() function to delete nodes with child nodes*/

void del(Node **p, Node *q)

{

Node *delnode;

if((*p)->right != NULL)

del(&((*p)->right), q);

else

{

delnode=*p;

q->info=(*p)->info;

*p=(*p)->left;

free(delnode);

}

return;

}

The output of the program is:

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 1

Enter data for new node: 66

: /* Similarly insert values 40 90 30 50 75 110 20 35 45 55 70 80 100 120 in this: order*/

Main Menu

Other Data Structures

187

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 2

Tree in tree form —>

120

110

100

90

80

75

70

66

55

50

45

40

35

30

20

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

Other Data Structures

188

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 3

Pre-order traversal of tree —>

66 40 30 20 35 50 45 55 90 75 70 80 110 100 120

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 4

In-order traversal of tree —>

20 30 35 40 45 50 55 66 70 75 80 90 100 110 120

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Other Data Structures

189

Enter your choice . . . 5

Post-order traversal of tree —>

20 35 30 45 55 50 40 70 80 75 100 120 110 90 66

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 6

Number of nodes are: 15

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 7

Number of leaves are: 8

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

Other Data Structures

190

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 8

Enter value of node to be searched: 120

Element found.

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 9

Enter value of node to be deleted: 70

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

Other Data Structures

191

10. Exit

Enter your choice . . . 9

Enter value of node to be deleted: 75

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 2

Tree in tree form —>

120

110

100

90

80

66

55

50

45

40

35

30

20

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

Other Data Structures

192

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 9

Enter value of node to be deleted: 40

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 2

Tree in tree form —>

120

110

100

90

80

66

55

50

45

35

30

Other Data Structures

193

20

Main Menu

1. Insert

2. Display in tree form

3. Pre-order traversal of tree

4. In-order traversal of tree

5. Post-order traversal of tree

6. Number of nodes

7. Number of leaves

8. Searching

9. Delete

10. Exit

Enter your choice . . . 10

Normal termination of program.

6.7 Threaded Binary Tree

One of the most common operations that are performed on the trees is the traversal of

nodes. Hence, it is required to make this operation more efficient. This can be

achieved by utilizing space occupied by the NULL pointers in the leaf nodes and

internal nodes having only one child node. These pointers can be modified to point to

their corresponding in-order successor, in-order predecessor, or both. These modified

pointers are known as threads and binary trees having such types of pointers are

known as threaded binary trees.

The different types of threaded binary trees are as follows (see Figure 6.15, threads

denoted by dotted lines):

● Right-threaded binary tree: In this tree, the right NULL pointer of each node

(not having the right child node) points to its in-order successor. Such a right

NULL pointer is known as the right thread. In this tree, only the right pointer of

the rightmost node [F, see Figure 6.15 (a)] will be a NULL pointer and all the left

NULL pointers will remain NULL.

● Left-threaded binary tree: In this tree, the left NULL pointer of each node (not

Other Data Structures

194

having a left child node) points to its in-order predecessor. Such a left NULL

pointer is known as a left thread. In this tree, only the left pointer of the

leftmost node [G, see Figure 6.15(b)] will be a NULL pointer, and all right NULL

pointers will remain NULL.

● Full-threaded binary tree: In this tree, both right and left NULL pointers, point

to their in-order successor and in-order predecessor, respectively. In this tree,

both the right pointer of the rightmost node (F) and the left pointer of the

leftmost node (G) will be a NULL pointer.

Figure 6.15 Types of Threaded Binary Tree

This way of threading the binary trees corresponds to the in-order traversal of the tree.

Similarly, there can be threaded binary trees corresponding to the pre-order traversal

of trees. However, there is no threaded binary tree corresponding to the post-order

traversal of the tree. Threaded binary trees can also be categorized on the basis of the

number of threads being used. A threaded binary tree in which only one thread is

used is known as a one-way threaded binary tree, whereas a threaded binary tree in

which two threads are used is known as a two-way threaded binary tree.

The structure of the node of a threaded binary tree is similar to the node of a binary

Other Data Structures

195

tree, with some additional variables, indicating whether the left or right pointers are

normal pointers or threads. To define a node of a full-threaded binary tree in ‘C’

language, a self-referential structure can be used whose definition is given here.

typedef struct node

{

int info;

struct node *left;

char lthread;

struct node *right;

char rthread;

};

The variables lthread and rthread are used to indicate whether the left and right

pointers are normal pointers or threads. The value ‘1’ is stored in these variables to

indicate that the corresponding left and right pointers are normal pointers and the

value ‘0’ indicates that the corresponding variables will be used as threads. In the case

of the right-threaded binary tree and left-threaded binary tree, only corresponding

variables are included in the structure of the node. The linked representation of a full-

threaded binary tree is shown in Figure 6.16.

Figure 6.16 Storage Representation of Full-threaded Binary Tree

6.8 Summary

● A tree is a non-linear data structure representing a hierarchical structure of

one or more elements known as nodes.

● The node at the top of the tree is known as the root of the tree and the nodes at

Other Data Structures

196

the lowest level are known as the leaf nodes.

● The binary tree is a special type of tree that can be either empty or has a finite

set of nodes, such that one of the nodes is designated as the root node and the

remaining nodes are partitioned into two subtrees of the root node, known as

left subtree and right subtree.

● A binary tree is said to be an extended binary tree (also known as 2-tree) if all of

its nodes are of either zero or two degrees.

● Trees can be represented using an array or a linked list. An array

representation binary trees are represented sequentially in memory, by using a

single one-dimensional array. The linked representation of a binary tree is

implemented by using a linked list having an info part and two pointers. The

info part contains the data value and two pointers, left and right, are used to

point to the left and right subtree of a node, respectively.

● A binary search tree, also known as a binary sorted tree, is a kind of a binary

tree in which values in the left subtree of a root node are smaller than the value

of the root node, and values in the right subtree are greater than the value of

the root node.

● In a threaded binary tree, the NULL pointers are modified to point to their in-

order successor or in-order predecessor or both. It can be of three types, right-

threaded binary tree, left-threaded binary tree, and full-threaded binary tree.

6.9 Key Terms

● Complete binary tree: A binary tree in which all the leaf nodes of the tree are

at the same level.

● Traversing in a binary tree: The process of visiting each and every node of the

tree exactly once.

● Depth (or height): Depth of the binary tree is the highest level number of any

node in a binary tree.

● Degree of a node: The degree of a node is equal to the number of its child

nodes.

● One-way threaded binary tree: Threaded binary tree in which only one thread

is used.

Other Data Structures

197

6.10 Check Your Progress

Short- Answer type

Q1) A binary tree could either have only a root node or have two disjoint binary trees

called the left subtree or the right subtree. (True/ False?)

Q2) The nodes which have the same parent node are known as

(i) Root (ii) Siblings (iii) Left nodes (iv) Right nodes

Q3) Differentiate between a one- way threaded binary tree and a two-way threaded

binary tree.

Q4) When a binary search tree is traversed in _________, it results in a sequence of the

elements in ascending order.

Q5) The node at the top of the tree is known as the _________ of the tree and the nodes

at the lowest level are known as the ________.

Long- Answer type

Q1) Differentiate between an extended binary tree and a complete binary tree.

Q2) Write an algorithm for inserting an element into a binary search tree.

Q3) What are the different types of threaded binary trees? Explain in detail.

Q4) Define the following:

(i) Root node (ii) Leaf node (iii) Internal node (iv) Edge

Q5) Write short notes on the array and linked representations of a binary tree.

References

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

• Data Structures with C, Lipschutz, S. (2011), Delhi: Tata McGraw-Hill.

• Data Structures and Algorithm Analysis in C, Weiss. M. (1996), Addison Wesley

Publications

Other Data Structures

198

Unit: 7 Graphs
Structure

7.0 Introduction

7.1 Unit Objectives

7.2 Graph Terminologies

7.3 Types of Graphs

 7.3.1 Classification on the basis of Edge Connectivity

 7.3.2 Classification on the basis of Direction

 7.3.3 Classification on the basis of Weight or Level

 7.3.4 Classification on the basis of Connectivity

7.4 Representation of Graphs

 7.4.1 Set Representation

 7.4.2 Linked Representation

 7.4.3 Matrix Representation

7.5 Graph Traversal Algorithms

 7.5.1 Breadth-First Search Algorithm

 7.5.2 Depth-first Search Algorithm

7.6 Shortest Path Algorithms

7.6.1 Minimum Spanning Trees

 7.6.2 Prim’s Algorithm

 7.6.3 Kruskal’s Algorithm

 7.6.4 Dijkstra’s Algorithm

7.7 Summary

7.8 Key Terms

7.9 Check Your Progress

7.0 Introduction

Another important non-linear data structure is Graphs. Graph structures can be

easily related to the real world. For example, the airlines or railways network of the

different cities can be represented using graph structures. The relation between the

two variables can be depicted using different types of graph structures. Even the

maps are also special kinds of graph structures that are very commonly used in day

to day life.

Other Data Structures

199

A graph is a non-linear abstract data structure that is used to implement any

relational or mathematical concepts of the entities. Simply, a graph is defined as a

collection of vertices or nodes and edges. It is interesting to note that Trees are also a

special kind of graph data structure. The relationship between the two nodes in a

graph is less restricted than in trees. The nodes in trees follow one parent to many

children relationship while in the case of graphs, the relationship of nodes is from

many parents to many children.

This unit explains the fundamentals of graph data structures, different graph

terminologies, representations, operations, and applications of graphs.

7.1 Unit Objectives

After going through this unit, the reader will be able to:

● Explain the fundamentals of Graphs.

● Understand its terminologies and different representations.

● Learn about the distinct operations of graph structures.

● Discuss the various applications of graphs.

7.2 Graph Terminologies

To learn about various terminologies of a graph structure, let us consider a graph G

with an ordered set (V, E), where V(G) depicts the set of vertices and E(G) depicts the

edges that connect the vertices. Figure 7.1 represents graph G with V(G) = {A, B, C,

D and E} and E(G) = {(A, B), (B, C), (A, D), (B, D), (D, E), (C, E)}. It should be noted

that there are five vertices or nodes and six edges in the graph.

Figure 7.1 An example of a graph

Some of the important terms regarding trees are discussed below.

● Adjacent nodes or neighbors: For every edge, E = (p, q) that connects nodes

p and q, the nodes p and q are said to be the adjacent nodes or neighbors.

● Degree of a node: Degree of a node p, deg(p), is the total number of edges

Other Data Structures

200

containing the node p. If deg(p) = 0, it means that p does not belong to any

edge and such a node is known as an isolated node.

● Regular graph: A graph where each vertex has the same number of neighbors

i.e., every node has the same degree. A regular graph with vertices of degree k

is called a k–regular graph or a regular graph of degree k. Figure 7.2 shows the

regular graphs.

Figure 7.2 Regular Graphs

● Path: A path P = {v0 , v1 , v2 , ..., vn), of length n from a node u to v is defined

as a sequence of (n+1) nodes. Here, u = v0, v = vn and vi+1 is adjacent to vi for i

= 1, 2, 3,..,n.

● Closed path: A path P is termed as a closed path if the edge has the same

end-points, i.e. if v0 = vn.

● Simple path: A path P is termed as a simple path if all the nodes in the path

are distinct with the exception that v0 may be equal to vn. If v0 = vn, then the

path is called a closed simple path.

● Cycle: A path in which the first and the last vertices are the same, forms a

cycle. There are no repeated edges or other vertices (except the first and last

vertices) in a simple cycle.

● Connected graph: If any two vertices (u, v) in V are connected through a path

from u to v, it is known as a connected graph. There are no isolated nodes in a

connected graph. A connected graph with no cycle is called a tree.

● Complete graph: If all the vertices or nodes of a graph are fully connected,

then it is said to be complete. It should be noted that in a complete graph,

there is a path from one node to every other node. A complete graph has n(n–

1)/2 edges, where n is the number of nodes in G.

● Size of a graph: The size of a graph is the total number of edges in it.

● Multiple edges: Distinct edges that connect the same end-points are called

Other Data Structures

201

multiple edges.

7.3 Types of Graphs

Graphs provide an advantage to represent complex data in the simplest forms.

Accordingly, there are distinct graphs and their components in graph theory. There

are different criteria to classify graphs.

7.3.1 Classification on the basis of Edge Connectivity

On the basis of edge connectivity, there are four types of graphs.

1. Simple Graphs: A simple graph connects only a pair of vertices or nodes in a

graph containing vertices and edges. A simple graph is specified by its set of

vertices and a set of edges. The set of edges is treated as a set of unordered

pairs of vertices, like e=(u,v) (or e=(v,u)). Here, u & v are the endpoints of an

edge, also known as adjacent nodes or neighbors.

Simple graphs are most widely used in graph theory. Most of the algorithms

and applications are developed using simple graphs only.

2. Multi- Graphs: A graph that contains multiple edges between a pair of vertices

is called a multi- graph. It can be represented in figure 7.3.

Figure 7.3 An example of Multigraph

3. Graph with Loops: A graph that permits loops that starts and ends at the

same vertex is called a graph with loops. It can even contain self-loop, then it

is known as a graph with self-loop. Figure 7.4 shows a graph with a self-loop

at vertex v.

Figure 7.4 A graph with self-loop

4. Hypergraph: In a hypergraph, an edge can connect one or more vertices (even

more than two). This edge is called hyperedge. Figure 7.4 shows a hypergraph

with 5 vertices and 4 hyperedges.

Other Data Structures

202

Figure 7.5 A hypergraph with 4 hyperedges

7.3.2 Classification on the basis of Direction

The graphs can be classified on the basis of the direction of the edges. The origin of

an edge is from one vertex and ends at another vertex. An arrow indicates the

direction of an edge. According to the direction, graphs can be directed or undirected.

1. Directed Graphs: In a directed graph, an arrow at the end vertex of an edge

indicates its direction. The edge is considered as in-degree of the vertex where

the arrow of the edge ends and the edge is considered as out-degree where the

edge starts. Figure 7.6 shows a directed graph.

Figure 7.6 A directed graph

2. Undirected Graphs: In an undirected graph, there is no direction of the edge.

The edge is considered in the degree of both the vertices. When not specified,

the graph is considered to be an undirected graph. Figure 7.3 is an undirected

graph where the direction of the edge is not specified.

7.3.3 Classification on the basis of Weight or Label

According to the requirement of any problem, the edges of the graphs are assigned a

certain value or number that is termed as the weight or label of that edge. The total

weight of the graph can also be calculated when required. On the basis of weight,

graphs can be classified into four types.

1. Unlabelled Graphs: In an unlabelled graph, the vertices are not assigned any

names rather each vertex is treated equal.

2. Labelled Graphs: In a labelled graph, a unique name is assigned to every

Other Data Structures

203

vertex of the graph.

3. Unweighted Graphs: In an unweighted graph, the edges are connected to the

adjacent vertices only. The edges or vertices are not assigned any number.

4. Weighted Graphs: In a weighted graph, each vertex or edge is assigned a

number. This number represents a parameter of interest. Depending on the

problem, this number could be distance, cost, capacity, etc. The weighted

graphs can be further classified into six types, as discussed below:

● Edge weighted graph: When the weight is associated with the edges of the

graph, then it is an edge-weighted graph. It is shown in figure 7.7(a).

● Vertex weighted graph: When the weight is associated with the vertices of

the graph, then it is a vertex weighted graph. It is shown in figure 7.7(b).

● Positive weights: The weights associated with edges or vertices are positive

integers then they are positive weights. In figure 7.7(a), all edges except

edge(w,z) represent positive weights.

● Negative weights: The weights associated with edges or vertices are

negative integers then they are negative weights. In figure 7.7(a), edge(w,z)

represents negative weights.

● Additive weights: There is a need to compute the total weight of the graph

while traversing the edges or vertices of the graph. For additive

computation, the weights associated with the edges or vertices are added.

For example, in figure 7.7(a), traversing u to v to w costs 12 if the weights

are additive.

● Multiplicative weights: The weights of the edges or vertices of a graph can

be multiplicative too. In other words, the total cost of traversal can be

computed by multiplying weights of edges or vertices. For example, in

figure 7.7(a), traversing u to v to w costs 20 if the weights are

multiplicative.

Figure 7.7 (a) Edge weighted graph (b) Vertex weighted graph

Other Data Structures

204

7.3.4 Classification on the basis of Connectivity

On the basis of connectivity, the graphs can be classified as connected and

disconnected graphs.

1. Connected Graphs: A graph is said to be a connected graph when every vertex

is reachable from any other vertex by traversing the edges. A connected graph is

shown in figure 7.3 in which every vertex is reachable from every other vertex

through a set of edges. For example, vertex z is reachable from vertex v through

edges (v,w) and (w,z).

2. Disconnected Graphs: A graph in which certain vertices are not reachable from

other vertices through any set of edges, is known as a disconnected graph.

Figure 7.8 shows a disconnected graph in which vertex b and d are not

connected through any set of edges of the graph.

Figure 7.8 A disconnected graph

7.4 Representation of Graphs

The graphs can be represented in various ways in the computer's memory. Some of

these graph representations are discussed below.

7.4.1 Set Representation

It is one of the simplest and straightforward methods of representation of graphs. In

this method, two sets are maintained for edges and vertices. V is the set of vertices

and E is the set of edges. Both edges and vertices are subsets of V x V. If the graph is

weighted, the set E will be represented as E = W x V x V, where W is the set of

weights. Consider an example in figure 7.9 for different types of graphs.

Other Data Structures

205

Figure 7.8 An example of different types of graphs

(Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition, Chapter- 8, Page No.- 423)

These graphs in figure 7.8 can be represented using the set representation method,

as below:

Graph G1

V(G1) = {v1, v2, v3, v4, v5, v6, v7 }

E(G1) = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v3, v6), (v3, v7)}

Graph G2

V(G2) = {v1, v2, v3, v4, v5, v6, v7 }

E(G2) = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v3, v4), (v3, v6), (v4, v7), (v5, v7), (v6, v7)}

Graph G3

V(G3) = {A, B, C, D, E}

E(G3) = {(A, B), (A, C), (C, B), (C, A), (D, A), (D, B), (D, C), (D, E), (E, B)}

Graph G4

V(G4) = {A, B, C, D}

E(G4) = {(3, A, C), (5, B, A), (1, B, C), (7, B, D), (2, C, A), (4, C, D), (6, D, B), (8, D, C)}

Note: The set representation method does not allow to store parallel edges if the

graph is a multigraph and undirected graph. It is so as in a set two identical

elements are not allowed. Though it is a straightforward approach, it is not useful for

Other Data Structures

206

manipulation of the graph.

7.4.2 Linked Representation

Another space-saving approach to graph representation is Linked representation. In

this method, two types of node structures are assumed, as shown in figure 7.9 for

unweighted and weighted graphs.

Figure 7.9 Node structures in Linked representation

Source: Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition

This method uses an adjacency list that contains the list of all the vertices/ nodes.

ADJ_LIST in figure 7.9 represents an adjacency list. Every vertex is in turn linked to

its own list that includes the names of all the vertices that are adjacent to it.

An adjacency list has the following advantages:

● It is easy to follow an adjacency list. It clearly displays the adjacent vertices of

a particular vertex.

● Adding new vertices in an adjacency list is easier than in an adjacency matrix.

● An adjacency list is generally preferred for sparse graphs that have a small-to-

moderate number of edges. For a large number of edges, the adjacency matrix

is preferred.

Consider the types of graphs shown in figure 7.8. The linked representation of these

graphs is shown in figure 7.10.

Other Data Structures

207

Figure 7.10 Linked representation of graphs of figure 7.8

(Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition, Chapter- 8, Page No.- 424)

Program 7.1 Write a program to create a graph of n vertices using an adjacency list.

Also write the code to read and print its information and finally to delete the graph.

#include <stdio.h>

#include <conio.h>

#include <alloc.h>

struct node

{

char vertex;

 struct node *next;

};

struct node *gnode;

void displayGraph(struct node *adj[], int no_of_nodes);

Other Data Structures

208

void deleteGraph(struct node *adj[], int no_of_nodes);

void createGraph(struct node *adj[], int no_of_nodes);

int main()

{

struct node *Adj[10];

 int i, no_of_nodes;

 clrscr();

 printf("\n Enter the number of nodes in G: ");

 scanf("%d", &no_of_nodes);

 for(i = 0; i < no_of_nodes; i++)

 Adj[i] = NULL;

 createGraph(Adj, no_of_nodes);

 printf("\n The graph is: ");

displayGraph(Adj, no_of_nodes);

 deleteGraph(Adj, no_of_nodes);

 getch();

 return 0;

}

void createGraph(struct node *Adj[], int no_of_nodes)

{

struct node *new_node, *last;

 int i, j, n, val;

 for(i = 0; i < no_of_nodes; i++)

 {

 last = NULL;

 printf("\n Enter the number of neighbours of %d: ", i);

 scanf("%d", &n);

 for(j = 1; j <= n; j++)

 {

 printf("\n Enter the neighbour %d of %d: ", j, i);

 scanf("%d", &val);

 new_node = (struct node *) malloc(sizeof(struct node));

 new_node –> vertex = val;

 new_node –> next = NULL;

 if (Adj[i] == NULL)

Other Data Structures

209

 Adj[i] = new_node;

 else

 last –> next = new_node;

 last = new_node

 }

 }

}

void displayGraph (struct node *Adj[], int no_of_nodes)

{

struct node *ptr;

 int i;

 for(i = 0; i < no_of_nodes; i++)

 {

 ptr = Adj[i];

printf("\n The neighbours of node %d are:", i);

 while(ptr != NULL)

 {

 printf("\t%d", ptr –> vertex);

 ptr = ptr –> next;

 }

 }

}

void deleteGraph (struct node *Adj[], int no_of_nodes)

{

int i;

 struct node *temp, *ptr;

 for(i = 0; i <= no_of_nodes; i++)

 {

 ptr = Adj[i];

 while(ptr ! = NULL)

 {

 temp = ptr;

 ptr = ptr –> next;

 free(temp);

Other Data Structures

210

}

Adj[i] = NULL;

 }

}

The Output of the program is:

Enter the number of nodes in G: 3

Enter the number of neighbours of 0: 1

Enter the neighbour 1 of 0: 2

Enter the number of neighbours of 1: 2

Enter the neighbour 1 of 1: 0

Enter the neighbour 2 of 1: 2

Enter the number of neighbours of 2: 1

Enter the neighbour 1 of 2: 1

The neighbours of node 0 are: 1

The neighbours of node 1 are: 0 2

The neighbours of node 2 are: 0

Note: If the graph in the above program had been a weighted graph, then the

structure of the node would have been:

typedef struct node

{

 int vertex;

 int weight;

 struct node *next;

};

7.4.3 Matrix Representation

The most useful way of representing any graph is Matrix representation. In this

method, a square matrix of order n x n is used, where n represents the number of

vertices in the graph. This matrix is known as an adjacency matrix as an entry in the

matrix stores the information whether two vertices are adjacent or not. As we know,

Other Data Structures

211

the adjacent nodes are those that have a common edge connecting them. This matrix

is also known as a bit matrix or Boolean matrix as the entered values are either 0 or

1.

The entries in the matrix can be decided as per the following conditions:

 aij = 1, if there is an edge from vi to vj

 = 0, otherwise

The adjacency matrix is preferred for storing multigraphs and weighted graphs. For

multigraphs, the entry will be according to the number of edges between two vertices,

instead of entry 1. For weighted graphs, the entries in the matrix will be according to

the weights of the edges, instead of 0 or 1.

Figure 7.11 Matrix representation of graph

Source: Classic Data Structures, Debasis Samanta, PHI 2nd Edition, Chapter- 8, Page No.- 425

Consider the types of graphs shown in figure 7.8. The matrix representation of these

graphs is shown in figure 7.12.

Figure 7.12 Matrix representation of graphs of figure 7.8

Source: Classic Data Structures, Debasis Samanta, PHI 2nd Edition, Chapter- 8, Page No.- 425

Other Data Structures

212

Following conclusions can be drawn from figure 7.12:

● For a simple graph (that has no loops), the adjacency matrix has 0s on the

diagonal.

● The adjacency matrix of an undirected graph is symmetric.

● Number of 1s (or non-zero entries) in an adjacency matrix is equal to the

number of edges in the graph.

● The adjacency matrix for a weighted graph contains the weights of the edges

connecting the nodes.

Power of adjacency matrix: We already know that the adjacency matrix A1 means

that an entry 1 in the ith row and jth column is due to an edge of length 1 from vi to vj.

Now consider, A2, A3, and A4.

(aij)2 = ∑aik akj

Any entry aij = 1 if aik = akj = 1. It may be concluded that if there are two edges (vi , vk)

and (vk, vj) then the length is 2. Similarly the power of the adjacency matrix will be

defined according to the number of edges between two adjacent nodes. Generally,

every entry in the ith row and jth column of An (where n is the number of nodes in the

graph) gives the number of edges of length n from node vi to vj. Figure 7.13 shows a

directed graph with its adjacency matrix and computation of adjacent matrices for

different powers.

(a)

Other Data Structures

213

(b)

Figure 7.13 (a) Directed graph with its adjacency matrix (b) Adjacency matrices

for A2, A3, and A4

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 389

If we define matrix B as:

Br = A1 + A2 + A3 + ... + Ar

An entry in the ith row and jth column of matrix Br gives the number of edges of length

r from vertex vi to vj. This matrix B is used to obtain the path matrix (P). The path

matrix P can be calculated from B by setting an entry Pij = 1 , if Bij is non-zero and Pij

= 0, otherwise.

Pij = 1, if Bij is non-zero

 = 0, otherwise

The path matrix is used to show whether there is an edge from node vi to vj or not.

7.5 Graph Traversal Algorithms

The method of visiting each vertex and edge of a graph for at least once is known as

traversing a graph. Following points should be noted for a graph:

● There is no first node or root in a graph. So, the graph can be started at any

node.

● A particular node can be visited repeatedly. Hence, it becomes essential to note

the status of the nodes that are traversed or not.

● Only those nodes can be traversed that are accessible from the current node.

Other Data Structures

214

The path of the traversing graph can be determined stepwise.

● In a graph, more than one edge is available, to reach a particular node.

Two standard methods are used for graph traversal:

1. Breadth-first search

2. Depth-first search

In breadth-first search method, a queue is used to store the vertices for further

processing while in depth-first search method, a stack is used for this purpose. Both

the algorithms use a variable STATUS that is set to 1 or 2 for every node, depending

on its current state, during the execution. Table 7.1 describes the value and

significance of the STATUS variable.

Table 7.1 Value and Significance of the STATUS variable

7.5.1 Breadth-First Search Algorithm

The breadth-first search algorithm is accomplished by using a queue. The algorithm

begins at a particular node that is considered as a root node and all the neighboring

nodes are explored. Then for each of those nearest nodes, all other unexplored

neighboring nodes are explored, and so on. For instance, if we start with node P, all

neighbors of P are explored and then the neighbors of the neighbors of P are

examined. The algorithm moves on until all the nodes are explored only once and not

repeated. The queue helps in tracking and holding the waiting nodes for processing.

The variable STATUS is used to represent the current state of the particular node.

Other Data Structures

215

Algorithm 7.1 Breadth-first search Algorithm

Step-1: Set STATUS = 1 (ready state) for every node in G.

Step-2: Enqueue the starting node A and set its STATUS = 2 (waiting state).

Step-3: Repeat Steps 4 and 5 until QUEUE is empty.

Step-4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

Step-5: Enqueue all the neighbours of N that are in the ready state (whose STATUS = 1) and set their

STATUS = 2 (waiting state)

 [END OF LOOP]

Step 6: EXIT

Example 7.1 Consider the graph G given below. Find the minimum path P from A to

I given that every edge has a length of 1.

Solution: In the given figure, the minimum path P can be calculated with the help of

the breadth-first search algorithm beginning at node A till node I. Here, we are using

two arrays: QUEUE and ORIG. QUEUE is used to hold the nodes to be processed

while ORIG is used to track the origin of each edge. Initially, FRONT = REAR = -1.

The algorithm is as follows:

Step-1: Add A to QUEUE and NULL to ORIG.

FRONT = 0 QUEUE = A

REAR = 0 ORIG = \0

Step-2: Set FRONT = FRONT + 1 and remove the FRONT element of QUEUE

(Dequeue) and add the neighbors of A (Enqueue). Also, add A to ORIG for the origin of

the path of its neighbors.

FRONT = 1 QUEUE = A B C D

Other Data Structures

216

REAR = 3 ORIG = 0 A A A

Step-3: Set FRONT = FRONT + 1 and enqueue neighbors of B. Add B to ORIG of its

neighbors.

 FRONT = 2 QUEUE = A B C D E

REAR = 4 ORIG = 0 A A A B

Step-4: Again set FRONT = FRONT + 1 and enqueue the neighbours of C. Add C as

the ORIG of its neighbours. Please note that B and G are two neighbours of C. Since

B has already been added to the queue, we will not add B again and only add G.

FRONT = 3 QUEUE = A B C D E G

REAR = 5 ORIG = 0 A A A B C

Step-5: Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours

of D. Add D as the ORIG of its neighbours. Please note that C and G are two

neighbours of D. Since both of them are already added to the queue, we will not add

them again.

FRONT = 4 QUEUE = A B C D E G

REAR = 5 ORIG = 0 A A A B C

Step-6: Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours

of E. Add E as the ORIG of its neighbours. Please note that C and F are two

neighbours of E. Since C has already been added to the queue, we will not add C

again and only add F.

FRONT = 5 QUEUE = A B C D E G F

REAR = 6 ORIG = 0 A A A B C E

Step-7: Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours

of G. Add G as the ORIG of its neighbours. Please note that F, H and I are three

neighbours of G. Since F has already been added to the queue, we will only add H

and I. As our final goal was to reach I, the algorithm will be stopped here.

FRONT = 6 QUEUE = A B C D E G F H I

REAR = 9 ORIG = 0 A A A B C E G G

Other Data Structures

217

Now, to find the minimum path P, we have to backtrack using ORIG from I. The

result obtained is A￫ C￫ G￫ I.

Program 7.2: Write a program to implement the breadth-first search algorithm.

#include <stdio.h>

#define MAX 10

void breadth_first_search(int adj[][MAX],int visited[],int start)

{

int queue[MAX],rear = –1,front =– 1, i;

queue[++rear] = start;

 visited[start] = 1;

 while(rear != front)

 {

 start = queue[++front];

 if(start == 4)

 printf("5\t");

 else

 printf("%c \t",start + 65);

 for(i = 0; i < MAX; i++)

 {

 if(adj[start][i] == 1 && visited[i] == 0)

 {

 queue[++rear] = i;

 visited[i] = 1;

 }

 }

 }

}

int main()

{

 int visited[MAX] = {0};

 int adj[MAX][MAX], i, j;

 printf("\n Enter the adjacency matrix: ");

 for(i = 0; i < MAX; i++)

for(j = 0; j < MAX; j++)

 scanf("%d", &adj[i][j]);

Other Data Structures

218

breadth_first_search(adj,visited,0);

 return 0;

}

The output of the program is:

Enter the adjacency matrix:

0 1 0 1 0

1 0 1 1 0

0 1 0 0 1

1 1 0 0 1

0 0 1 1 0

A B C D E

7.5.2 Depth-First Search Algorithm

The depth-first search algorithm is similar to the in-order traversal of a binary tree.

The implementation of this algorithm is similar to that of the breadth-first search

algorithm but a stack is used in place of a queue. Likewise, the STATUS variable is

used to represent the current state of the node. In this method, the starting node of

the graph G is expanded and then the process goes deeper and deeper until the goal

node is achieved. The goal node can also be found when there are no children nodes

for that node. On achieving the goal node, the algorithm backtracks and returns to the

recent node that has not been explored completely. For instance, when the algorithm

starts at node A, it becomes the current node. Then each node N is examined along a

path P, beginning at A. That means, first we process node A, then its neighbors, and

then the neighbors of the neighbors of A, and so on. If we reach a path that is

associated with an already processed node N, then we backtrack to the current node.

Otherwise, the unvisited node becomes the current node.

The algorithm continues to the dead-end, i.e. end of path P and after that we

backtrack to find another path P’. When the backtracking leads back to the starting

node A, the algorithm terminates. The edges that lead to new nodes are called

discovery edges and the edges that lead to an already processed node are known as

back edges.

Other Data Structures

219

Algorithm 7.2 Depth-first search Algorithm

Step-1: SET STATUS = 1 (ready state) for each node in G.

Step-2: Push the starting node A on the stack and set its STATUS = 2 (waiting state).

Step-3: Repeat Steps 4 and 5 until STACK is empty.

Step-4: Pop the top node N. Process it and set its STATUS = 3 (processed state).

Step-5: Push on the stack all the neighbours of N that are in the ready state (whose STATUS =

1) and set their STATUS = 2 (waiting state).

 [END OF LOOP]

Step-6: EXIT

Example 7.2: Consider the graph G of example 7.1, If we need to print all the nodes

that can be reached from node H (including H) using the depth-first search algorithm

starting at node H. The solution will be as follows.

Solution: In depth-first search algorithm, we use a STACK. The algorithm is as

follows:

Step-1: Push H onto the STACK.

 STACK: H

Step-2: Pop and print the top element of the STACK, i.e. H. Push all the neighbors of

H on the STACK.

PRINT : H STACK: E, I

Step-3: Pop and print the top element of the STACK, i.e. I. Push all the neighbors of I

on the STACK.

PRINT : I STACK: E, F

Other Data Structures

220

Step-4: Pop and print the top element of the STACK, i.e. F. Push all the neighbors of

F on the STACK. It should be noted that C and H are two neighbors of but as H is

already processed, only C will be added.

PRINT : F STACK: E, C

Step-5: Pop and print the top element of the STACK, i.e. C. Push all the neighbors of

C on the STACK.

PRINT : C STACK: E, B, G

Step-6: Pop and print the top element of the STACK, i.e. G. Push all the neighbors of

G on the STACK. Since none of the neighbors of G are in ready state, so no push

operation is performed.

PRINT : G STACK: E, B

Step-7: Pop and print the top element of the STACK, i.e. B. Push all the neighbors of

B on the STACK. Since none of the neighbors of B are in ready state, so no push

operation is performed.

PRINT : B STACK: E

Step-8: Pop and print the top element of the STACK, i.e. E. Push all the neighbors of

E on the STACK. Since none of the neighbors of E are in ready state, so no push

operation is performed.

PRINT : E STACK:

As the STACK is now empty, the algorithm is terminated here and the nodes that

were printed are:

H, I, F, C, G, B, E

The above printed nodes are reachable for H.

Program 7.3: Write a program to implement the depth-first search algorithm.

#include <stdio.h>

#define MAX 5

void depth_first_search(int adj[][MAX],int visited[],int start)

{

 int stack[MAX];

Other Data Structures

221

int top = –1, i;

 printf("%c–",start + 65);

 visited[start] = 1;

 stack[++top] = start;

 while(top ! = –1)

 {

 start = stack[top];

 for(i = 0; i < MAX; i++)

 {

 if(adj[start][i] && visited[i] == 0)

 {

 stack[++top] = i;

 printf("%c–", i + 65);

 visited[i] = 1;

 break;

 }

 }

 if(i == MAX)

 top--;

 }

}

int main()

{

 int adj[MAX][MAX];

 int visited[MAX] = {0}, i, j;

printf("\n Enter the adjacency matrix: ");

 for(i = 0; i < MAX; i++)

 for(j = 0; j < MAX; j++)

 scanf("%d", &adj[i][j]);

 printf("DFS Traversal: ");

 depth_first_search(adj,visited,0);

 printf("\n");

 return 0;

}

Other Data Structures

222

The output of the program is:

Enter the adjacency matrix:

0 1 0 1 0

1 0 1 1 0

0 1 0 0 1

1 1 0 0 1

0 0 1 1 0

DFS Traversal: A￫ C￫ E￫

7.6 Shortest Path Algorithms

There are various algorithms that help in computing the shortest path between the

vertices of a graph. Some of the important algorithms are discussed below are:

● Minimum Spanning Trees

● Prim’s Algorithm

● Kruskal’s Algorithm

● Dijkstra’s Algorithm

Let’s discuss each one of them in detail.

7.6.1 Minimum Spanning Trees

A spanning tree is a subgraph of a connected and undirected graph that connects all

the vertices together. A single graph can have many spanning trees. We can even

assign weights to each edge of the graph and ultimately assign weight to the spanning

tree. It can be done by calculating the sum of the weights of the edges in that

spanning tree.

A spanning tree with weight less than or equal to the weight of every other spanning

tree, is known as a minimum spanning tree (MST).

Some important properties of spanning trees are:

● It is possible that there exist multiple minimum spanning trees of the same

weight in a graph. It should be noted that every spanning tree will be

considered minimum, if all the weights are the same.

● To obtain a unique minimum spanning tree, each edge of the graph is assigned

a different weight.

● If the weights of the edges are non-negative, then the minimum spanning trees

Other Data Structures

223

is treated as the minimum-cost subgraph.

● If there is a cycle C in the graph G that has a larger weight than that of the

other edges of C, then this edge is not included in the minimum spanning tree.

● Minimum spanning trees create a sparse subgraph that displays a lot about the

original graph. It is easy and quick to compute MSTs and provide optimal

solutions.

● The minimum spanning tree of a weighted graph consists of n-1 edges of

minimum total weight of the graph. It should be noted that any spanning tree

for an unweighted graph is a minimum spanning tree.

For example, figure 7.14 shows the eight spanning trees drawn from a unweighted

graph G. There can be even more spanning trees. For an unweighted graph, every

spanning tree is considered as a minimum spanning tree.

Figure 7.14 Unweighted graph and its spanning trees

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 406

Another example can be considered for a weighted graph, as shown in figure 7.15.

Distinct spanning trees can be drawn from the graph G. But, it should be noted that

only one minimum spanning tree can be obtained. Here, the spanning tree with total

cost = 9 is said to be the minimum spanning tree of weighted graph G..

Other Data Structures

224

Figure 7.15 Weighted graph and its spanning trees

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 407

Applications of Minimum Spanning Trees

● Minimum spanning trees are widely used for designing networks according to

the requirement. For example, MSTs can be used to determine the least costly

paths to deploy cable in a telephone network.

● MSTs can be used to optimize the cheapest airline routes, connect terminals

for roads, railways, wires, etc.

● MSTs can be applied in routing algorithms to find the most effective path.

7.6.2 Prim’s Algorithm

Prim’s algorithm is used to draw a minimum spanning tree for a weighted- undirected

graph. This algorithm forms a tree that includes every node and a subset of the edges,

such that the total weight of all the edges of the tree is minimum. To accomplish this,

three sets of vertices are maintained:

● Tree Vertices: The vertices that are a part of the minimum spanning tree.

● Fringe Vertices: The vertices that are adjacent but currently are not a part of

tree vertices.

● Unseen Vertices: The vertices other than tree and fringe vertices are termed as

unseen vertices.

Other Data Structures

225

Algorithm 7.3 Prim’s Algorithm

Step-1: Select a starting vertex

Step-2: Repeat Steps 3 and 4 until there are fringe vertices

Step-3: Select an edge e connecting the tree vertex and fringe vertex that has minimum weight

Step-4: Add the selected edge and the vertex to the minimum spanning tree T

 [END OF LOOP]

Step-5: EXIT

The method starts with choosing a starting vertex. The starting vertex is branched

out and during each iteration, a new vertex and edge is selected. The vertex is

selected from the fringe vertices such that minimum weight is assigned to the edge

connecting the tree and new vertex. The running time of this algorithm can be

computed from O (E log V), where V is the number of vertices and E is the number of

edges in the graph.

For example, if we have to construct a minimum spanning tree of the graph given in

figure 7.16 (a) using Prim’s algorithm. Figure 7.16 (b) depicts the step by step process

of forming a minimum spanning tree for the given graph.

(a)

(b)

Figure 7.16(a) Graph G (b) Minimum spanning tree of graph G using Prim’s

algorithm
Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 408

Other Data Structures

226

The steps for Prim’s algorithm for given graph G in figure 7.16 (a) are as follows:

1. Choose a starting vertex A.

2. Add the fringe vertices that are adjacent to A. The edges connecting the

starting vertex and fringe vertices are represented in figure 7.16 (b) with dotted

lines.

3. Now, the edge connecting tree vertex and fringe vertex with minimum weight is

selected. This edge and vertex is added to the minimum spanning tree T. Here,

as shown, the edge connecting A & C has less weight, so C is added to the

tree. Now, C is treated as a tree vertex not a fringe vertex.

4. Add the fringe vertices adjacent to C.

5. Repeat step-3. As the edge connecting C & B has less weight, so B is added to

the tree and now B becomes a tree vertex and is no longer a fringe vertex.

6. Add the fringe vertices adjacent to B.

7. Repeat step-3. As the edge connecting B & D has less weight, so D is added to

the tree and now D is now a tree vertex and is no longer a fringe vertex.

8. Note, now node E remains unconnected, so we will add it in the tree as a

minimum spanning tree is the one in which all the n nodes are connected with

n–1 edges that have minimum weight.

7.6.3 Kruskal’s Algorithm

Kruskal’s algorithm was first proposed by Joseph Kruskal in 1956. It is used to form

a minimum spanning tree for a connected- weighted graph. This algorithm finds a

subset of the edges forming a tree including every vertex, such that the total weight

of all the edges of the tree is minimum. If the graph is an unconnected- weighted

graph, then a minimum spanning forest is obtained. Minimum spanning forest is a

collection of minimum spanning trees.

Algorithm 7.4 Kruskal’s Algorithm

Step-1: Create a forest in such a way that each graph is a separate tree.

Step-2: Create a priority queue Q that contains all the edges of the graph.

Step-3: Repeat Steps 4 and 5 while Q is NOT EMPTY.

Other Data Structures

227

Step-4: Remove an edge from Q.

Step-5: IF the edge obtained in Step 4 connects two different trees, then add it to the forest (for

combining two trees into one tree).

 ELSE

 Discard the edge

Step-6: END

The algorithm uses a priority queue, Q. In this queue, the edges with minimum

weight have priority over other edges in the graph. On termination of the algorithm,

the forest contains only one component that forms a minimum spanning tree of the

graph. The running time of this algorithm can be computed from O (E log V), where

V is the number of vertices and E is the number of edges in the graph.

For example, consider a graph given in figure 7.17 and apply Kruskal’s algorithm on

the graph.

Initially, we have F = {{A}, {B}, {C}, {D}, {E}, {F}}

 MST = {}

 Q = {(A, D), (E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

Figure 7.17 Graph G for Kruskal’s algorithm application

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 410

The steps for Kruskal’s Algorithm for given graph G are:

1. Remove the edge (A, D) from Q and make the following changes:

F = {{A, D}, {B}, {C}, {E}, {F}}

MST = {A, D}

Q = {(E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

2. Remove the edge (E, F) from Q and make the following changes:

F = {{A, D}, {B}, {C}, {E, F}}

MST = {(A, D), (E, F)}

Q = {(C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

Other Data Structures

228

3. Remove the edge (C, E) from Q and make the following changes:

F = {{A, D}, {B}, {C, E, F}}

MST = {(A, D), (C, E), (E, F)}

Q = {(E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

4. Remove the edge (E, D) from Q and make the following changes:

F = {{A, C, D, E, F}, {B}}

MST = {(A, D), (C, E), (E, F), (E, D)}

Q = {(C, D), (D, F), (A, C), (A, B), (B, C)}

5. Remove the edge (C, D) from Q. It should be noted that this edge does not

connect different trees, so it is simply discarded. Only an edge connecting (A,

D, C, E, F) to B will be added to the MST. Therefore,

F = {{A, C, D, E, F}, {B}}

 MST = {(A, D), (C, E), (E, F), (E, D)}

 Q = {(D, F), (A, C), (A, B), (B, C)}

6. Remove the edge (D, F) from Q. It should be noted that this edge does not

connect different trees, so it is simply discarded. Only an edge connecting (A,

D, C, E, F) to B will be added to the MST.

F = {{A, C, D, E, F}, {B}}

 MST = {(A, D), (C, E), (E, F), (E, D)}

 Q = {(A, C), (A, B), (B, C)}

7. Remove the edge (A, C) from Q . Note that this edge does not connect different

trees, so simply discard this edge. Only an edge connecting (A, D, C, E, F) to B

will be added to the MST.

 F = {{A, C, D, E, F}, {B}}

MST = {(A, D), (C, E), (E, F), (E, D)}

Q = {(A, B), (B, C)}

8. Remove the edge (A, B) from Q and make the following changes:

F = {A, B, C, D, E, F}

MST = {(A, D), (C, E), (E, F), (E, D), (A, B)}

Q = {(B, C)}

Other Data Structures

229

9. The algorithm continues until Q is empty. Since the entire forest has become

one tree, all the remaining edges will simply be discarded.

F = {A, B, C, D, E, F}

MST = {(A, D), (C, E), (E, F), (E, D), (A, B)}

Q = {}

Program 7.5: Write a program which finds the cost of a minimum spanning tree.

#include<stdio.h>

#include<conio.h>

#define MAX 10

int adj[MAX][MAX], tree[MAX][MAX], n;

void readmatrix()

{

 int i, j;

 printf(“\n Enter the number of nodes in the Graph : “);

 scanf(“%d”, &n);

 printf(“\n Enter the adjacency matrix of the Graph”);

 for (i = 1; i <= n; i++)

 for (j = 1; j <= n; j++)

 scanf(“%d”, &adj[i][j]);

}

int spanningtree(int src)

{

 int visited[MAX], d[MAX], parent[MAX];

 int i, j, k, min, u, v, cost;

 for (i = 1; i <= n; i++)

 {

Other Data Structures

230

 d[i] = adj[src][i];

 visited[i] = 0;

 parent[i] = src;

 }

 visited[src] = 1;

 cost = 0;

 k = 1;

 for (i = 1; i < n; i++)

 {

 min = 9999;

 for (j = 1; j <= n; j++)

 {

 if (visited[j]==0 && d[j] < min)

 {

 min = d[j];

 u = j;

 cost += d[u];

 }

 }

 visited[u] = 1;

 //cost = cost + d[u];

 tree[k][1] = parent[u];

 tree[k++][2] = u;

 for (v = 1; v <= n; v++)

if (visited[v]==0 && (adj[u][v] < d[v]))

 {

 d[v] = adj[u][v];

 parent[v] = u;

 }

 }

 return cost;

}

void display(int cost)

{

 int i;

 printf(“\n The Edges of the Minimum Spanning Tree are”);

 for (i = 1; i < n; i++)

Other Data Structures

231

 printf(“ %d %d \n”, tree[i][1], tree[i][2]);

 printf(“\n The Total cost of the Minimum Spanning Tree is : %d”, cost);

}

main()

{

 int source, treecost;

 readmatrix();

 printf(“\n Enter the Source : “);

 scanf(“%d”, &source);

 treecost = spanningtree(source);

display(treecost);

 return 0;

}

The output of the program is:

Enter the number of nodes in the Graph : 4

Enter the adjacency matrix : 0 1 1 0

 0 0 0 1

 0 1 0 0

 1 0 1 0

Enter the source: 1

The edges of the Minimum Spanning Tree are: 1 4

 4 2

 2 3

The total cost of the Minimum Spanning Tree is: 1

7.6.4 Dijkstra’s Algorithm

A Dutch scientist Edsger Dijkstra in 1959 introduced Dijkstra’s algorithm to find the

shortest path tree. It is widely used in network routing protocols. This algorithm can

be used to find the shortest path having the lowest cost between source node and

destination node of graph G.

In Dijkstra’s algorithm, the length of an optimal path between two nodes of a graph is

computed. The term optimal here can refer to shortest, fastest or cheapest. The

Other Data Structures

232

algorithm starts with an initial/ source node and accordingly distance from initial

node to any other node is calculated.

Algorithm 7.5 Dijkstra’s Algorithm

Step-1: Select the source node also called the initial node.

Step-2: Define an empty set N that will be used to hold nodes to which a shortest path has been found.

Step-3: Label the initial node with , and insert it into N.

Step-4: Repeat Steps 5 to 7 until the destination node is in N or there are no more labelled nodes in N.

Step-5: Consider each node that is not in N and is connected by an edge from the newly inserted node.

Step-6: (a) If the node that is not in N has no label then SET the label of the node = the label of the newly

inserted node + the length of the edge.

(b) Else if the node that is not in N was already labelled, then SET its new label = minimum (label of

newly inserted vertex + length of edge, old label)

Step-7: Pick a node not in N that has the smallest label assigned to it and add it to N.

In this algorithm, every node in the graph is labelled as the distance (cost) from the

source node to that node. Labels can be of two types: Temporary and Permanent. The

nodes that have not been reached, are assigned as Temporary labels, while

permanent labels are for those nodes that have been reached and their distance to

the source node is also known. A node can be labelled either temporary or permanent

but not both.

Executing this algorithm can produce either of the following two results:

1. A labelled destination node will in turn represent the distance from the source

node to the destination node.

2. A non- labelled destination node specifies that there is no path from the

source to the destination node.

For example, consider a graph G in figure 7.18. The initial node is taken as D and

Dijkstra’s algorithm is applied to graph G. The steps for the same are given below:

Other Data Structures

233

Figure 7.18 Graph G for Dijkstra’s algorithm

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 414

1. Set the label of D = 0 and N = {D}.

2. Label of D = 0, B = 15, G = 23 , and F = 5 . Therefore, N = {D, F}.

3. Label of D = 0, B = 15, G has been re-labelled 18 because minimum (5 + 13,

23) = 18, C has been re-labelled 14 (5 + 9). Therefore, N = {D, F, C}.

4. Label of D = 0, B = 15, G = 18 . Therefore, N = {D, F, C, B}.

5. Label of D = 0 , B = 15, G = 18 and A = 19 (15 + 4) . Therefore, N = {D, F, C, B,

G}.

6. Label of D = 0 and A = 19 . Therefore, N = {D, F, C, B, G, A}.

Note that we have no labels for node E; this means that E is not reachable from D.

Only the nodes that are in N are reachable from D. The running time of Dijkstra’s

algorithm can be given as O(|V|2+|E|)=O(|V|2) where V is the set of vertices and E is

the number of edges in the graph.

7.7 Summary

● A graph is a collection of vertices (or nodes) and edges that connect these

vertices. Degree of a node p, deg(p), is the total number of edges containing the

node p.

● Graphs can be classified on the basis of edge connectivity, direction, weight or

label, and connectivity. The graphs can be represented using three methods;

set representation, Linked representation using an adjacency list, and Matrix

representation using an adjacency matrix.

● Two standard methods for graph traversal are Breadth-first search algorithm

(BFS) and Depth-first search algorithm (DFS). The BFS algorithm is

accomplished by using a queue while the DFS algorithm is accomplished

using a stack.

Other Data Structures

234

● A spanning tree of a connected, undirected graph G is a sub-graph of G which

is a tree that connects all the vertices together.

● Kruskal’s algorithm is an example of a greedy algorithm, as it makes the

locally optimal choice at each stage with the hope of finding the global

optimum.

● Dijkstra’s algorithm is used to find the length of an optimal path between two

nodes in a graph.

7.8 Key Terms

● Isolated Node: A node with degree zero is known as an isolated node.

● Graph with Loops: A graph that permits loops that starts and ends at the

same vertex is called a graph with loops.

● Discovery edges: In a DFS algorithm, the edges that lead to new nodes are

called discovery edges.

● Minimum Spanning Tree: A spanning tree with weight less than or equal to

the weight of every other spanning tree.

● Minimum Spanning Forest: It is a collection of minimum spanning trees.

7.9 Check Your Progress

Short- Answer type

Q1) Adjacency matrix is also known as a ______.

Q2) Graph is a linear data structure. (True/ False?)

Q3) The term optimal can mean-

(a) Shortest (b) Cheapest (c) Fastest (d) All of these

Q4) What is an adjacency matrix?

Q5) Define Minimum Spanning Tree.

Long- Answer type

Q1) Explain the graph traversal algorithms in detail with example.

Q2) Describe Prim’s algorithm.

Q3) Write a brief note on:

(a) Kruskal’s algorithm (b) Dijkstra’s algorithm

Q4) Discuss the types of graphs in detail.

Q5) Given the adjacency matrix of a graph, write a program to calculate the degree of

Other Data Structures

235

a node N in the graph.

References

• Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition
• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

Module: 3

Types of Trees

Types of Trees

236

Unit 8 Balanced Trees
Structure

8.0 Introduction

8.1 Unit Objectives

8.2 Basic Terminology

8.3 AVL Trees

8.4 Weight Balanced Trees

8.5 Summary

8.6 Key Terms

8.7 Check Your Progress

8.0 Introduction

In the previous units, we have already discussed the binary trees and their

terminologies in detail. A binary tree is a special type of tree, which can be either

empty or has a finite set of nodes, such that one of the nodes is designated as the root

node and the remaining nodes are partitioned into two subtrees of root node known as

left subtree and right subtree. These left and right subtrees should not be empty and

should be binary trees. Binary trees can be represented in the computer’s memory

using an array or a linked list.

Binary search trees are a kind of binary tree having values in the left subtree of a root

node smaller than the value of the root node, and values in the right subtree greater

than or equal to the value of the root node. Now, let’s learn about balanced binary

trees.

Balanced trees are a versatile set of data structures in which every leaf is “at a certain

distance” from the root than any other leaf. As we already know that the maximum

number of nodes possible from the root node to a leaf node is termed as the height of a

tree. So, a binary tree is said to be balanced if the height of the tree is O(log n), where

n is the number of nodes of the tree. This unit describes the basic terminology of

balanced trees and also discusses different types of balanced trees in detail.

8.1 Unit Objectives

After going through this unit, the reader will be able to:

● Understand the fundamentals of Balanced binary search trees.

Types of Trees

237

● Explain the basic terminology of Height balanced trees specifically AVL Trees.

● Learn about the properties of Weight-balanced Trees.

8.2 Basic Terminology

Balancing a binary search tree is beneficial as a balanced tree provides O(log n) time

for all the operations like searching, inserting, and deleting. An unbalanced tree

consumes more running time i.e. O(n) as the shape becomes distorted. It means that if

one branch of the tree is much longer than the other, the operations take more

running time. Figure 8.1 represents balanced and unbalanced binary trees.

The height of a binary tree is an important parameter in relation to the efficient

operations on the tree. Searching, inserting, and deleting operations in a binary search

tree are all O(Height). Generally, the height (H) and the number of nodes (n) are related

to H = (log n). So, the effective operations become O(H) = O(log n).

 (a) (b)

Figure 8.1 (a) Balanced Tree (b) Unbalanced Tree

Balancing of the binary trees can be achieved through different approaches. Either

height or weight of the tree is balanced such that the average running time of the

operations is maintained to O(log n). The balancing approach can be partial or

complete as per requirement. Though it is difficult to attain a perfectly balanced

binary tree.

One of the most commonly used balancing approaches is self-balancing trees. Such

trees maintain balance automatically by keeping the height as small as possible

during the insertion and deletion operation on the binary tree. The self-balancing

binary search trees perform rotations to maintain the balance in the tree, even after

the insert and delete operations. Two types of rotations are possible in a binary search

tree without violating its in-order traversal property. Consider figure 8.1 (a) and (b)

representing the left and right rotation of a binary tree.

Types of Trees

238

a) Left Rotation: According to figure 8.2 (a), during the left rotation about node X,

the new root of the subtree is now node Y. Node X becomes the left child of node

Y while subtree B is now the right child of node X.

b) Right Rotation: In figure 8.2 (b), during the right rotation about node Y, the

new root of the subtree is now node X. Node Y becomes the right child of node X

while subtree B is now the left child of node Y.

(a)

(b)

Figure 8.2 (a) Left Rotation (b) Right Rotation of a binary search tree
Source: https://towardsdatascience.com/self-balancing-binary-search-trees-101-fc4f51199e1d

The balanced binary search trees are classified into two groups, i.e. Height balanced

trees and Weight balanced trees. In height-balanced trees, the height of the siblings of

a node is “approximately the same”. In weight balanced trees, the number of

descendants of sibling nodes is “approximately the same”. Different types of height-

balanced binary search trees are there. Some of them like AVL trees, Red-black Trees,

Splay Trees will be discussed in this course.

8.3 AVL Trees

AVL Trees are one of the most commonly known self-balancing binary search trees.

These trees were first introduced by two mathematicians G.M. Adelson-Velsky and

Types of Trees

239

E.M. Landis in 1962. AVL tree is named so in honor of its inventors. Being a self-

balanced binary search tree, an AVL tree takes O(log n) time to perform the search,

insert, and delete operations. That means the height of the AVL tree is limited to O(log

n). The key property for AVL trees is that the heights of the two subtrees of one node

may differ by at most one. Due to this, the AVL tree is also termed a height-balanced

tree.

There is a little difference between the structure of an AVL tree and a simple binary

search tree. In an AVL tree, the additional variable “balance factor” is associated

with each node. The balance factor of a node is the difference between the height of

the right subtree and the height of the left subtree.

Balance factor = Height (left subtree) – Height (right subtree)

In a height-balanced tree, every node has a balance factor of -1, 0, or 1. Any other

value of the balance factor makes the binary search tree unbalanced. Some important

key points about balance factor are:

● If a node has a balance factor of 1, it means that the right subtree of the node is

one level lower than the left subtree. Such a tree is called a lefty-heavy tree as

shown in figure 8.3 (a).

● If a node has a balance factor of 0, it means that the height of the left subtree is

equal to the height of the right subtree.

● If a node has a balance factor -1, it means that the right subtree of the node is

one level higher than the left subtree. Such a tree is called a right-heavy tree as

shown in figure 8.3 (b).

In figure 8.3, it should be noted that the balance factor of nodes 18, 39, 54, 63, and

72 is 0; the balance factor for nodes 27, 36, and 45 is 1.

Figure 8.3 (a) Left-heavy AVL Tree (b) Right-heavy AVL Tree (c) Balanced Tree

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 317

Types of Trees

240

The insertion and deletion operations on the AVL tree may imbalance the tree,

resulting in disturbing the balance factor of the nodes. In such cases, the tree is

rebalanced using rotation operation at the critical node.

Searching for a Node in an AVL Tree

The search operation is the same for both AVL trees and binary search trees. The

structure of the tree does not modify, so no special provisions are required. According

to the property, the running time taken by the search operation to be completed is

O(log n).

Inserting a New Node in an AVL Tree

The insert operation in an AVL tree is similar to the one in binary search trees. In an

AVL tree, the new node is always inserted as the leaf node and the insertion step is

generally followed by an additional step, i.e. rotation. Rotation is helpful in rebalancing

the tree. Though, if the balance factor does not get disturbed due to insert operation,

i.e. it is still -1, 0, or 1, then there is no need for the rotation. In AVL trees, the new

node is always inserted as a leaf node, so the balance factor will always be 0. Change

in balance factor can be observed only for those nodes that are in the path of the root

node and newly inserted node. Some possible changes in the path for any node are

discussed below:

● Initially, the node of an AVL tree was either left-heavy or right-heavy. After the

insertion of a new node, it becomes balanced.

● The node that was balanced initially, becomes either left-heavy or right-heavy

after inserting a new node.

● The node that was either left-heavy or right-heavy initially, becomes unbalanced

due to a new node insertion. Such a node is termed a critical node. The nearest

ancestor node on the path between the inserted node and the root with balance

factor neither -1, 0, nor 1 is the critical node.

Four types of rotations are generally used after insert operation in an AVL tree, they

are LL rotation, RR rotation, LR rotation, RL rotation.

1. LL rotation: The new node is inserted in the left subtree of the left subtree of

the critical node. LL rotation in an AVL tree is shown in figure 8.4. In this

Types of Trees

241

figure, node A is considered as a critical node, as it is the nearest ancestor

whose balance factor is not -1, 0, or 1. After insert operation, the new node has

now become the part of tree T1. Now, during LL rotation, node B becomes the

root; T1 and A are its left and right child respectively; T2 and T3 are now left and

right subtrees of A.

Figure 8.4 (a) Given AVL tree (b) Inserting a new node in the left subtree of left

subtree of critical node (c) LL rotation for given AVL Tree

2. RR rotation: The new node is inserted in the right subtree of the right subtree

of the critical node. RR rotation in an AVL tree is shown in figure 8.5. In this

figure, node A is considered as a critical node, as it is the nearest ancestor

whose balance factor is not -1, 0, or 1. After insert operation, the new node has

now become the part of tree T3. Now, during RR rotation, node B becomes the

root; A and T3 are its left and right child respectively; T1 and T2 are now left and

right subtrees of A.

Figure 8.5 (a) Given AVL tree (b) Inserting a new node in the right subtree of

right subtree of critical node (c) RR rotation for given AVL Tree

3. LR rotation: The new node is inserted in the right subtree of the left subtree of

the critical node. LR rotation in an AVL tree is shown in figure 8.6. In this

Types of Trees

242

figure, node A is considered as a critical node, as it is the nearest ancestor

whose balance factor is not -1, 0, or 1. After insert operation, the new node has

now become the part of tree T2. Now, during LR rotation, node C becomes the

root; B and A are its left and right child respectively; T1 and T2 are now left

subtrees and right subtrees of B and T3 and T4 are now left subtrees and right

subtrees of A.

Figure 8.6 (a) Given AVL tree (b) Inserting a new node in the right subtree of left

subtree of critical node (c) LR rotation for given AVL Tree

4. RL rotation: The new node is inserted in the left subtree of the right subtree of

the critical node. RL rotation in an AVL tree is shown in figure 8.7. In this

figure, node A is considered as a critical node, as it is the nearest ancestor

whose balance factor is not -1, 0, or 1. After insert operation, the new node has

now become the part of tree T2. Now, during RL rotation, node C becomes the

root; A and B are its left and right children, respectively; T1 and T2 are now left

subtrees and right subtrees of A and T3 and T4 are now left subtrees and right

subtrees of B.

Types of Trees

243

Figure 8.7 (a) Given AVL tree (b) Inserting a new node in the left subtree of right

subtree of critical node (c) RL rotation for given AVL Tree

Deleting a node from an AVL Tree

The delete operation in an AVL tree is similar to that of a binary search tree. The only

difference is in terms of maintaining the balance in the tree. After the delete operation,

there may be a need to rebalance the AVL tree for which it is required to perform

rotations. There are two types of rotations that can be performed on an AVL tree after

deleting a given node. These rotations are R rotation and L rotation.

If node A becomes the critical node while deleting node X from the AVL tree, then the

type of rotation depends on whether X is in the left subtree or in the right subtree of

node A. If the node X is in the left subtree of A, then L rotation is applied. If X is in the

right subtree, R rotation is performed.

Program 8.1: Write a C program that shows insertion operation in an AVL tree.

#include <stdio.h>

typedef enum { FALSE ,TRUE } bool;

struct node

{

 int val;

 int balance;

struct node *left_child;

 struct node *right_child;

};

Types of Trees

244

struct node* search(struct node *ptr, int data)

{

 if(ptr!=NULL)

 if(data < ptr -> val)

 ptr = search(ptr -> left_child,data);

 else if(data > ptr -> val)

 ptr = search(ptr -> right_child, data);

 return(ptr);

}

struct node *insert (int data, struct node *ptr, int *ht_inc)

{

 struct node *aptr;

struct node *bptr;

 if(ptr==NULL)

 {

 ptr = (struct node *) malloc(sizeof(struct node));

 ptr -> val = data;

 ptr -> left_child = NULL;

 ptr -> right_child = NULL;

 ptr -> balance = 0;

 *ht_inc = TRUE;

 return (ptr);

 }

 if(data < ptr -> val)

 {

 ptr -> left_child = insert(data, ptr -> left_child, ht_inc);

 if(*ht_inc==TRUE)

 {

 switch(ptr -> balance)

 {

 case -1: /* Right heavy */

 ptr -> balance = 0;

 *ht_inc = FALSE;

 break;

 case 0: /* Balanced */

 ptr -> balance = 1;

Types of Trees

245

 break;

 case 1: /* Left heavy */

 aptr = ptr -> left_child;

 if(aptr -> balance == 1)

 {

 printf(“Left to Left Rotation\n”);

 ptr -> left_child= aptr -> right_child;

 aptr -> right_child = ptr;

 ptr -> balance = 0;

 aptr -> balance=0;

 ptr = aptr;

 }

 else

 {

 printf(“Left to right rotation\n”);

 bptr = aptr -> right_child;

 aptr -> right_child = bptr -> left_child;

 bptr -> left_child = aptr;

 ptr -> left_child = bptr -> right_child;

 bptr -> right_child = ptr;

 if(bptr -> balance == 1)

 ptr -> balance = -1;

 else

 ptr -> balance = 0;

 if(bptr -> balance == -1)

 aptr -> balance = 1;

 else

 aptr -> balance = 0;

 bptr -> balance=0;

 ptr = bptr;

 }

 *ht_inc = FALSE;

 }

 }

 }

 if(data > ptr -> val)

Types of Trees

246

{

 ptr -> right_child = insert(info, ptr -> right_child, ht_inc);

 if(*ht_inc==TRUE)

 {

 switch(ptr -> balance)

 {

 case 1: /* Left heavy */

 ptr -> balance = 0;

 *ht_inc = FALSE;

 break;

 case 0: /* Balanced */

 ptr -> balance = -1;

 break;

 case -1: /* Right heavy */

 aptr = ptr -> right_child;

 if(aptr -> balance == -1)

 {

 printf(“Right to Right Rotation\n”);

 ptr -> right_child= aptr -> left_child;

 aptr -> left_child = ptr;

 ptr -> balance = 0;

 aptr -> balance=0;

 ptr = aptr;

 }

 else

 {

 printf(“Right to Left Rotation\n”);

 bptr = aptr -> left_child;

 aptr -> left_child = bptr -> right_child;

 bptr -> right_child = aptr;

 ptr -> right_child = bptr -> left_child;

 bptr -> left_child = pptr;

 if(bptr -> balance == -1)

 ptr -> balance = 1;

 else

 ptr -> balance = 0;

Types of Trees

247

 if(bptr -> balance == 1)

 aptr -> balance = -1;

 else

 aptr -> balance = 0;

 bptr -> balance=0;

 ptr = bptr;

 }/*End of else*/

 *ht_inc = FALSE;

 }

 }

 }

 return(ptr);

}

void display(struct node *ptr, int level)

{

 int i;

 if (ptr!=NULL)

 {

 display(ptr -> right_child, level+1);

 printf(“\n”);

 for (i = 0; i < level; i++)

 printf(“ “);

 printf(“%d”, ptr -> val);

 display(ptr -> left_child, level+1);

}

}

void inorder(struct node *ptr)

{ if(ptr!=NULL)

 {

 inorder(ptr -> left_child);

 printf(“%d “,ptr -> val);

 inorder(ptr -> right_child);

 }

}

main()

{

Types of Trees

248

 bool ht_inc;

 int data ;

 int option;

 struct node *root = (struct node *)malloc(sizeof(struct node));

 root = NULL;

 while(1)

 {

 printf(“1.Insert\n”);

 printf(“2.Display\n”);

 printf(“3.Quit\n”);

 printf(“Enter your option : “);

 scanf(“%d”,&option);

 switch(choice)

 {

 case 1:

 printf(“Enter the value to be inserted : “);

 scanf(“%d”, &data);

 if(search(root,data) == NULL)

 root = insert(data, root, &ht_inc);

 else

 printf(“Duplicate value ignored\n”);

 break;

 case 2:

 if(root==NULL)

 {

 printf(“Tree is empty\n”);

 continue;

 }

 printf(“Tree is :\n”);

 display(root, 1);

 printf(“\n\n”);

 printf(“Inorder Traversal is: “);

 inorder(root);

 printf(“\n”);

 break;

 case 3:

Types of Trees

249

exit(1);

 default:

 printf(“Wrong option\n”);

 }

 }

}

8.4 Weight Balanced Trees

As we already know that the weight balanced trees are the type of self-balancing trees

that are dependent on the number of leaves in the subtrees of a node. A binary search

tree is said to be weight-balanced if the weight of the left and right subtree in each

node differ by at most one. Weight balanced binary search trees were introduced by

Nievergelt and Reingold in the 1970s, in the name “trees of bounded balance”. Later,

they were modified as weight balanced trees by Kruth. These trees are generally used

to implement dynamic sets, maps, and sequences.

Figure 8.8 An example of Weight Balanced Tree

Source- https://www.wisdomjobs.com/e-university/data-structures-tutorial-290/weight-balanced-tree-7211.html

Like other self-balancing trees, weight-balanced trees also perform rotations to restore

the balance between the nodes, when it becomes unbalanced by search, insert, and

delete operations. The size of the subtree rooted at the node is stored by each node of

the tree. The sizes of left and right subtrees are kept approximately the same by some

factor. Let this factor be α. The types of rotations used to rebalance the binary trees

are the same as those used to rebalance AVL trees.

According to the definition, the size of a leaf is zero and the size of an internal node is

Types of Trees

250

calculated as adding one to the sum of sizes of its two children. The weight can be

defined as adding one to the size of that internal node.

size[n] = size[n.left] + size[n.right] + 1

weight[n] = size[n] + 1

A node is said to be an α-weight balanced tree if it satisfies the following condition,

weight[n.left] ≥ α·weight[n] and weight[n.right] ≥ α·weight[n]

Program 8.2: Write a C program to check whether the given tree is balanced or not.

#include <stdio.h>

#include <stdlib.h>

struct node

{

int data;

struct node *left;

 struct node *right;

};

bool isBalanced(struct node *root);

int findheight(struct node *root)

{

 int lefth=0,righth=0;

 if(root==NULL)

 {

 return 0;

 }

 lefth=findheight(root->left);

 righth=findheight(root->right);

 if(lefth>righth)

 {

 return lefth+1;

 }

 else

 {

 return righth+1;

 }

}

Types of Trees

251

bool isBalanced(struct node *root)

{

 int left_height,right_height;

 if(root==NULL)

 {

 return true;

 }

 left_height=findheight(root->left);

 right_height=findheight(root->right);

 if(abs(left_height-right_height)<=1 && isBalanced(root->left) && isBalanced(root->right))

 {

 return true;

 }

 return false;

}

int main()

{

struct node *root;

 root=(struct node*)malloc(sizeof(struct node));

 root->data=5;

 root->left=(struct node*)malloc(sizeof(struct node));

 root->left->data=8;

 root->left->left=(struct node*)malloc(sizeof(struct node));

 root->left->left->data=10;

 root->left->left->left=root->left->left->right=NULL;

 root->left->right=(struct node*)malloc(sizeof(struct node));

 root->left->right->data=15;

 root->left->right->left=root->left->right->right=NULL;

 root->right=(struct node*)malloc(sizeof(struct node));

 root->right->data=34;

 root->right->left=root->right->right=NULL;

if(isBalanced(root))

 {

 printf("\n\n\nThe above given tree is a Balanced Tree\n\n\n");

 }

 else

Types of Trees

252

 {

 printf("\n\n\nThe above given tree is not a Balanced Tree\n\n\n");

 }

 return 0;

}

The output of the program is:

The above-given tree is a Balanced Tree.

Or The above-given tree is not a Balanced Tree.

8.5 Summary

● Balanced trees are a versatile set of data structures in which every leaf is “at a

certain distance” from the root than any other leaf.

● A binary tree is said to be balanced if the height of the tree is O(log n), where n

is the number of nodes of the tree.

● Self- balancing trees maintain balance automatically by keeping the height as

small as possible during the insertion and deletion operation on the binary tree.

● The balance factor of a node is the difference between the height of the right

subtree and the height of the left subtree. In a height-balanced tree, every node

has a balance factor of -1, 0, or 1.

● Rotations are used to retain the balance in a binary search tree. There are four

types of rotations: LL rotation, RR rotation, LR rotation, and RL rotation.

● A binary search tree is said to be weight-balanced if the weight of the left and

right subtree in each node differ by at most one.

8.6 Key Terms

● Height- balanced Trees: In height-balanced trees, the height of the siblings of

a node is “approximately the same”.

● Weight- balanced Trees: In weight balanced trees, the number of descendants

of sibling nodes is “approximately the same”.

● Balance Factor: It is the difference between the height of the right subtree and

the height of the left subtree.

● Left- heavy Tree: If a node has a balance factor of 1, it means that the right

subtree of the node is one level lower than the left subtree. Such a tree is called

Types of Trees

253

a lefty-heavy tree.

● Right- heavy Tree: If a node has a balance factor -1, it means that the right

subtree of the node is one level higher than the left subtree. Such a tree is

called a right-heavy tree.

8.7 Check Your Progress

Short- Answer type

Q1) Time taken by an AVL tree to perform the search, insert, and delete operations in

average as well as worst case is:

(a) O(n) (b) O(log n) (c) O(n2) (d) O(n log n)

Q2) In an AVL tree, searching operation takes ______ time.

Q3) When the new node is inserted in the right subtree of the right subtree of the

critical node, then it is called RL rotation. (True/ False?)

Q4) When the right subtree of a node is one level lower than the left subtree, then the

balance factor is

(a) 0 (b) 1 (c) –1 (d) 2

Q5) A new node inserted in a binary search tree, will be added as an internal node.

(True/ False?)

Long- Answer type

Q1) The height of a binary search tree affects its performance. Explain.

Q2) State the advantages of AVL trees.

Q3) Differentiate between Height balanced and Weight balanced Trees.

Q4) Create an AVL tree using the following sequence of data: 16, 27, 9, 11, 36, 54,

81, 63, 72.

Q5) Explain the rotation process in Balanced trees in detail. Also, discuss the types

of rotations.

References

• Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

• https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=7

Types of Trees

254

Unit 9 B-Trees
Structure

9.0 Introduction

9.1 Unit Objectives

9.2 B- Trees

9.2.1 Operations on a B- Tree

9.3 B+ Trees

9.3.1 Operations on a B+ Tree

9.4 Red-Black Trees

9.4.1 Inserting a Node in a Red-black Tree

9.4.2 Deleting a Node from a Red-black Tree

9.5 Splay Trees

9.6 Summary

9.7 Key Terms

9.8 Check Your Progress

9.0 Introduction

We have discussed that in a binary search tree every node has one value and two

pointers, that point to the left and right subtrees of the node, respectively. B-trees are

generally used in file systems and databases. A tree data structure that sorts the data

and then performs the insertion and deletion operations, is referred to as B-Tree. The

internal nodes of a B-Tree may have a variable number of child nodes in some

predefined range. The number of child nodes varies with the insertion or deletion of

any data from the node. To maintain the predefined range, the internal nodes can be

merged or splitted. As B-trees permit the maintenance of these child nodes,

rebalancing is not frequently required in B-trees as other self-balancing trees require.

But, this leads to the wastage of some space in the memory as nodes are not

completely full.

Types of Trees

255

This unit deals with the basics of B-Trees, its operations, and its applications. Apart

from AVL trees, the fundamentals of other balanced trees like Red-Black Trees, Splay

Trees, and B+ Trees are also discussed.

9.1 Unit Objectives

After going through this unit, the reader will be able to:

● Explain the basics of B-Trees.

● Understand the operations and applications of B-Trees.

● Learn about the distinct balanced trees like Red-black trees and Splay trees.

● Discuss the fundamentals of B+ Trees.

9.2 B- Trees

B-trees were developed by Rudolf Bayer and Ed McCreight in 1970. They are widely

used for accessing the disk of computer systems. A B-tree having an order of m

consists of m-1 keys and m pointers to the subtrees. The purpose of using B-trees is to

store a large number of keys in a single node to keep the height of the tree relatively

small. The small height of the tree will take less processing time as compared to the

tree with more height.

In B- trees the number of child nodes are in a predefined range and can vary with the

insert or delete operations. There is a need to maintain this predefined range by

merging or splitting these internal nodes. Unlike other self-balancing trees, B- trees do

not require rebalancing frequently as they focus on maintaining the predefined range

of internal nodes. B- trees consist of two limits i.e. upper bound and lower bound.

These two bounds are fixed for the number of child nodes for a particular

implementation.

As we already know that the height of all the leaf nodes has to be maintained to keep

the tree balanced. Similarly, a B-tree is also balanced by keeping all the leaf nodes at

the same depth/ height. The height of the B- Tree will increase with the addition of

elements to the tree, but the overall height of the tree will not increase frequently.

A B- tree may have a variable number of keys and children, unlike a binary- tree.

These keys are arranged in non-decreasing order. Each of these keys is associated

with a child. This child behaves as the root of a subtree having all the nodes with keys

less than or equal to the key but greater than the preceding key. An additional

Types of Trees

256

rightmost child is also associated with the node. This rightmost child behaves as the

root for a subtree that has all keys greater than any keys in the node.

A B-tree should possess the following properties:

● In a B-tree with order m, every node should have a maximum of m children.

● Every node except the root node and leaf nodes should have minimum m/2

children.

● The root node should have at least two child nodes if it is not a leaf node.

● All leaf nodes should be at the same level.

Figure 9.1 shows a B-tree of order 4. It should be noted that the B-tree shown in the

figure fulfills all the properties that are mentioned above.

Figure 9.1 A B-tree of order 4.

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 345

B-trees are balanced trees that can minimize the number of disk access for the

computer system. Certain data is stored in secondary storage such as magnetic disks

and disk access is expensive and time-consuming in such cases. So, B-trees help in

minimizing the number of disk access attempts.

9.2.1 Operations on a B-Tree

Like other binary trees, searching, inserting, and deleting operations are also

supported by B-trees. All these operations follow single-pass algorithms as they do not

traverse back. As the basic motive of the B-tree is to minimize the disk access, these

single pass approaches will support this motive. It is assumed that all the nodes are

stored in secondary storage instead of primary storage. Disk-Read operation is used to

read all the given nodes. Similarly, the write operation is denoted by Disk- Write.

Types of Trees

257

Allocate- Node call is used to create new nodes and assign them storage.

● Searching in a B-tree: The search operation of a B-tree is similar to that of a

binary tree. Unlike a binary tree, B-tree marks an n-way search instead of

choosing between the left and right child of a node. The correct choice is made

by performing a linear search for the values in the node. After obtaining the

value greater than or equal to the required value, the search follows the child

pointer to the immediate left of the value. On the other hand, if all the values

are less than the required value, it follows the rightmost child pointer. The

search operation is terminated as soon as the required node is found. The

running time of the operation is decided by the height of the tree, i.e. O(log n).

The search algorithm is given below:

B-Tree-Search(x, k)

i <- 1

while i <= n[x] and k > keyi[x]

do i <- i + 1

if i <= n[x] and k = keyi[x]

then return (x, i)

if leaf[x]

then return NIL

else Disk-Read(ci[x])

return B-Tree-Search(ci[x], k)

● Insertion in a B-Tree: Before inserting any element in a B-tree, we must locate

the appropriate node for the key, using certain algorithms such as B-tree

search. Next, the key is inserted into the node. If the node is not full, no special

action is required while if the node is full, then the node should be split and

then the new key is loaded. The splitting operation moves one key to the parent

node. Also, this parent node must not be full otherwise another split operation

will be required. This process may repeat up to the root node.
B-Tree-Insert(T, k)

r <- root[T]

if n[r] = 2t - 1

then s <- Allocate-Node()

root[T] <- s

leaf[s] <- FALSE

Types of Trees

258

n[s] <- 0

c1 <- r

B-Tree-Split-Child(s, 1, r)

B-Tree-Insert-Nonfull(s, k)

else B-Tree-Insert-Nonfull(r, k)

B-Tree-Insert-Nonfull(x, k)

i <- n[x]

if leaf[x]

then while i >= 1 and k < keyi[x]

do keyi+1[x] <- keyi[x]

i <- i - 1

keyi+1[x] <- k

n[x] <- n[x] + 1

Disk-Write(x)

else while i >= and k < keyi[x]

do i <- i - 1

i <- i + 1

Disk-Read(ci[x])

if n[ci[x]] = 2t - 1

then B-Tree-Split-Child(x, i, ci[x])

if k > keyi[x]

then i <- i + 1

B-Tree-Insert-Nonfull(ci[x], k)

● Deletion in a B-Tree: The delete operation for a B-Tree is carried out from the

leaf node, like in the insert operation. A leaf node and an internal node can be

deleted from a B-Tree.

In the case of a leaf node, the following steps are involved:

a) First, locate the leaf node that has to be deleted.

b) If the leaf node has more than m/2 elements (more than a minimum

number of key values), then delete the value.

c) Else, if the leaf node does not have m/2 elements, then first fill the node

either from the left or from the right sibling.

➔ If there are more than m/2 elements in the left sibling, then its

largest key is pushed into its parent’s node. Also, the intermediate

element of the parent and leaf node is taken down where the key is

deleted.

➔ Else, if there are more than m/2 elements in the right sibling, then

Types of Trees

259

its smallest key is pushed into its parent’s node. Also, the

intermediate element of the parent and leaf node is taken down where

the key is deleted.

d) Else, if there are m/2 elements in both left and right siblings, then a new

leaf node is created by combining the two leaf nodes and the

intermediate element of the parent node. It should be ensured that the

number of elements should not exceed the maximum number of

elements a node can have, i.e. m. If after pulling down the intermediate

element of the parent node, it has less than m/2 elements, then the

process is propagated upwards and the height of the B-Tree gets

reduced.

In the case of an internal node, the successor or predecessor of the key to be

deleted is promoted to occupy the position of the deleted key. The predecessor

or successor keys are always in the leaf node, so the operation is processed

according to the deletion in a leaf node.

Example 9.1: Consider the B-Tree of order 3 given below and perform the following

operations: (a) insert 121, 87 and then (b) delete 36, 109.

Types of Trees

260

Figure 9.2 A B-tree of order 3 performing insert and delete operation.
Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 349

An underflow condition may occur during the delete operation in a B-Tree. A leaf node

underflows if it contains (m/2 - 1) keys after deleting a key from it. On the other hand,

an internal node (excluding the root node) underflows if there are (m/2 - 2) keys in

the deletion process. While deleting any element from the B-Tree, either leaf node or

internal node, underflow condition is checked every time.

9.3 B+ Trees

B+ trees are a variant of B-Trees that also store sorted data only in the leaf nodes. In a

B-Tree both keys and records are stored in its internal nodes. In contrast, the B+ tree

stores all the records at its leaf node, and internal nodes contain only the keys. An

added advantage of using a B+ tree is that the leaf nodes are often linked to each other

in a linked list. This makes the queries simpler and more efficient. B+ trees allow

efficient insertion, retrieval, and deletion of records. Generally, B+ trees are used to

store large data. The leaf nodes of the B+ tree are stored in the secondary storage

while the internal nodes of the tree are stored in the main memory. The internal nodes

of a B+ tree are called index nodes or i-nodes.

B+ Trees are simple and used to implement many database systems. B+ trees are

always balanced as all the data appear in the leaf nodes and are sorted. B+ trees also

make searching for data-efficient. A B+ tree of order is shown in figure 9.3. Also, a

comparison between B- Tree and B+ Tree is depicted in Table 9.1.

Figure 9.3 A B+tree of order 3

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 351)

Types of Trees

261

Table 9.1 Comparison between B-trees and B+ trees

9.3.1 Operations on a B+ Tree

Like B- Tree, insert and delete operations can be performed on B+ trees too. Let’s

discuss these operations in detail.

● Inserting a new element in a B+ Tree: As we know that B+ trees are relevant

to leaf nodes, a new element in a leaf node can be simply added if there is space

for it. But, if there is no space for a new element, then the node splits into two

nodes. A new index value is added to the parent node so that future queries can

arbitrate between the two nodes. In fact, when a new element is added to a leaf

node, it may be possible that all the nodes on the path from a leaf to the root

may split. If a root node splits, a new leaf node gets created and the level of the

tree increases by one. B+ trees follow the given algorithm to insert a new node:

a) Insert the new node as the leaf node.

b) If the leaf node overflows, split the node and copy the middle element to

the next index node.

c) If the index node overflows, split that node and move the middle element

to the next index page.

Types of Trees

262

Example 9.2: Consider the B+ tree of order 4 given and insert 33 in it.

Figure 9.4 A B+tree of order 4 performing an insert operation

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 352

● Deleting an element from a B+ Tree: As already discussed, in a B- Tree,

deletion is done from a leaf node and an internal node. In B+ trees, deletion is

always done from a leaf node. If the delete operation leaves that node empty,

then the adjacent nodes are merged with that empty node. Due to this, an index

value is deleted from the parent index node that in turn, may become empty.

The process of merging and deleting may proceed from a leaf node to the root

node. As a result, the level of the tree may decrease by one. B+ trees follow the

given algorithm to delete a node from the tree:

a) Delete the key and data from the leaves.

Types of Trees

263

b) If the leaf node underflows, merge that node with the sibling and delete

the key in between them.

c) If the index node underflows, merge that node with the sibling and move

down the key in between them.

Example 9.3: Consider the B+ tree of order 4 given below and delete node 15 from it.

Figure 9.5 A B+tree of order 4 performing an insert operation

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 353

9.4 Red-Black Trees

Another self-balancing tree in the series is Red-black Trees. They were first introduced

by Rudolf Bayer in 1972 as ‘symmetric binary B-Tree’. Although being complex trees,

red-black trees are efficient in search, insert, and delete operations. Red-black trees

have a good worst-case running time and all the operations get completed in O(log n)

time. The red-black tree maintains the balance by intelligently inserting and deleting

elements. It is interesting to note that no data is stored in the leaf nodes of a Red-

Types of Trees

264

black tree. In a red-black tree, every node is labeled with either red or black color.

Red-black trees follow the below rules:

a) Every node is labeled as either red or black in color.

b) The root node is always colored black.

c) No two adjacent nodes are red in color. That means a red node cannot have a

red parent or a red child. Every red node should have both the children in

black.

d) Every simple path from a given node to any of its leaf nodes has an equal

number of black nodes.

Figure 9.6 shows an example of a red-black tree showing the color coding

according to the above rules.

Figure 9.6 An example of a Red-black tree

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 328

In a red-black tree, the longest path from the root node to any leaf node should not be

more than twice as long as the shortest path from the root to any other leaf in that

tree. An almost balanced tree is obtained from this. As the insert, search and delete

operation require worst-case time proportional to the height of the tree. The red-black

tree proves to be more efficient than any other ordinary binary search tree as it allows

a certain upper bound on the height of the tree.

There is no modification in the read-only operations like traversing the nodes in a red-

black tree, they are similar to that of the binary search trees. However, the insertion

and deletion operation may affect the properties of a red-black tree. These operations

may require a change in the color code of the tree. Let’s discuss these operations for a

Types of Trees

265

red-black tree.

9.4.1 Inserting a Node in a Red-black Tree

The insertion operation is the same as that in the binary search tree. Although, in a

binary search tree, a new node is always added as a leaf, while in a red-black tree,

there is no data in the leaf node. So, instead of a new leaf node, a red interior node

having two black leaf nodes is added to the red-black tree. This follows the property of

a red-black tree, having a red node as a root and black nodes as its children. This

addition may violate the other properties of a red-black tree. So, to restore its

properties, certain cases are checked and the related property is restored accordingly.

Some important terms used in red-black tree insertion are discussed below.

● Grandparent node (G): It refers to the parent (P) of a node N, just like in a

human family tree. Code (C) to find a node’s grandparent can be given as

follows:

struct node * grand_parent(struct node *n)

{

 // No parent means no grandparent

 if ((n != NULL) && (n -> parent != NULL))

 return n -> parent -> parent;

 else

 return NULL;

}

● Uncle node (U): It refers to the sibling of a node N’s parents (P), just like in a

human family tree. The C code to find a node’s uncle can be given as follows:

struct node *uncle(struct node *n)

{

 struct node *g;

 g = grand_parent(n);

 //With no grandparent, there cannot be any uncle

 if (g == NULL)

 return NULL;

 if (n -> parent == g -> left)

 return g -> right;

 else

Types of Trees

266

 return g -> left;

}

While inserting a new node in a red-black tree, the following points should be noted:

1. All leaf nodes are always black.

2. The property of a red-black tree that both children of every red node are black is

threatened only by adding a red node, repainting a black node-red, or a

rotation.

3. The property of a red-black tree that all paths from any given node to its leaf

nodes has an equal number of black nodes is threatened only by adding a black

node, repainting a red node black, or a rotation.

Case 1: The New Node N is Added as the Root of the Tree

In this case, N is repainted black, as the root of the tree is always black. Since N adds

one black node to every path at once, Property 5 is not violated. The C code for case 1

can be given as follows:

void case1(struct node *n)

{

 if (n -> parent == NULL) // Root node

 n -> colour = BLACK;

 else

 case2(n);

}

Case 2: The New Node’s Parent P is Black

In this case, both children of every red node are black. The new node N has two black

leaf children, but because N is red, the paths through each of its children have the

same number of black nodes. So, no property of a red-black tree is violated. The C

code to check for case 2 can be given as follows:

void case2(struct node *n)

{

 if (n -> parent -> colour == BLACK)

 return; /* Red black tree property is not violated*/

 else

Types of Trees

267

 case3(n);

}

Before proceeding to case 3, it is assumed that N has a grandparent node G, because

its parent P is red, and if it were the root, it would be black. Thus, N also has an uncle

node U (irrespective of whether U is a leaf node or an internal node).

Case 3: If Both the Parent (P) and the Uncle (U) are Red

In this case, the property that all paths from any given node to its leaf nodes have an

equal number of black nodes is violated. Insertion in the third case is illustrated in

figure 9.7.

Figure 9.7 Insertion in a red-black tree (Case 3)

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 331

In order to restore the above property, both nodes (P and U) are repainted black and

the grandparent G is repainted red. Now, the new red node N has a black parent.

Since any path through the parent or uncle must pass through the grandparent, the

number of black nodes on these paths has not changed.

However, the grandparent G may now violate the property which states that the root

node is always black or another property which states that both children of every red

node are black. The latter property will be violated when G has a red parent. In order

to fix this problem, this entire procedure is recursively performed on G from Case 1.

The C code to deal with Case 3 insertion is as follows:

void case3(struct node *n)

{

 struct node *u, *g;

 u = uncle (n);

Types of Trees

268

 g = grand_parent(n);

 if ((u != NULL) && (u -> colour == RED)) {

 n -> parent -> colour = BLACK;

 u -> colour = BLACK;

 g -> colour = RED;

case1(g);

 }

else {

 insert_case4(n);

 }

}

Please note that in the remaining cases, it is assumed that the parent node P is the

left child of its parent. If it is the right child, then interchange left and right in cases 4

and 5.

Case 4: The Parent P is Red but the Uncle U is Black and N is the Right Child of P and P

is the Left Child of G

In order to fix this problem, a left rotation is done to switch the roles of the new node

N and its parent P. After the rotation, note that in the C code, we have re-labeled N

and P and then, case 5 is called to deal with the new node’s parent. This is done

because the property which says both children of every red node should be black is

still violated. Figure 9.8 illustrates Case 4 insertion.

Types of Trees

269

Figure 9.8 Insertion in a red-black tree (Case 4)

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 332

It should be noted that in this case, N is the left child of P and P is the right child of

G, we have to perform a right rotation. In the C code that handles Case 4, we check for

P and N and then, perform either a left or a right rotation.

void case4(struct node *n)

{

struct node *g = grand_

parent(n);

 if ((n == n -> parent -> right)&& (n -> parent == g -> left))

 {

 rotate_left(n -> parent);

 n = n -> left;

 }

 else if ((n == n -> parent -> left) && (n -> parent == g -> right))

 {

 rotate_right(n -> parent);

 n = n -> right;

 }

 case5(n);

Types of Trees

270

}

Case 5: The Parent P is Red but the Uncle U is Black and the New Node N is the Left

Child of P, and P is the Left Child of its Parent G.

In order to fix this problem, a right rotation on G (the grandparent of N) is performed.

After this rotation, the former parent P is now the parent of both the new node N and

the former grandparent G.

We know that the color of G is black (because otherwise, its former child P could not

have been red), so now switch the colors of P and G so that the resulting tree satisfies

the property stating that both children of a red node are black. Case 5 insertion is

illustrated in figure 9.9.

Figure 9.9 Insertion in a red-black tree (Case 5)

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

It should be noted that in case, N is the right child of P and P is the right child of G,

we perform a left rotation. In the C code that handles Case 5, we check for P and N

and then, perform either a left or a right rotation.

void case5(struct node *n)

{

struct node *g;

 g = grandparent(n);

 if ((n == n -> parent -> left) && (n -> parent == g -> left))

 rotate_right(g);

 else if ((n == n -> parent -> right) && (n -> parent == g -> right))

Types of Trees

271

 rotate_left(g);

 n -> parent -> colour = BLACK;

 g -> colour = RED;

}

9.4.2 Deleting a Node from a Red-black Tree

Deleting a node from a red-black tree is the same as that in the binary search tree. In

a binary search tree, when we delete a node with two non-leaf children, we find either

the maximum element in its left subtree of the node or the minimum element in its

right subtree, and move its value into the node being deleted. After that, we delete the

node from which we had copied the value. It should be noted that this node must have

less than two non-leaf children. Therefore, merely copying a value does not violate any

red-black properties, but it just reduces the problem

of deleting to the problem of deleting a node with at most one non-leaf child. It will be

assumed that we are deleting a node with at most one non-leaf child, which we will

call its child. In case this node has both leaf children, then let one of them be its child.

While deleting a node, if its color is red, then we can simply replace it with its child,

which must be black. All paths through the deleted node will simply pass through one

less red node, and both the deleted node’s parent and the child must be black, so

none of the properties will be violated.

However, a complex situation arises when both the node to be deleted as well as its

child is black. In this case, we begin by replacing the node to be deleted with its child.

In the C code, we label the child node as (in its new position) N, and its sibling (its new

parent’s other child) as S.

The C code to find the sibling of a node can be given as follows:

struct node *sibling(struct node *n)

{

 if (n == n -> parent -> left)

 return n -> parent -> right;

 else

return n -> parent -> left;

}

Types of Trees

272

We can start the deletion process by using the following code, where the function

replace_node substitutes the child into N’s place in the tree. For convenience, we

assume that null leaves are represented by actual node objects, rather than NULL.

void delete_child(struct node *n)

{

 /* If N has at most one non–null child */

 struct node *child;

 if (is_leaf(n -> right))

 child = n -> left;

 else

 child = n -> right;

 replace_node(n, child);

 if (n -> colour == BLACK) {

 if (child -> colour == RED)

 child -> colour = BLACK;

 else

 del_case1(child);

 }

 free(n);

}

When both N and its parent P are black, then deleting P will cause paths that precede

through

N to have one fewer black nodes than the other paths. This will violate the property

stating that every simple path from a given node to any of its leaf nodes has an equal

number of black nodes. Therefore, the tree needs to be rebalanced. There are several

cases to consider, which are discussed below.

Case 1: N is the New Root

In this case, we have removed one black node from every path, and the new root is

black, so none of the properties are violated.

void del_case1(struct node *n)

{

 if (n -> parent != NULL)

Types of Trees

273

 del_case2(n);

}

In the upcoming cases 2, 5, and 6, we assume N is the left child of its parent P. If it is

the right child, left and right should be interchanged throughout these three cases.

Case 2: Sibling S is Red

In this case, interchange the colors of P and S, and then rotate left at P. In the

resultant tree, S will become N’s grandparent. Figure 9.10 illustrates Case 2 deletion.

Figure 9.10 Deletion in a red-black tree (Case 2)

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 334

The C code that handles case 2 deletions can be given as follows:

void del_case2(struct node *n)

{

 struct node *s;

 s = sibling(n);

 if (s -> colour == RED)

 {

 if (n == n -> parent -> left)

 rotate_left(n -> parent);

 else

 rotate_right(n -> parent);

 n -> parent -> colour = RED;

 s -> colour = BLACK;

 }

Types of Trees

274

 del_case3(n);

}

Case 3: P, S, and S’s Children are Black

In this case, simply repaint S with red. In the resultant tree, all the paths passing

through S will have one less black node. Therefore, all the paths that pass through P

now have one fewer black node than the paths that do not pass through P, so one of

the properties is still violated. To fix this problem, we perform the rebalancing

procedure on P, starting at Case 1. Case 3 is illustrated in figure 9.11.

Figure 9.11 Deletion in a red-black tree (Case 3)

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 335)

The C code for Case 3 can be given as follows:

void del_case3(struct node *n)

{

 struct node *s;

 s = sibling(n);

 if ((n -> parent -> colour == BLACK) && (s -> colour == BLACK) && (s -> left -> colour ==

BLACK) && (s -> right -> colour == BLACK))

 {

 s -> colour = RED;

 del_case1(n -> parent);

 } else

 del_case4(n);

}

Case 4: S and S’s children are Black, but P is Red

In this case, we interchange the colors of S and P. Although this will not affect the

Types of Trees

275

number of black nodes on the paths going through S, it will add one black node to the

paths going through N, making up for the deleted black node on those paths. The C

code to handle Case 4 is as follows:

void del_case4(struct node *n)

{

 struct node *s;

 s = sibling(n);

if ((n -> parent -> colour == RED) && (s -> colour == BLACK) && (s -> left -> colour == BLACK) &&

(s -> right -> colour == BLACK))

{

 s -> colour = RED;

 n -> parent -> colour = BLACK;

 } else

 del_case5(n);

}

Case 5: N is the Left Child of P and S is Black, S’s Left Child is Red, S’s Right

Child is Black.

In this case, perform a right rotation at S. After the rotation, S’s left child becomes S’s

parent and N’s new sibling. Also, interchange the colors of S and its new parent.

It should be noted that now all paths still have an equal number of black nodes, but N

has a black sibling whose right child is red, so we fall into Case 6. Deletion in Case 5

is illustrated in figure 9.12.

Figure 9.12 Deletion in a red-black tree (Case 5)

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 336

The C code to handle case 5 is given as follows:

void del_case5(struct node *n)

Types of Trees

276

{

 struct node *s;

 s = sibling(n);

 if (s -> colour == BLACK)

 {

 /* the following code forces the red to be on the left of the left of the parent, or right of the

right, to be correctly operated in case 6. */

 if ((n == n -> parent -> left) && (s -> right -> colour == BLACK) && (s -> left-> colour

== RED))

 rotate_right(s);

 else if ((n == n -> parent -> right) && (s -> left -> colour == BLACK) && (s -> right->

colour == RED))

 rotate_left(s);

s -> colour = RED;

 s -> right -> colour = BLACK;

 }

 del_case6(n);

}

Case 6: S is Black, S’s Right Child is Red, and N is the Left Child of its Parent P

In this case, a left rotation is done at P to make S the parent of P and S’s right child.

After the rotation, the colors of P and S are interchanged and S’s right child is colored

black. Once these steps are followed, you will observe that property 4 and property 5

remain valid. Case 6 is illustrated in figure 9.13.

Figure 9.13 Deletion in a red-black tree (Case 6)

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 337

The C code to fix Case 6 can be given as follows:

Types of Trees

277

Void del_case6(struct node *n)

{

 struct node *s;

 s = sibling(n);

 s -> colour = n -> parent -> colour;

 n -> parent -> colour = BLACK;

 if (n == n -> parent -> left)

{

 s -> right -> colour = BLACK;

 rotate_left(n -> parent);

 }

else {

 s -> left -> colour = BLACK;

 rotate_right(n -> parent);

 }

}

The red-black trees are efficient variants of binary search trees, as they offer a worst-

case time guarantee for insertion, deletion, and search operations. These trees are

valuable in time-sensitive applications such as real-time applications. Red-black trees

are also preferred to be used as a building block in other data structures that provide

a worst-case guarantee.

9.5 Splay Trees

Splay trees are self-balancing binary search trees that were invented by Daniel Sleator

and Robert Tarjan. Splay trees have an additional property of re-accessing the recently

accessed elements fastly. Splay trees are efficient binary search trees as they can

perform basic operations like search, insertion, and deletion in O(log n) time. They are

advantageous for various non-uniform or even unknown series of operations.

A splay tree is a binary tree with no additional fields. While accessing any node in a

splay tree, it is rotated or splayed to the root, which ultimately changes the structure

of the tree. As the most frequently accessed nodes are always closer to the root node,

we can locate these nodes faster. Thus, it can be interpreted that if any node is

accessed once, then it can likely be accessed again.

Unlike other binary search trees, the basic operations in a splay tree are combined

with a “splaying” operation. This additional operation for a particular node rearranges

Types of Trees

278

that node at the root. In the splaying process, a standard binary search operation is

performed for the desired node and then rotations are used in specific order to bring

that node on the top.

The advantages of using a splay tree are:

● A splay tree gives good performance for search, insertion, and deletion

operations. This advantage centers on the fact that the splay tree is a self-

balancing and self-optimizing data structure in which the frequently accessed

nodes are moved closer to the root so that they can be accessed quickly. This

advantage is particularly useful for implementing caches and garbage collection

algorithms.

● Splay trees are considerably simpler to implement than the other self-balancing

binary search trees, such as red-black trees or AVL trees, while their average-

case performance is just as efficient.

● Splay trees minimize memory requirements as they do not store any book-

keeping data.

● Unlike other types of self-balancing trees, splay trees provide good performance

(amortized O(log n)) with nodes containing identical keys.

However, the demerits of splay trees include:

● While sequentially accessing all the nodes of a tree in sorted order, the

resultant tree becomes completely unbalanced. This takes n accesses of the tree

in which each access takes O(log n) time. For example, re-accessing the first

node triggers an operation that in turn takes O(n) operations to rebalance the

tree before returning the first node. Although this creates a significant delay for

the final operation, the amortized performance over the entire sequence is still

O(log n).

● For uniform access, the performance of a splay tree will be considerably worse

than a somewhat balanced simple binary search tree. For uniform access,

unlike splay trees, these other data structures provide worst-case time

guarantees and can be more efficient to use.

Let’s discuss the basic operations of splay trees in detail.

Types of Trees

279

A. Splaying

When we access a node N, splaying is performed on N to move it to the root. To

perform a splay operation, certain splay steps are performed where each step

moves N closer to the root. Splaying a particular node of interest after every

access ensures that the recently accessed nodes are kept closer to the root and

the tree remains roughly balanced so that the desired amortized time bounds

can be achieved. Each splay step depends on three factors:

● Whether N is the left or right child of its parent P,

● Whether P is the root or not, and if not,

● Whether P is the left or right child of its parent, G (N’s grandparent).

Depending on these three factors, we have one splay step based on each

Zig step: The zig operation is performed when P (the parent of N) is the root of

the splay-tree. In the zig step, the tree is rotated on the edge between N and P.

Zig step is usually performed as the last step in a splay operation and only

when N has an odd depth at the beginning of the operation. The zig step is

shown in figure 9.14 (a).

Zig-zig step: The zig–zig operation is performed when P is not the root. In

addition to this, N and P are either both right or left children of their parents.

Figure 9.14 (b) shows the case where N and P are the left children. During the

zig–zig step, first the tree is rotated on the edge joining P and its parent G, and

then again rotated on the edge joining N and P.

Zig-zag step: The zig-zag operation is performed when P is not the root. In

addition to this, N is the right child of P and P is the left child of G or vice versa.

In the zig-zag step, the tree is first rotated on the edge between N and P and

then rotated on the edge between N and G. The zig-zag step is shown in figure

9.14 (c).

Types of Trees

280

(a) The zig step

(b) The zig-zig step

(c) The zig-zag step

Figure 9.14 Splaying operation in splay trees
Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 338

B. Inserting a Node in a Splay Tree

Although the process of inserting a new node N into a splay tree begins in the

same way as we insert a node in a binary search tree, after the insertion, N is

made the new root of the splay-tree. The steps performed to insert a new node N

in a splay tree can be given as follows:

1. Search N in the splay-tree. If the search is successful, splay at the node

N.

Types of Trees

281

2. If the search is unsuccessful, add the new node N in such a way that it

replaces the NULL pointer reached during the search by a pointer to a

new node N. Splay the tree at N.

C. Searching for a Node in a Splay Tree

If a particular node N is present in the splay tree, then a pointer to N is

returned; otherwise, a pointer to the null node is returned. The steps performed

to search a node N in a splay tree include:

1. Search down the root of the splay tree looking for N.

2. If the search is successful, and we reach N, then splay the tree at N and return

a pointer to N.

3. If the search is unsuccessful, i.e., the splay tree does not contain N, then we

reach a null node. Splay the tree at the last non-null node reached during the

search and return a pointer to null.

D. Deleting a Node from a Splay Tree

To delete a node N from a splay tree, we perform the following steps:

1. Search for N that has to be deleted. If the search is unsuccessful, splay

the tree at the last non-null node encountered during the search.

2. If the search is successful and N is not the root node, then let P be the

parent of N. Replace N by an appropriate descendent of P (as we do in

binary search tree). Finally, splay the tree at P.

9.6 Summary

● A B-tree having an order of m consists of m-1 keys and m pointers to the

subtrees. The purpose of using B-trees is to store a large number of keys in a

single node to keep the height of the tree relatively small.

● B+ trees are a variant of B-Trees that also store sorted data only in the leaf

nodes.

● In a B-Tree both keys and records are stored in its internal nodes. In contrast,

the B+ tree stores all the records at its leaf node, and internal nodes contain

only the keys.

● A red-black tree is a self-balancing binary search tree which is also known as a

Types of Trees

282

‘symmetric binary B-tree’. Although a red-black tree is complex, it has a good

worst-case running time for its operations and is efficient to use, as searching,

insertion, and deletion can all be done in O(log n) time.

● A splay tree is a self-balancing binary search tree with an additional property

that recently accessed elements can be re-accessed fast.

9.7 Key Terms

● Amortized Analysis: The time complexity of maintaining a splay tree is

analyzed using an Amortized Analysis.

● B-trees: B-trees are balanced trees that are optimized for situations when part

or the entire tree must be maintained in secondary storage such as a magnetic

disk.

● Minimization factor: A b-tree has a minimum number of allowable children for

each node known as the Minimization factor.

● Splaying: Splaying a particular node of interest after every access ensures that

the recently accessed nodes are kept closer to the root and the tree remains

roughly balanced.

9.8 Check Your Progress

Short- Answer type

Q1) Every node in a B tree has at most ______ children.

(a) M (b) M–1 (c)2 (d)M+1

Q2) In _______ data is stored in internal or leaf nodes.

Q3) A B+ tree stores data only in the i-nodes. True/ False?

Q4) Splay Trees were invented by

(a) Sleator (b) Tarjan (c) Newton (d) Both (a) and (b)

Q5) The lower and upper bounds on the number of child nodes are typically fixed for

a particular implementation.

Long- Answer type

Q1) Explain splay operation in splay trees.

Q2) Differentiate between B-Trees and B+ Trees.

Q3) Consider the B-tree given below:

(a) Insert 1, 5, 7, 11, 13, 15, 17, and 19 in the tree.

Types of Trees

283

(b) Delete 30, 59, and 67 from the tree.

Q4) List the merits and demerits of a splay-tree.

Q5) Discuss the properties of a red-black tree. Explain the insertion cases.

References

• Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

• Data Structures and Efficient Algorithms, Burkhard Monien, Thomas Ottmann,

Springer.

Types of Trees

284

Unit 10 Advanced Trees
Structure

10.0 Introduction

10.1 Unit Objectives

10.2 Interval Trees

10.3 Segment Trees

10.4 KD-Trees

10.5 Quad Trees

10.6 Summary

10.7 Key Terms

10.8 Check Your Progress

10.0 Introduction

We are now already aware of the fundamentals of Balanced trees. The importance of

balanced search trees does not come primarily from the importance of dictionary

structures; they are just the most basic applications. Balanced search trees provide a

frame on which many other useful structures can be built. These other structures

can then take advantage of the logarithmic depth and the mechanisms that preserve

it, without going into the details of studying the underlying search-tree balancing

methods. In this chapter, we describe several structures that are built on top of a

balanced search tree and that implement different queries or even an entirely

different abstract structure.

10.1 Unit Objectives

After going through this unit, the reader will be able to:

● Explain the different abstract tree structures.

● Describe the interval trees and segment trees.

● Define KD- trees and Quadtrees.

10.2 Interval Trees

Interval trees were invented by Edelsbrunner and McCreight. The interval tree

structure stores a set of intervals and returns for any query key all the intervals that

contain this query value. The structure is in a way dual to the one-dimensional range

Types of Trees

285

queries such as they keep track of a set of values and return for a given query

interval all key values in that interval, whereas we now have a set of intervals as data

and a key-value as a query. In both cases the answer can be potentially large, so we

have to aim for an output-sensitive complexity bound.

The idea of the interval tree structure is simple. Suppose the underlying set of

intervals is the set {[a1, b1], [a2, b2], . . . , [an, bn]}. Let T be any balanced search tree

for the set of interval endpoints {a1, a2, . . . , an, b1, . . . , bn}. With each interior node

of this search tree, we associate the interval of possible key values that can reach

this node.

Each interval [ai, bi] of our set is now stored in a node that satisfies the following

conditions:

1. The key of the node is contained in [ai, bi], and

2. The interval [ai, bi] is contained in the interval associated with the node.

Such a node is easy to find: given [ai, bi] and T, we start with the root as the current

node. The interval associated with the root is] − ∞, ∞[, so property 2 is initially

satisfied by the current node. If the key in the current node is contained in [ai, bi],

then this node satisfies both properties and we choose it; otherwise, [ai, bi] is either

entirely to the left or entirely to the right of the key of the current node, so it is

contained in the interval associated with the left or right lower neighbor, which we

choose as the new current node. Thus, each interval moves down in the search tree

till we find a node for which properties 1 and 2 are satisfied. This node might not be

unique; if during this descent the key of the current node occurs as an endpoint of

the interval, then some node below the current node will also satisfy both properties.

For the interval tree structure, it makes no difference which node we choose.

Within the node, there might be multiple intervals that should be stored in that node.

We keep the intervals in two lists– one list of the left endpoints in increasing order

and one list of the right endpoints in decreasing order. Each interval stored in that

node appears on both lists. All left endpoints are smaller than or equal to the key in

the node, and all right endpoints are larger than or equal to the key in the node.

Implementation of Interval Trees

Types of Trees

286

By this, we have specified the abstract structure of an interval tree. To implement it,

we need two different types of nodes: the search-tree nodes augmented by the left

and right list pointers, and the list nodes. The list nodes contain, in addition to the

interval endpoint, a pointer to the object associated with the interval. The nodes have

the following structure:

typedef struct ls_n_t { key_t key;

struct ls_n_t *next;

object_t *object;

} list_node_t;

typedef struct tr_n_t { key_t key;

struct tr_n_t *left;

struct tr_n_t *right;

list_node_t *left_list;

list_node_t *right_list;

/* balancing information */

} tree_node_t;

Given the interval tree, we can now describe the query algorithm. For a given value

query key, we follow the underlying search-tree structure with its usual find

algorithm. In each tree node *n we visit, we output intervals as follows:

1. If query key < n->key

we setlist to n->left list,

while list = NULL and list->key ≤ query key.

1.1 We output list->object and setlist to list->next.

2. Else query key ≥ n->key

we setlist to n->right list,

while list = NULL and list->key ≥ query key.

2.1 We output list->object and setlist to list->next.

In each tree node, we perform O(1) work for each object we list, so the total time is

O(h + k), where h is the height of the tree and k is the number of objects listed, so

using any balanced search tree as the underlying structure, we get an output-

sensitive complexity of O(log n + k).

Types of Trees

287

We still have to show that the output given by this method is correct. For this, we

observe that if an interval [ai, bi] contains the query key, then it will be stored in one

of the tree nodes along the path followed by the query key. On each level, there is at

most one node whose associated interval contains [ai, bi], and if the query key is in

that interval, this path will pass through that node. But for each node, we need to

consider only those intervals for which the query key is between the interval endpoint

and the node key. Because the node key is contained in all intervals stored in that

node, we do not need to check the other interval endpoint.

Thus,

1. If the query key is less than the node key, and the list item key is less than the

query key, we have left endpoint ≤ query key < node key ≤ right endpoint.

While if the list item key is larger than the node key, this holds by the

increasing order of the left list also for all following keys, so none of the

remaining intervals contains the query key.

2. If the query key is larger than the node key, and the list item key is larger than

the query key, we have left endpoint ≤ node key ≤ query key ≤ right endpoint.

While if the list item key is smaller than the node key, this holds by the

decreasing order of the right list also for all following keys, so none of the

remaining intervals contains the query key.

So this algorithm lists exactly the intervals (or associated objects) that contain the

query key.

The interval tree is a static data structure, we can build it once, but there is no

update operation; insertion and deletion of intervals are not possible. To build it from

a given list of n intervals, we first build the search tree for the interval endpoints in

O(n log n) time. Next, we construct a list of the intervals sorted in decreasing order of

their left interval endpoints, in O(n log n), and find for each interval the node where it

should be stored, and insert it there in front of the left list, in O(log n) per interval.

Finally, we construct a list of the intervals sorted in increasing order of their right

interval endpoints, in O(n log n), and find for each interval the node where it should

be stored, and insert it there in front of the right list, in O(log n) per interval. By this

initial sorting and inserting in that order, all node lists are in the correct order. The

total work needed to construct the interval tree structure is O(n log n). The total

Types of Trees

288

space needed by the interval tree is O(n) because the search tree needs O(n) space

and each interval occur only on two lists. This completes the analysis of the interval

tree structure.

Theorem: The interval tree structure is a static data structure that can be built in

time O(n log n) and needs space O(n). It lists all intervals containing a given query

key in output-sensitive time O(log n + k) if there are k such intervals.

Before we now give the code for the query function find intervals, we need to decide

how to return multiple results – a question that occurs whenever our query operation

has potentially many results. Our preferred solution is to construct a list of all

results and return that list as an answer. This has the advantage of conceptual

clarity, but it depends on the list nodes being correctly returned by the program that

gets this list to avoid a memory leak. The alternative would be to divide the query

function in two: one to start the query and one to get the next result.

list_node_t *find_intervals(tree_node_t *tree, key_t query_key)

{ tree_node_t *current_tree_node;

 list_node_t *current_list, *result_list, *new_result;

 if(tree->left == NULL)

 return(NULL);

else

{ current_tree_node = tree;

result_list = NULL;

while(current_tree_node->right != NULL)

{ if(query_key < current_tree_node->key)

{ current_list = current_tree_node->left_list;

while(current_list != NULL && current_list->key <= query_key)

{ new_result = get_list_node();

new_result->next = result_list;

new_result->object = current_list->object;

result_list = new_result;

current_list = current_list->next;

}

current_tree_node =

current_tree_node->left;

}

Types of Trees

289

else

{

current_list = current_tree_node->right_list;

while(current_list != NULL && current_list->key >= query_key)

{ new_result = get_list_node();

new_result->next = result_list;

new_result->object = current_list->object;

result_list = new_result;

current_list = current_list->next;

}

current_tree_node =

current_tree_node->right;

}

}

return(result_list);

}

}

There are several problems in making this static data structure dynamic. The simpler

problem is that to insert a new interval at the correct node, we need to insert it in the

two ordered lists of left and right endpoints. The length of this ordered list can be

anything up to n and inserting in an ordered list of length l takes up to (l) time. This

could be reduced to O(log l) if we represent the left and right endpoints in a balanced

search tree with a doubly connected list of leaves and a pointer to the first and last

leaf: then we still have O(k) time to list the first k elements of the list and insertion or

deletion time of O(log l) = O(log n).

The other, essentially unsolved, the problem consists of the restructuring of the

underlying tree. The interval tree structure depends on each interval containing some

key of a tree node. So although not every interval endpoint needs to be a key of the

underlying search tree because many tree nodes will not store any intervals, we can

be forced to add keys to the underlying search tree. And the tree can become

unbalanced by this. But if we wish to rebalance the tree, for example, by rotations,

we have to correct the associated lists and this requires that we join two ordered lists

that are not separated and that we take apart an ordered list in two, depending on

Types of Trees

290

whether the intervals associated with the list items contain some key value. There is

no known way to do this in sublinear time.

If we know in advance some superset of all the interval endpoints that might occur

during our use of the structure, we can, of course, build the underlying tree for that

superset and that tree will never need to be restructured. This can be a quite efficient

solution if that superset is not too large. For the left and right lists in each node, we

still need search trees to efficiently insert and delete new intervals.

10.3 Segment Trees

Segment trees were invented by Bentley. The primary task performed by a segment

tree is the same as that done by an interval tree: keeping track of a set of n intervals,

here assumed to be half-open, and listing for a given query key all the intervals that

contain that key in output-sensitive time O(log n + k) if the output consisted of k

intervals. It is slightly worse at this task than the interval tree having a space

requirement of O(n log n) instead of O(n). But the segment tree, or the idea of the

canonical interval decomposition on which it is based, is really a framework on which

a number of more general tasks can be performed. Again it is a static data structure.

Assume a set X = {x1, . . . , xn} of key values and a search tree T for {−∞} ∪ X. As

usual, with each node of T we associate the interval of all key values for which the

query path would go through that node. Any interval [xi, xj[can be expressed in many

ways as the union of node intervals (Here we need the key −∞ as a leaf of the search

tree; otherwise there would be no node interval starting at x1) so it can be

represented by subsets of the tree nodes. In any such representation, a node that is

in the tree below some other node is redundant because its node interval is

contained in that higher-up node. Among all such representations there is one that is

highest: just take all nodes whose intervals are contained in the interval [xi, xj[we

want to represent and eliminate the redundant nodes. This representation consists of

all those nodes whose node interval is contained in [xi, xj[, but the node interval of

their upper neighbor is not contained in [xi, xj[. This is the canonical interval

decomposition of the interval [xi, xj[relative to that search tree T.

Theorem: The canonical interval decomposition is a representation of the interval as

Types of Trees

291

the union of disjoint node intervals. Any search path for a value in the interval will go

through exactly one node that belongs to the canonical interval decomposition.

The canonical interval decomposition is easy to construct. We start with the interval

[xi, xj[at the root:

1. Each time the node interval of the current node is entirely contained in [xi, xj[,

we take that node into our representation and stop following that path down

because all nodes below are redundant.

2. Each time the node interval of the current node partially overlaps [xi, xj[, we

follow both paths down.

3. Each time the node interval of the current node is disjoint from [xi, xj[, we stop

following that path down.

Figure 10.1 Canonical Interval Decomposition for Interval [1, 10]

Source: Advanced Data Structures, Peter Brass, Cambridge University Press, New York, 2008

It is easy to see that this operation selects exactly the nodes of the canonical interval

decomposition. It remains to bound the size of the decomposition and the time

necessary to construct it. For this, we look at case 2 because it is the only case that

does not immediately terminate. Case 2 happens only for those nodes whose node

interval contains an endpoint of the interval [xi, xj[that we wish to represent, so the

nodes for which case 2 is followed are the nodes along the search paths of xi and xj.

Each of these nodes causes both its lower neighbors to be visited. Because the only

way a node that belongs to case 1 or case 3 can be visited is by being a lower

neighbor of a node of case 2, the total number of visited nodes is less than 4

height(T) and the total number of selected nodes is less than 2 height(T).

Types of Trees

292

Theorem: Let X = {x1, . . . , xn} be a set of key values and T a search tree for {−∞} ∪ X.

Then for any interval bounded by values from X, the canonical decomposition has

size at most 2 height(T) and can be constructed in time O (height(T)). If T is of height

O(log n), the canonical interval decomposition has the size O(log n) and can be found

in time O(log n).

Now we have the canonical interval decomposition; the segment tree structure that

represents a set of intervals {[a1, b1[, [a2, b2[, . . . , [an, bn[} is easy to describe. It

consists of some balanced search tree T for the extended set of interval endpoints

{−∞, a1, a2, . . . , an, b1, . . . ,bn} in which each node carries a list of all those intervals

[ai, bj[for which this node is part of the canonical interval decomposition.

With this structure, the interval containment queries are very easy: given a query

key, we follow the search-tree structure down and for each node on the search path,

we output all intervals on its list. All these intervals contain the query key, and each

interval that contains the query key is met in exactly one node. Thus, the output

does not contain any duplicates and the query time is O(log n + k) to follow the

search path down and list k intervals. This would work just the same for any other

interval decomposition that does not contain redundant elements, but we need the

canonical interval decomposition because it is small and easy to build. Unlike the

interval tree, each interval is stored in the segment tree many times, so the required

space is not only O(n). Each interval generates at most O(log n) parts in its canonical

interval decomposition, so the total required space is O(n log n). And the segment

tree structure can be built in O(n log n) time, first building the balanced search tree

and then inserting the n intervals, constructing the canonical interval decomposition

of each in O(log n).

Theorem: The segment tree structure is a static data structure that can be built in

time O(n log n) and needs space O(n log n). It lists all intervals containing a given

query key in output-sensitive time O(log n + k) if there are k such intervals.

Implementation of Segment Tree Structure

To implement the segment tree structure, we again need two types of nodes – the tree

nodes and the interval lists attached to each tree node.

typedef struct ls_n_t { key_t key_a, key_b;

/* interval [a,b[*/

Types of Trees

293

struct ls_n_t *next;

object_t *object;

} list_node_t;

typedef struct tr_n_t { key_t key;

struct tr_n_t *left;

struct tr_n_t *right;

list_node_t *interval_list;

/* balancing information */

} tree_node_t;

Then the query algorithm is as follows:

list_item_t *find_intervals(tree_node_t *tree, key_t query_key)

{ tree_node_t *current_tree_node;

 list_node_t *current_list, *result_list,

 *new_result;

if(tree->left == NULL) /* tree empty */

return(NULL);

else /* tree nonempty, follow search path */

{ current_tree_node = tree;

 result_list = NULL;

 while(current_tree_node->right != NULL)

{ if(query_key < current_tree_node->key)

current_tree_node = current_tree_node->left;

else

current_tree_node = current_tree_node->right;

current_list = current_tree_node->interval_list;

 while(current_list != NULL)

 { /* copy entry from node list to result list */

new_result = get_list_node();

new_result->next = result_list;

new_result->key_a = current_list->key_a;

new_result->key_b = current_list->key_b;

new_result->object = current_list->object;

result_list = new_result;

current_list = current_list->next;

}

}

Types of Trees

294

return(result_list);

}

}

Notice that neither the root nor any node on the left or right boundary path of the

tree can have any intervals of the canonical interval decomposition attached to it

because their node intervals are unbounded and we are representing only finite

intervals. Typically, nodes near the leaf level will have non-empty lists, whereas, in

the interval tree, the intervals tend to be stored in higher-up nodes.

The construction of the segment tree structure has two phases. First, the underlying

balanced search tree is built using any method. We assume that initially, all the

interval list fields of the tree nodes are NULL. Then the intervals are inserted one

after another. Next is the code for the insertion of an interval [a, b[in the tree; the

insertion of an interval into the interval list of a node is written as a separate

function.

void attach_intv_node(tree_node_t *tree_node, key_t a, key_t b, object_t *object)

{ list_node_t *new_node;

new_node = get_list_node();

new_node->next = tree_node->interval_list;

new_node->key_a = a; new_node->key_b = b;

new_node->object = object;

tree_node->interval_list = new_node;

}

void insert_interval(tree_node_t *tree, key_t a, key_t b, object_t *object)

{ tree_node_t *current_node, *right_path, *left_path;

list_node_t *current_list, *new_node;

if(tree->left == NULL)

exit(-1); /* tree incorrect */

else

{ current_node = tree;

right_path = left_path = NULL;

while(current_node->right != NULL)

/* not at leaf */

{

if(b < current_node->key)

Types of Trees

295

/* go left: a < b < key */

current_node = current_node->left;

else if(current_node->key < a)

/* go right: key < b < a */

current_node = current_node->right;

else if(a < current_node->key && current_node->key < b)

/* split: a < key < b */

{

right_path = current_node->right;

/* both right */

left_path = current_node->left;

/* and left */

break;

}

else if(a == current_node->key)

/* a = key < b */

{

right_path = current_node->right;

/* no left */

break;

}

else /*current_node->key == b, so a< key = b */

{

left_path = current_node->left;

/* no right */

break;

}

}

if(left_path != NULL)

{ /* now follow the path of the left endpoint a*/

while(left_path->right != NULL)

{

if(a < left_path->key)

{

/* right node must be selected */

attach_intv_node(left_path-> right, a,b,object);

Types of Trees

296

left_path = left_path->left;

}

else if (a == left_path->key)

{

attach_intv_node(left_path ->right, a,b,object);

break; /* no further descent necessary */

}

else

/* go right, no node selected */

left_path = left_path->right;

}

/* left leaf of a needs to be selected if reached */

if(left_path->right == NULL && left_path->key == a)

attach_intv_node(left_path, a,b,object);

} /* end left path */

if(right_path != NULL)

{ /* and now follow the path of the right endpoint b */

while(right_path->right != NULL)

{

if(right_path->key < b)

{

/* left node must be selected */

attach_intv_node(right_path->left, a,b, object);

right_path = right_path->right;

}

else if (right_path->key == b)

{

attach_intv_node(right_path-> left, a,b, object);

break; /* no further descent necessary */

}

else /* go left, no node selected */

right_path = right_path->left;

}

/* on the right side, the leaf of b is never attached */

} /* end right path */

}

Types of Trees

297

}

Again, like the interval tree, the segment tree is a static structure, and we face the

same problems in making it dynamic: we have to allow insertion and deletion in each

node, and we have to support the restructuring of the underlying tree. For the

insertion and deletion in the nodes, we can again use a search tree. But we have to

insert or delete the O(log n) fragments of the canonical interval decomposition for a

single insert or delete; so it would be efficient to use a search tree only for the first

fragment and then have the remaining fragments on a linked list from the first

fragment. Then each tree node would need two structures: a search tree for all those

intervals whose canonical interval decomposition has its first fragment in that node

and a doubly-linked list, allowing O(1) insertion and deletion, for those intervals that

started somewhere else. This shows that we can perform O(log n) insertion and

deletion of intervals as long as the underlying tree does not change. A rebalancing of

the underlying tree by rotations again causes changes in the lists attached to the tree

nodes that can be resolved only by looking at the entire list and so this is no efficient

solution. The situation here is better than that for interval trees because the

sequence of the intervals attached to a tree node does not matter.

10.4 KD- Trees

The kd-tree was invented by Jon Bentley (1975) as a direct analog of the normal

balanced search tree, which is viewed as a one-dimensional tree. The name kd-tree

was originally meant as a k-dimensional tree, where k represented the number of

dimensional structures like 3- dimensional or 4- dimensional, etc. The kd-tree is the

structure that supports orthogonal range searching. It is quite popular in practical

applications and conceptually easy to understand and implement, but it is

unsatisfactory because its worst-case performance is much worse than orthogonal

range trees. In the two-dimensional version, the worst-case query time is O(√n + k)

instead of O((log n)2 + k), and the d-dimensional analog is even worse, with O(n(1− 1/d)

+ k) instead of O((log n)d + k). The empirical performance in database examples seems

better than this worst-case complexity, so in database literature, this and related

structures have been widely studied and used.

Types of Trees

298

The lower bound for the query time was given by Lee and Wong (1977), and a first

comparative analysis of several range-searching structures, among them the kd-tree,

the orthogonal range tree, and the Bentley–Maurer structures appear in Bentley and

Friedman (1979). The bad worst-case query time places the kd-tree in any

comparison far behind these structures, only under strong assumptions like

uniformly distributed data points and small, “relatively square” query rectangles; its

performance becomes comparable to them. Square query rectangles occur when we

really aim at a nearest-neighbor query or at least some filter for the neighborhood of

the query point. Variants of the kd-tree structure are analyzed in numerous papers

under input and query distribution assumptions. Much work went into making kd-

trees a dynamic structure, allowing insertions and deletions of points starting with

kd-trees, semi-dynamic kd-trees, and divided kd trees.

External memory efficiency has also been a major consideration in these structures;

further related structures supporting various types of range-restricted queries have

been developed in the database community.

The idea of the kd-tree is that we have a search tree, wherein each node we make a

comparison and enter the left or right subtree, but unlike the normal search trees,

we can compare in different nodes against different coordinates. The simplest choice

is to cycle through the coordinates; in the root, we compare against the first

coordinate, in the nodes below, we compare against the second coordinate, and so

on. In each node, we choose as a comparison key a value that divides the set of

points below that node in a balanced way. As in the normal search trees, this defines

a node interval for each node, which is now a d-dimensional half-open box the set of

all possible query points whose search path would go through that node.

The comparison with the node key then divides the box by a hyperplane in the

direction of that coordinate which we used in the comparison. So we get a hierarchy

of possibly unbounded orthogonal boxes. In the two-dimensional version, these are

rectangles alternatingly divided in the horizontal and vertical directions.

Types of Trees

299

Figure 10.2 Set of Nine Points with kd-Tree Structure: All Rectangles Are Half-

Open to the Right and the Top
Source: Advanced Data Structures, Peter Brass, Cambridge University Press, New York, 2008

If we have this structure, a range query can be answered just as in the one-

dimensional case: starting in the root, we descend into each node whose node

interval has a non-empty intersection with the query region and stop following any

branch when that intersection becomes empty. This is a very natural and generic

query algorithm that can be applied for any type of query range, not only for

rectangles. This is a great strength of this type of structure, but it is not very

efficient, for the number of leaves we visit without actually finding a point that

should belong to the answer can be as large as ᘯ(√n). And this is not only for specific

bad point sets, or bad subdivision structures; it is a problem that always occurs:

there is always a query rectangle that intersects ᘯ(√n) of the cells without containing

any point of the underlying set.

Theorem: kd-trees are a static structure that supports d-dimensional orthogonal

range queries in a set of d-dimensional points in output-sensitive time O (n1− 1/d + k)

if the output consists of k points. They can be built in O(n(log n)) time using O(n)

space.

10.5 Quad Trees

Quadtrees were introduced by Raphael Finkel and J.L. Bentley in 1974. Quadtrees

are hierarchical spatial tree data structures that are based on the principle of

recursive decomposition of space. The term quadtree originated from the

representation of two-dimensional data by recursive decomposition of space using

Types of Trees

300

separators parallel to the co-ordinate axis. The resulting split of a region into four

regions corresponding to southwest, northwest, southeast, and northeast quadrants

is represented as four children of the node corresponding to the region, hence the

term“quad” tree. In a three dimensional analog, a region is split into eight regions

using planes parallel to the coordinate planes. As each internal node can have eight

children corresponding to the 8-way split of the region associated with it, the term

octree is used to describe the resulting tree structure. Analogous data structures for

representing spatial data in higher than three dimensions are called hyper octrees. It

is also common practice to use the term quadtrees in a generic way irrespective of

the dimensionality of the spatial data. This is especially useful when describing

algorithms that are applicable regardless of the specific dimensionality of the

underlying data.

In constructing a quadtree, one starts with a square, cubic, or hypercubic region

(depending on the dimensionality) that encloses the spatial data under consideration.

The different variants of the quadtree data structure are differentiated by the

principle used in the recursive decomposition process. One important aspect of the

decomposition process is if the decomposition is guided by input data or is based on

the principle of equal subdivision of the space itself. The former results in a tree size

proportional to the size of the input. If all the input data is available as prior, it is

possible to make the data structure height-balanced.

These attractive properties come at the expense of difficulty in making the data

structure dynamic, typically in accommodating deletion of data. If the decomposition

is based on an equal subdivision of space, the resulting tree depends on the

distribution of spatial data. As a result, the tree is height-balanced and is linear in

the size of input only when the distribution of the spatial data is uniform, and the

height and size properties deteriorate with an increase in non-uniformity of the

distribution. The beneficial aspect is that the tree structure facilitates easy update

operations and the regularity in the hierarchical representation of the regions

facilitates geometric arguments helpful in designing algorithms.

Quadtrees have been used as fixed resolution data structures, where the

decomposition stops when a preset resolution is reached, or as variable resolution

data structures, where the decomposition stops when a property based on input data

present in the region is satisfied. They are also used in a hybrid manner, where the

Types of Trees

301

decomposition is stopped when either a resolution level is reached or when a

property is satisfied.

Quadtrees are used to represent many types of spatial data including points, line

segments, rectangles, polygons, curvilinear objects, surfaces, volumes, and

cartographic data. Their use is pervasive spanning many application areas including

computational geometry, computer-aided design, computer graphics, databases,

geographic information systems, image processing, pattern recognition, robotics, and

scientific computing.

We first explore quadtrees in the context of the simplest type of spatial data −

multidimensional points. Consider a set of n points in d dimensional space. The

principal reason a spatial data structure is used to organize multidimensional data is

to facilitate queries requiring spatial information. A number of such queries can be

identified for point data.

For example:

1. Range query: Given a range of values for each dimension, find all the points

that lie within the range. This is equivalent to retrieving the input points that

lie within a specified hyper rectangular region. Such a query is often useful in

database information retrieval.

2. Spherical region query: Given a query point p and a radius r, find all the points

that lie within a distance of r from p. In a typical molecular dynamics

application, spherical region queries centered around each of the input points

is required.

3. All nearest neighbor query: Given n points, find the nearest neighbor of each

point within the input set.

Types of Trees

302

Figure 10.3 A two dimensional set of points and a corresponding point quadtree

Source: Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005

Point Quadtrees

The point quadtree is a natural generalization of the binary search tree data

structure to multiple dimensions. For convenience, first, consider the two-

dimensional case. Start with a square region that contains all of the input points.

Each node in the point quadtree corresponds to an input point. To construct the tree,

pick an arbitrary point and make it the root of the tree. Using lines parallel to the

coordinate axis that intersect at the selected point (see figure 10.3), divide the region

into four subregions corresponding to the southwest, northwest, southeast, and

northeast quadrants, respectively. Each of the subregions is recursively decomposed

in a similar manner to yield the point quadtree. For points that lie at the boundary of

two adjacent regions, a convention can be adopted to treat the points as belonging to

one of the regions. For instance, points lying on the left and bottom edges of a region

may be considered included in the region, while points lying on the top and right

edges are not. When a region corresponding to a node in the tree contains a single

point, it is considered a leaf node. Note that point quadtrees are not unique and their

structure depends on the selection of points used in region subdivisions. Irrespective

of the choices made, the resulting tree will have n nodes, one corresponding to each

input point.

Types of Trees

303

Region Quadtrees

The region quadtree for n points in d dimensions is defined as follows: Consider a

hypercube large enough to enclose all the points. This region is represented by the

root of the d-dimensional quadtree. The region is subdivided into 2 d subregions of

equal size by bisecting along each dimension. Each of these regions containing at

least one point is represented as a child of the root node. The same procedure is

recursively applied to each child of the root node. The process is terminated when a

region contains only a single point. This data structure is also known as the point

region quadtree. At times, we will simply use the term quadtree when the tree implied

is clear from the context. The region quadtree corresponding to a two dimensional set

of points is shown in figure 10.4. Once the enclosing cube is specified, the region

quadtree is unique. The manner in which a region is subdivided is independent of

the specific location of the points within the region.

This makes the size of the quadtree sensitive to the spatial distribution of the points.

Figure 10.4 A two dimensional set of points and a corresponding region

quadtree
Source: Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005

Compressed Quadtrees and Octrees

In an n-leaf tree where each internal node has at least two children, the number of

nodes is bounded by 2n − 1. The size of quadtrees is distribution dependent because

there can be internal nodes with only one child. In terms of the cell hierarchy, a cell

Types of Trees

304

may contain all its points in a small volume so that, recursively subdividing it may

result in just one of the immediate subcells containing the points for an arbitrarily

large number of steps. Note that the cells represented by nodes along such a path

have different sizes but they all enclose the same points. In many applications, all

these nodes essentially contain the same information as the information depends

only on the points the cell contains. This prompted the development of compressed

quadtrees, which are obtained by compressing each such path into a single node.

Therefore, each node in a compressed quadtree is either a leaf or has at least two

children.

The compressed quadtree corresponding to the quadtree is depicted in figure 10.5.

Figure 10.5 A two-dimensional set of points and the corresponding compressed

quadtree
Source: Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005

Fast algorithms for operations on quadtrees can be designed by simultaneously

keeping track of spatial ordering and one-dimensional ordering of cells in the

compressed quadtree. The spatial ordering is given by the compressed quadtree

itself. In addition, a balanced binary search tree (BBST) is maintained on the large

cells of the nodes to enable fast cell searches. Both the trees consist of the same

nodes and this can be achieved by allowing each node to have pointers corresponding

to compressed quadtree structure and pointers corresponding to BBST structure.

Types of Trees

305

Point and Cell Queries

Point and cell queries are similar since a point can be considered to be a zero-length

cell. A node v is considered to represent cell C if S(v) ⊆ C ⊆ L(v). The node in the

compressed quadtree representing the given cell is located using the BBST. Traverse

the path in the BBST from the root to the node that is being searched in the following

manner: To decide which child to visit next on the path, compare the query cell with

the large and small cells at the node. If the query cell precedes the small cell in cell

ordering, continue the search with the left child. If it succeeds the large cell in cell

ordering, continue with the right child. If it lies between the small cell and large cell

in cell ordering, the node represents the query cell. As the height of a BBST is O(log

n), the time is taken for a point or cell query is O(d log n).

Insertions and Deletions

As points can be treated as cells of zero length, insertion and deletion algorithms will

be discussed in the context of cells. These operations are meaningful only if a cell is

inserted as a leaf node or deleted if it is a leaf node. Note that a cell cannot be deleted

unless all its subcells are previously deleted from the compressed quadtree.

Cell Insertion

To insert a given cell C, first check whether it is represented in the compressed

quadtree. If not, it should be inserted as a leaf node. Create a node v with S(v) = C

and first insert v in the BBST using a standard binary search tree insertion

algorithm. To insert v in the compressed quadtree, first find the BBST successor of v,

say u. Find the smallest cell D containing C and the S(u). Search for cell D in the

BBST and identify the corresponding node w. If w is not a leaf, insert v as a child of w

in a compressed quadtree. If w is a leaf, create a new node w’ such that S(w’) = D.

Nodes w and v become the children of w in the compressed quadtree. The new node

w’ should be inserted in the BBST. The overall algorithm requires a constant number

of insertions and searches in the BBST and takes O(d log n) time.

Cell Deletion

As in insertion, the cell should be deleted from the BBST and the compressed

quadtree. To delete the cell from BBST, the standard deletion algorithm is used.

During the execution of this algorithm, the node representing the cell is found. The

node is deleted from the BBST only if it is present as a leaf node in the compressed

quadtree. If the removal of this node from the compressed quadtree leaves its parent

Types of Trees

306

with only one child, the parent is deleted as well. Since each internal node has at

least two children, the delete operation cannot propagate to higher levels in the

compressed quadtree.

10.6 Summary

● The interval tree structure stores a set of intervals and returns for any query

key all the intervals that contain this query value.

● The canonical interval decomposition is a representation of the interval as a

union of disjoint node intervals. Any search path for a value in the interval will

go through exactly one node that belongs to the canonical interval

decomposition.

● The kd-tree is the structure that supports orthogonal range searching.

● Quadtrees are hierarchical spatial tree data structures that are based on the

principle of recursive decomposition of space.

● Quadtrees are used to represent many types of spatial data including points,

line segments, rectangles, polygons, curvilinear objects, surfaces, volumes,

and cartographic data.

10.7 Key Terms

● Octree: When each internal node can have eight children corresponding to the

8-way split of the region associated with it, it is termed as an octree.

● Hyper Octrees: Analogous data structures for representing spatial data in

higher than three dimensions are called hyper octrees.

● Spherical Region Query: The problem of finding all points in a data set that

lie within a given distance from a query point, commonly known as the

spherical region query.

● Supercell: A cell containing the subcell is called a supercell.

10.8 Check Your Progress

Short- Answer type

Q1) Insertion into a 2-d tree is a trivial extension of insertion into a binary search

tree. True/ False?

Q2) In what time can a kd tree be constructed?

Types of Trees

307

(a) O(N) (b) O(N log N) (c) O(N2) (d) O(M log N)

Q3) __________ is the simplest data structure that supports range searching.

Q4) In which of the following data structures does every internal node have at most

four children?

(a) Point quadtree (b) Edge quadtree (c) Quadtree (d) None of these

Q5) Point quadtree defines a partition of space in two dimensions by dividing the

region into four equal quadrants. True/ False?

Long- Answer type

Q1) Write a short note on interval trees.

Q2) Discuss the types of Quadtrees and their relevant applications.

Q3) What is the basic terminology of KD trees?

Q4) Differentiate between balanced binary trees and Quadtrees.

Q5) The segment tree structure is a static data structure. Explain.

References

• Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005.

• Advanced Data Structures, Peter Brass, Cambridge University Press, New York,

2008.

Module: 4

Indexing, Searching & Sorting

Indexing, Searching & Sorting

309

Unit: 11 Indexing
Structure

11.0 Introduction

11.1 Unit Objectives

11.2 File Organization

11.3 Indexing

 11.3.1 Ordered Indices

 11.3.2 Dense and sparse indices

 11.3.3 Cylinder surface indices

 11.3.4 Multi-level indices

 11.3.5 Inverted indices

 11.3.6 B-Tree indices

 11.3.7 Hashed indices

11.4 Summary

11.5 Key Terms

11.6 Check Your Progress

11.0 Introduction

In computer terminology, a file is a block of useful data that is available to a computer

program and is usually stored on a persistent storage medium. Storing a file on a

persistent storage medium like a hard disk ensures the availability of the file for future

use. Every file contains data that can be organized in a hierarchy to present a

systematic organization. The data hierarchy includes data items such as fields,

records, files, and databases. These terms are defined below.

● A data field is an elementary unit that stores a single fact. A data field is

usually characterized by its type and size.

● A record is a collection of related data fields that is seen as a single unit from

the application point of view.

● A file is a collection of related records. For example, if there are 60 students in a

class, then there are 60 records. All these related records are stored in a file.

Similarly, we can have a file of all the employees working in an organization, a

file of all the customers of a company, a file of all the suppliers, so on and so

Indexing, Searching & Sorting

310

forth.

● A directory stores information about related files. A directory organizes

information so that users can find it easily.

Every file in a computer system is stored in a directory. Each file has a list of

attributes associated with it that gives the operating system and the application

software information about the file and how it is intended to be used. A software

program that needs to access a file looks up the directory entry to discern the

attributes of that file. For example, if a user attempts to write to a file that has been

marked as a read-only file, then the program prints an appropriate message to notify

the user that he is trying to write to a file that is meant only for reading.

Similarly, there is an attribute called hidden. When you execute the DIR command in

DOS, then the files whose hidden attribute is set will not be displayed. These

attributes are explained here.

● Filename: It is a string of characters that stores the name of a file. File naming

conventions vary from one operating system to the other.

● File position: It is a pointer that points to the position at which the next

read/write operation will be performed.

● File structure: It indicates whether the file is a text file or a binary file. In the

text file, the numbers (integer or floating-point) are stored as a string of

characters. A binary file, on the other hand, stores numbers in the same way as

they are represented in the main memory.

● File Access Method: It indicates whether the records in a file can be accessed

sequentially or randomly. In sequential access mode, records are read one by

one. That is, if 60 records of students are stored in the STUDENT file, then to

read the record of the 39th student, you have to go through the record of the

first 38 students. However, in random access, records can be accessed in any

order.

● Attributes Flag: A file can have six additional attributes attached to it. These

attributes are usually stored in a single byte, with each bit representing a

specific attribute. If a particular bit is set to ‘1’ then this means that the

corresponding attribute is turned on. These attributes are Read-only, Hidden,

Indexing, Searching & Sorting

311

System, Volume Label, Directory, Archive.

11.1 Unit Objectives

After going through this unit, the reader will be able to:

● Discuss the basics of file organization and its different methods.

● Learn about various indexing strategies for faster access to data.

11.2 File Organization

The main issue in file management is the way in which the records are organized

inside the file because it has a significant effect on the system performance.

Organization of records means the logical arrangement of records in the file and not

the physical layout of the file as stored on a storage media. Since choosing an

appropriate file organization is a design decision, it must be done keeping the priority

of achieving good performance with respect to the most likely usage of the file.

Therefore, the following considerations should be kept in mind before selecting an

appropriate file organization method:

➔ Rapid access to one or more records.

➔ Ease of inserting/updating/deleting one or more records without disrupting the

speed of accessing record(s).

➔ Efficient storage of records.

➔ Using redundancy to ensure data integrity.

Different file organization methods are available like sequential organization, relative

file organization, and indexed sequential file organization.

Sequential Organization

A sequentially organized file stores the records in the order in which they were

entered. That is, the first record that was entered is written as the first record in the

file, the second record entered is written as the second record in the file, and so on. As

a result, new records are added only at the end of the file. Figure 11.1 shows the

features, advantages, and disadvantages of sequential organization.

Sequential files can be read-only sequentially, starting with the first record in the file.

Sequential file organization is the most basic way to organize a large collection of

Indexing, Searching & Sorting

312

records in a file. Once we store the records in a file, we cannot make any changes to

the records. We cannot even delete the records from a sequential file. In case we need

to delete or update one or more records, we have to replace the records by creating a

new file.

In sequential file organization, all the records have the same size and the same field

format, and every field has a fixed size. The records are sorted based on the value of

one field or a combination of two or more fields. This field is known as the key. Each

key uniquely identifies a record in a file. Thus, every record has a different value for

the key field. Records can be sorted in either ascending or descending order.

Sequential files are generally used to generate reports or to perform a sequential

reading of large amounts of data which some programs need to do such as payroll

processing of all the employees of an organization. Sequential files can be easily stored

on both disks and tapes.

Figure 11.1 Sequential Organization

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

Relative File Organization

Relative file organization provides an effective way to access individual records

directly. In a relative file organization, records are ordered by their relative key. It

means the record number represents the location of the record relative to the

beginning of the file. The record numbers range from 0 to n–1, where n is the number

of records in the file. For example, the record with record number 0 is the first record

Indexing, Searching & Sorting

313

in the file. The records in a relative file are of fixed length. Figure 11.2 shows the

features, advantages, and disadvantages of Relative file organization.

Therefore, in relative files, records are organized in ascending relative record numbers.

A relative file can be thought of as a single dimension table stored on a disk, in which

the relative record number is the index into the table. Relative files can be used for

both random as well as sequential access. For sequential access, records are simply

read one after another.

Relative files provide support for only one key, that is, the relative record number. This

key must be numeric and must take a value between 0 and the current highest

relative record number –1. This means that enough space must be allocated for the file

to contain the records with relative record numbers between 0 and the highest record

number –1.

Relative file organization provides random access by directly jumping to the record

which has to be accessed. If the records are of fixed length and we know the base

address of the file and the length of the record, then any record i can be accessed

using the following formula:

Address of ith record = base_address + (i–1) * record_length

Note that the base address of the file refers to the starting address of the file.

We took i–1 in the formula because record numbers start from 0 rather than 1.

Figure 11.2 Relative File Organization

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 16, Page No.- 495)

Indexing, Searching & Sorting

314

Indexed Sequential File Organization

Indexed sequential file organization stores data for fast retrieval. The records in an

indexed sequential file are of fixed length and every record is uniquely identified by a

key field. We maintain a table known as the index table which stores the record

number and the address of all the records. That is for every file, we have an index

table. This type of file organization is called an indexed sequential file organization

because physically the records may be stored anywhere, but the index table stores the

address of those records. The ith entry in the index table points to the ith record of the

file. Initially, when the file is created, each entry in the index table contains NULL.

When the ith record of the file is written, free space is obtained from the free space

manager and its address is stored in the ith location of the index table. Figure 11.3

shows the features, advantages, and disadvantages of Indexed sequential file

organization.

An indexed sequential file uses the concept of both sequential as well as relative files.

While the index table is read sequentially to find the address of the desired record,

direct access is made to the address of the specified record in order to access it

randomly.

Figure 11.3 Indexed Sequential File Organization

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 16, Page No.- 496)

11.3 Indexing

An index for a file can be compared with a catalog in a library. Like a library has card

catalogs based on authors, subjects, or titles, a file can also have one or more indices.

Indexing, Searching & Sorting

315

Indexed sequential files are very efficient to use, but in real-world applications, these

files are very large and a single file may contain millions of records. Therefore, in such

situations, we require a more sophisticated indexing technique. There are several

indexing techniques and each technique works well for a particular application. For a

particular situation at hand, we analyze the indexing technique based on factors such

as access type, access time, insertion time, deletion time, and space overhead

involved. Let’s discuss the different types of indices.

11.3.1 Ordered Indices

Indices are used to provide fast random access to records. As stated above, a file may

have multiple indices based on different key fields. An index of a file may be a primary

index or a secondary index.

Primary Index

In a sequentially ordered file, the index whose search key specifies the sequential

order of the file is defined as the primary index. For example, suppose records of

students are stored in a STUDENT file in a sequential order starting from roll number

1 to roll number 60. Now, if we want to search a record for, say, roll number 10, then

the student’s roll number is the primary index. Indexed sequential files are a common

example where a primary index is associated with the file.

Secondary Index

An index whose search key specifies an order different from the sequential order of the

file is called the secondary index. For example, if the record of a student is searched

by his name, then the name is a secondary index. Secondary indices are used to

improve the performance of queries on non-primary keys.

11.3.2 Dense and Sparse Indices

In a dense index, the index table stores the address of every record in the file.

However, in a sparse index, the index table stores the address of only some of the

records in the file. Although sparse indices are easy to fit in the main memory, a dense

index would be more efficient to use than a sparse index if it fits in the memory.

Figure 11.4 shows a dense index and a sparse index for an indexed sequential file.

Indexing, Searching & Sorting

316

Figure 11.4 Dense and Sparse index

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

Note that the records need not be stored in consecutive memory locations. The pointer

to the next record stores the address of the next record.

By looking at the dense index, it can be concluded directly whether the record exists in

the file or not. This is not the case in a sparse index. In a sparse index, to locate a

record, we first find an entry in the index table with the largest search key value that

is either less than or equal to the search key value of the desired record. Then, we

start at that record pointed to by that entry in the index table and then proceed to

search the record using the sequential pointers in the file, until the desired record is

obtained. For example, if we need to access record number 40, then record number 30

is the largest key value that is less than 40. So jump to the record pointed by record

number 30 and move along the sequential pointer to reach record number 40.

Thus we see that sparse index takes more time to find a record with the given key.

Dense indices are faster to use, while sparse indices require less space and impose

less maintenance for insertions and deletions.

11.3.3 Cylinder Surface Indexing

Cylinder surface indexing is a very simple technique used only for the primary key

index of a sequentially ordered file. In a sequentially ordered file, the records are

stored sequentially in the increasing order of the primary key. The index file will

contain two fields- cylinder index and several surface indices. Generally, there are

multiple cylinders, and each cylinder has multiple surfaces. If the file needs m

cylinders for storage then the cylinder index will contain m entries.

Each cylinder will have an entry corresponding to the largest key value into that

Indexing, Searching & Sorting

317

cylinder. If the disk has n usable surfaces, then each of the surface indices will have n

entries. Therefore, the ith entry in the surface index for cylinder j is the largest key

value on the jth track of the ith surface. Hence, the total number of surface index

entries is m.n. The physical and logical organization of the disk is shown in figure

11.5. It should be noted that the number of cylinders in a disk is only a few hundred

and the cylinder index occupies only one track.

When a record with a particular key value has to be searched, then the following steps

are performed:

● First, the cylinder index of the file is read into memory.

● Second, the cylinder index is searched to determine which cylinder holds the

desired record. For this, either the binary search technique can be used or the

cylinder index can be made to store an array of pointers to the starting of

individual key values. In either case, the search will take O (log m) time.

● After the cylinder index is searched, the appropriate cylinder is determined.

● Depending on the cylinder, the surface index corresponding to the cylinder is

then retrieved from the disk.

● Since the number of surfaces on a disk is very small, the linear search can be

used to determine the surface index of the record.

● Once the cylinder and the surface are determined, the corresponding track is

read and searched for the record with the desired key.

Hence, the total number of disk accesses is three—first, for accessing the cylinder

index, second for accessing the surface index, and third for getting the track address.

However, if track sizes are very large then it may not be a good idea to read the whole

track at once. In such situations, we can also include sector addresses. But this would

add an extra level of indexing and, therefore, the number of accesses needed to

retrieve a record will then become four. In addition to this, when the file extends over

several disks, a disk index will also be added.

The cylinder surface indexing method of maintaining a file and index is referred to as

Indexed Sequential Access Method Sectors (ISAM). This technique is the most popular

and simplest file organization in use for figure 11.5. Physical and logical organization

of disk single key values. But with files that contain multiple keys, it is not possible to

Indexing, Searching & Sorting

318

use this index organization for the remaining keys.

Figure 11.5 Physical and logical organization of disk

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

11.3.4 Multi-level Indices

In real-world applications, we have very large files that may contain millions of

records. For such files, a simple indexing technique will not suffice. In such a

situation, we use multi-level indices. To understand this concept, consider a file that

has 10,000 records. If we use simple indexing, then we need an index table that can

contain at least 10,000 entries to point to 10,000 records. If each entry in the index

table occupies 4 bytes, then we need an index table of 4 x 10000 bytes = 40000 bytes.

Finding such a big space consecutively is not always easy. So, a better scheme is to

index the index table. We can continue further by having three-level indexing and so

on. But practically, we use two-level indexing. Note that two and higher-level indexing

must always be sparse, otherwise multi-level indexing will lose its effectiveness.

11.3.5 Inverted Indices

Inverted files are commonly used in document retrieval systems for large textual

databases. An inverted file reorganizes the structure of an existing data file in order to

provide fast access to all records having one field falling within the set limits. For

example, inverted files are widely used by bibliographic databases that may store

author names, title words, journal names, etc. When a term or keyword specified in

the inverted file is identified, the record number is given and a set of records

corresponding to the search criteria are created. Thus, for each keyword, an inverted

file contains an inverted list that stores a list of pointers to all occurrences of that term

Indexing, Searching & Sorting

319

in the main text. Therefore, given a keyword, the addresses of all the documents

containing that keyword can easily be located. There are two main variants of inverted

indices:

● A record-level inverted index (also known as inverted file index or inverted file)

stores a list of references to documents for each word.

● A word-level inverted index (also known as full inverted index or inverted list) in

addition to a list of references to documents for each word also contains the

positions of each word within a document. Although this technique needs more

time and space, it offers more functionality (like phrase searches).

Therefore, the inverted file system consists of an index file in addition to a document

file (also known as a text file). It is this index file that contains all the keywords which

may be used as search terms. For each keyword, an address or reference to each

location in the document where that word occurs is stored. There is no restriction on

the number of pointers associated with each word.

For efficiently retrieving a word from the index file, the keywords are sorted in a

specific order (usually alphabetically). However, the main drawback of this structure is

that when new words are added to the documents or text files, the whole file must be

reorganized. Therefore, a better alternative is to use B-trees.

11.3.6 B-Tree Indices

A database is defined as a collection of data organized in a fashion that facilitates

updating, retrieving, and managing the data (that may include any item, such as

names, addresses, pictures, and numbers). Most organizations maintain databases for

their business operations. For example, an airline reservation system maintains a

database of flights, customers, and tickets issued. A university maintains a database

of all its students. These real-world databases may contain millions of records that

may occupy gigabytes of storage space.

For a database to be useful, it must support fast retrieval and storage of data. Since it

is impractical to maintain the entire database in the memory, B-trees are used to

index the data in order to provide fast access.

For example, searching a value in an un-indexed and unsorted database containing n

Indexing, Searching & Sorting

320

key values may take a running time of O(n) in the worst case, but if the same database

is indexed with a B-tree, the search operation will run in O(log n) time. The majority of

the database management systems use the B-tree index technique as the default

indexing method. This technique supersedes other techniques of creating indices,

mainly due to its data retrieval speed, ease of maintenance, and simplicity. Figure

11.6 shows a B-tree index.

Figure 11.6 B-tree index

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

It forms a tree structure with the root at the top. The index consists of a B-tree

(balanced tree) structure based on the values of the indexed column. In this example,

the indexed column is the name and the B-tree is created using all the existing names

that are the values of the indexed column. The upper blocks of the tree contain index

data pointing to the next lower block, thus forming a hierarchical structure. The

lowest level blocks, also known as leaf blocks, contain pointers to the data rows stored

in the table.

If a table has a column that has many unique values, then the selectivity of that

column is said to be high. B-tree indices are most suitable for highly selective

columns, but it causes a sharp increase in the size when the indices contain a

concatenation of multiple columns. The B-tree structure has the following advantages:

Indexing, Searching & Sorting

321

● Since the leaf nodes of a B-tree are at the same depth, retrieval of any record

from anywhere in the index takes approximately the same time.

● B-trees improve the performance of a wide range of queries that either search a

value having an exact match or for a value within a specified range.

● B-trees provide fast and efficient algorithms to insert, update, and delete

records that maintain the key order.

● B-trees perform well for small as well as large tables. Their performance does

not degrade as the size of a table grows.

● B-trees optimize costly disk access.

11.3.7 Hashed Indices

Hashing is used to compute the address of a record by using a hash function on the

search key value. If at any point of time, the hashed values map to the same address,

then a collision occurs, and schemes to resolve these collisions are applied to generate

a new address. Choosing a good hash function is critical to the success of this

technique. By a good hash function, we mean two things. First, a good hash function,

irrespective of the number of search keys, gives an average-case lookup that is a small

constant. Second, the function distributes records uniformly and randomly among the

buckets, where a bucket is defined as a unit of one or more

records (typically a disk block). Correspondingly, the worst hash function is one that

maps all the keys to the same bucket. However, the drawback of using hashed indices

includes:

● Though the number of buckets is fixed, the number of files may grow with time.

● If the number of buckets is too large, storage space is wasted.

● If the number of buckets is too small, there may be too many collisions.

It is recommended to set the number of buckets to twice the number of the search key

values in the file. This gives a good space–performance tradeoff.

A hashed file organization uses hashed indices. Hashing is used to calculate the

address of the disk block where the desired record is stored. If K is the set of all search

key values and B is the set of all bucket addresses, then a hash function H maps K to

B.

11.4 Summary

Indexing, Searching & Sorting

322

● File organization means the logical arrangement of records in the file. Files can

be organized as sequential, relative, or index sequential.

● A sequentially organized file stores record in the order in which they were

entered.

● In relative file organization, records in a file are ordered by their relative key.

Relative files can be used for both random access as well as sequential access of

data.

● In an indexed sequential file, every record is uniquely identified by a key field.

We maintain a table known as the index table that stores the record number

and the address of the record in the file.

● In a dense index, the index table stores the address of every record in the file.

However, in a sparse index, the index table stores the address of only some of

the records in the file.

● Cylinder surface indexing is a very simple technique that is used only for the

primary key index of a sequentially ordered file.

● The majority of the database management systems use the B-tree indexing

technique. The index consists of a hierarchical structure with upper blocks

containing indices pointing to the lower blocks and lowest level blocks

containing pointers to the data records.

● Hashed file organization uses hashed indices. Hashing is used to calculate the

address of the disk block where the desired record is stored. If K is the set of all

search key values and B is the set of bucket addresses, then a hash function H

maps K to B.

11.5 Key Terms

● Primary Index: The index whose search key specifies the sequential order of

the file is defined as the primary index.

● Secondary Index: An index whose search key specifies an order different from

the sequential order of the file is called the secondary index.

● Record-level inverted index: It stores a list of references to documents for

each word.

● Word-level inverted index: In addition to a list of references to documents for

Indexing, Searching & Sorting

323

each word also contains the positions of each word within a document.

● Index Table: It stores the record number and the address of all the records.

11.6 Check Your Progress

Short- Answer type

Q1) ______ files are frequently used in indexing techniques in document retrieval

systems for large textual databases.

Q2) Which of the following indexing techniques is used in document retrieval systems

for large databases?

(a) Inverted index (b) Multi-level indices (c) Hashed indices (d) B-tree

index

Q3) B-tree indices are most suitable for highly selective columns. True/ False?

Q4) Index table stores ______ and ______ of the record in the file.

Q5) Relative files can be used for both random access of data as well as sequential

access. True/ False?

Long- Answer type

Q1) Explain the terms field, record, file organization, key, and index.

Q2) Differentiate between the sparse index and dense index.

Q3) Give the merits and demerits of a B-tree index.

Q4) Explain the features of Indexed sequential file organization.

Q5) Briefly explain the different types of indices.

References

• Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition

Indexing, Searching & Sorting

324

Indexing, Searching & Sorting

325

Unit: 12 Searching
Structure

12.0 Introduction

12.1 Unit Objectives

12.2 Searching and its types

 12.2.1 Linear Search

 12.2.2 Binary Search

12.3 Interpolation Search

12.4 Jump Search

12.5 Comparison of different search algorithms

12.6 Summary

12.7 Key Terms

12.8 Check Your Progress

12.0 Introduction

In real life, we generally arrange our things in a particular order so that we can refer to

them quickly and easily. Words in the dictionary, for example, are arranged in

alphabetical order to facilitate easy and fast searching. In the same way, the large

amounts of data stored in computer systems also need to be organized (sorted) in

some logical manner so that individual records can be searched easily and efficiently.

If the data is kept in a non-orderly manner, then the searching becomes a tedious

task. Therefore, sorting and searching are the most basic and commonly performed

operations in computer systems. This unit will discuss how various structures are

used for searching the data.

As mentioned, searching and sorting are the two most useful operations that are to be

performed on a list, which is maintained either in an array or in the linked list. To

perform search operations on a given list, various techniques are available, namely

linear search, binary search, and hashing.

The linear search algorithm can be applied on an array or on a linked list. It does not

require any additional data structure to perform the search operation. The other

search algorithm, i.e, a binary search algorithm can be applied on a list maintained in

an array only. However, like linear search, it also does not require any additional data

Indexing, Searching & Sorting

326

structure for performing search operations. Hashing uses a data structure called hash

table which is merely an array of fixed size and elements in it are inserted and

searched using a function called a hash function. In general, linear search algorithms

are slower than binary search, which, in turn, is slower than hashing. A comparison of

the linear and binary search algorithms is provided in this unit.

12.1 Unit Objectives

After going through this unit, the reader will be able to:

● Explain the use of various data structures for searching.

● Describe the basics of linear search and binary search.

● Discuss the comparison between various search algorithms.

12.2 Searching and its types

While solving a problem, a programmer may need to search for a value in an array.

The process of finding the occurrence of a particular data item in a list is known as

searching. Search is said to be successful or unsuccessful depending on whether the

data item is found or not. Searching means to find whether a particular value is

present in an array or not. If the value is present in the array, then searching is said

to be successful and the searching process gives the location of that value in the

array. However, if the value is not present in the array, the searching process displays

an appropriate message and in this case, searching is said to be unsuccessful. The

two main search techniques are linear search and binary search. The algorithm that

should be used depends entirely on how the values are organized in the array. For

example, if the elements of the array are arranged in ascending order, then the binary

search should be used, as it is more efficient for sorted lists in terms of complexity.

Let’s discuss all these methods in detail.

12.2.1 Linear Search

The linear search is one of the simplest searching techniques. In this technique, the

array is traversed sequentially from the first element until the value is found or the

end of the array is reached. While traversing, each element of the array is compared

with the value to be searched, and if the value is found, the search is said to be

Indexing, Searching & Sorting

327

successful. This technique is suitable for performing a search in a small array or in an

unsorted array.

Algorithm 12.1 Linear Search

linear_search(ARR, size, item)

1. Set i = 0

2. While i < size

 If ARR[i] = item //item is the value to be searched

 Return i and go to step 4

 End If

 Set i = i + 1

 End While

3. Return -1 //search unsuccessful

4. End

Program 12.1: Write a program to perform linear search.

#include<stdio.h>

#include<conio.h>

#define MAX 10

/*Function prototype*/

int linear_search(int [], int, int);

void main()

{

int ARR[MAX];

int item, size, pos, i;

do

{

clrscr();

printf(“\nEnter the size of the array (max %d): “,MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter elements of the array:\n”);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

printf(“\nEnter the element to be searched: “);

Indexing, Searching & Sorting

328

scanf(“%d”, &item);

pos=linear_search(ARR, size, item);

if (pos==-1)

printf(“\nElement not found”);

else

printf(“\nElement found at location: %d”, pos+1);

getch();

}

int linear_search(int ARR[], int size, int item)

{

int i;

for (i=0;i<size;i++)

{

if(ARR[i]==item)

return i;

}

return -1;

}

The output of the program is:

Enter the size of the array (max 10): 5

Enter elements of the array:

1

4

3

6

7

Enter the element to be searched: 4

Element found at location: 2

Analysis of linear search

In the best case, when the element is found at the first position, the search operation

terminates successfully with only one comparison. Thus, in this case, the complexity

of the algorithm is O(1). In the worst case, when the element to be searched appears

at the end of the list or is not present in the list, linear search requires n

Indexing, Searching & Sorting

329

comparisons. In both cases, the average complexity of the linear search is O(n).

12.2.2 Binary Search

The binary search technique is used to search a particular element in a sorted (in

ascending or descending order) array. In this technique, the element to be searched

(say, item) is compared with the middle element of the array. If an item is equal to the

middle element, then the search is successful. If an item is smaller than the middle

element, the item is searched in the segment of the array before the middle element.

However, if the item is greater than the middle element, the item is searched in the

array segment after the middle element. This process is repeated until the element is

found or the array segment is reduced to a single element that is not equal to the item.

At every stage of the binary search technique, the array is reduced to a smaller

segment. It searches a particular element in the lowest possible number of

comparisons. Hence, the binary search technique is used for larger and sorted arrays,

as it is faster as compared to linear search. Consider, for example, an array ARR

shown in figure 12.1.

Figure 12.1 The Array ARR

To search an item (say,7) using binary search in the array ARR with size=7, these

steps are performed.

1. Initially, set LOW=0 and HIGH= size–1. The middle of the array is determined

using the formula MID=(LOW+HIGH)/2, that is, MID=(0+6)/2, which is equal to

3. Thus, ARR[MID]=4.

2. Since the value stored at ARR[3] is less than the value to be searched, that is, 7,

the search process is now restricted from ARR[4] to ARR[6]. Now LOW is 4 and

HIGH is 6. The middle element of this segment of the array is calculated as MID

= (4+6)/2, that is, 5. Thus, ARR[MID]=6.

Indexing, Searching & Sorting

330

3. The value stored at ARR[5] is less than the value to be searched, hence the

search process begins from the subscript 6. As ARR[6] is the last element, the

item to be searched is compared with this value. Since ARR[6] is the value to be

searched, the search is successful.

4.

Algorithm 12.2 Binary Search

binary_search(ARR, size, item)

1. Set LOW = 0

2. Set HIGH = size - 1

3. While LOW <= HIGH

 Set MID = (LOW + HIGH) / 2

 If ITEM = ARR [MID]

 Return MID and go to step 5

 Else If item < ARR [MID]

 Set HIGH = MID – 1

 Else

 Set LOW = MID + 1

 End If

 End While

4. Return -1

5. End

Program 12.2: Write a program to perform binary search.

#include<stdio.h>

#include<conio.h>

#define MAX 10

/*Function prototype*/

int binary_search(int [], int, int);

void main()

{

Indexing, Searching & Sorting

331

int ARR[MAX], size, item, pos, i;

do

{

clrscr();

printf (“\nEnter the size of the array (max %d): “, MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter elements in sorted order: “);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

printf(“\nEnter the element to be searched:”);

scanf(“%d”, &item);

pos=binary_search(ARR, size, item);

if (pos==-1)

printf(“\nElement not found”);

else

printf(“\nElement found at location: %d “, pos+1);

getch();

}

int binary_search(int ARR[], int size, int item)

{

int LOW = 0;

int HIGH = size - 1;

int MID;

while(LOW<=HIGH)

{

MID=(HIGH+LOW)/2;

if(ARR[MID]==item)

return MID;

else

if(item<ARR[MID])

HIGH=MID-1;

else

LOW=MID+1;

}

return -1;

Indexing, Searching & Sorting

332

}

The output of the program is:

Enter no of elements (max 10): 5

Enter elements in sorted order: 11

22

33

44

55

Enter the element to be searched: 33

Element found at location: 3

Analysis of binary search

In each iteration, the binary search algorithm reduces the array to one half. Therefore,

for an array containing n elements, there will be log2n iterations. Thus, the complexity

of binary search algorithms is O(log2n). This complexity will be the same irrespective of

the position of the element, even if the element is not present in the list.

12.3 Interpolation Search

Interpolation search, also known as extrapolation search, is a searching technique

that finds a specified value in a sorted array. The concept of interpolation search is

similar to how we search for names in a telephone book or for keys by which a book’s

entries are ordered. For example, when looking for the name “James” in a telephone

directory, we know that it will be near the extreme left, so applying a binary search

technique by dividing the list into two halves each time is not a good idea. We must

start scanning the extreme left in the first pass itself.

In each step of interpolation search, the remaining search space for the value to be

found is calculated. The calculation is done based on the values at the bounds of the

search space and the value to be searched. The value found at this estimated position

is then compared with the value being searched for. If the two values are equal, then

the search is complete.

However, in case the values are not equal then depending on the comparison, the

Indexing, Searching & Sorting

333

remaining search space is reduced to the part before or after the estimated position.

Thus, we see that the interpolation search is similar to the binary search technique.

However, the important difference between the two techniques is that binary search

always selects the middle value of the remaining search space. It discards half of the

values based on the comparison between the value found at the estimated position

and the value to be searched. But in interpolation search, interpolation is used to find

an item near the one being searched for, and then the linear search is used to find the

exact item.

Figure 12.2 Difference between binary search and interpolation search

Algorithm 12.3 Interpolation Search

Interpolation_Search (A, lower_bound, upper_bound, VAL)

1. SET LOW = lower_bound, HIGH = upper_bound, POS = –1

2. Repeat Steps 3 to 4 while LOW <= HIGH

3. SET MID = LOW + (HIGH – LOW) × ((VAL – A[LOW]) / (A[HIGH] – A[LOW]))

4. IF VAL = A[MID]

 POS = MID

 PRINT POS

 Go to Step 6

 ELSE IF VAL < A[MID]

 SET HIGH = MID – 1

 ELSE

 SET LOW = MID + 1

 IF POS = –1

 PRINT "VALUE IS NOT PRESENT IN THE ARRAY"

5. End

Indexing, Searching & Sorting

334

Analysis of Interpolation Search

When n elements of a list to be sorted are uniformly distributed (average case),

interpolation search makes about log(log n) comparisons. However, in the worst case,

that is when the elements increase exponentially, the algorithm can make up to O(n)

comparisons.

Program 12.3: Write a program to search an element in an array using interpolation

search.

#include <stdio.h>

#include <conio.h>

#define MAX 20

int interpolation_search(int a[], int low, int high, int val)

{

 int mid;

 while(low <= high)

 {

 mid = low + (high – low)*((val – a[low]) / (a[high] – a[low]));

 if(val == a[mid])

 return mid;

 if(val < a[mid])

 high = mid – 1;

 else

 low = mid + 1;

 }

 return –1;

}

int main()

{

 int arr[MAX], i, n, val, pos;

 clrscr();

 printf("\n Enter the number of elements in the array : ");

 scanf("%d", &n);

 printf("\n Enter the elements : ");

 for(i = 0; i <n; i++)

Indexing, Searching & Sorting

335

 scanf("%d", &arr[i]);

 printf("\n Enter the value to be searched : ");

 scanf("%d", &val);

pos = interpolation_search(arr, 0, n–1, val);

 if(pos == –1)

 printf("\n %d is not found in the array", val);

 else

 printf("\n %d is found at position %d", val, pos);

 getch();

 return 0;

}

12.4 Jump Search

When we have an already sorted list, then the other efficient algorithm to search for a

value is jump search or block search. In jump search, it is not necessary to scan all

the elements in the list to find the desired value. We just check an element and if it is

less than the desired value, then some of the elements following it are skipped by

jumping ahead. After moving a little forward again, the element is checked. If the

checked element is greater than the desired value, then we have a boundary and we

are sure that the desired value lies between the previously checked element and the

currently checked element. However, if the checked element is less than the value

being searched for, then we again make a small jump and repeat the process.

Once the boundary of the value is determined, a linear search is done to find the value

and its position in the array. For example, consider an array a[] = {1,2,3,4,5,6,7,8,9} .

The length of the array is 9. If we have to find value 8 then the following steps are

performed using the jump search technique.

Indexing, Searching & Sorting

336

Figure 12.3 An example of Jump search

Algorithm 12.4 Jump Search

Indexing, Searching & Sorting

337

Jump_Search (A, lower_bound, upper_bound, VAL, N)

1. Set STEP = sqrt(N), I = 0, LOW = lower_bound, HIGH = upper_bound, POS = –1

2. Repeat Step 3 while I < STEP

3. If VAL < A

 Set HIGH = STEP – 1

 else

 Set LOW = STEP + 1

 Set I = I + 1

4. Set I = LOW

5. Repeat Step 6 while I <= HIGH

6. IF A[I] = Val

 POS = I

 PRINT POS

 Go to Step 8

 Set I = I + 1

7. IF POS = –1

 PRINT "VALUE IS NOT PRESENT IN THE ARRAY"

8. End

Analysis of Jump Search

Jump search works by jumping through the array with a step size (optimally chosen

to be √ n) to find the interval of the value. Once this interval is identified, the value is

searched using the linear search technique. Therefore, the complexity of the jump

search algorithm can be given as O(√n).

Program 12.4: Write a program to search an element in an array using jump search.

#include <stdio.h>

#include <math.h>

#include <conio.h>

#define MAX 20

int jump_search(int a[], int low, int high, int val, int n)

{

 int step, i;

 step = sqrt(n);

 for(i=0;i<step;i++)

 {

Indexing, Searching & Sorting

338

 if(val < a[step])

 high = step – 1;

 else

 low = step + 1;

 }

 for(i=low;i<=high;i++)

 {

 if(a[i]==val)

 return i;

 }

return –1;

}

int main()

{

 int arr[MAX], i, n, val, pos;

 clrscr();

 printf("\n Enter the number of elements in the array : ");

 scanf("%d", &n);

 printf("\n Enter the elements : ");

 for(i = 0; i <n; i++)

 scanf("%d", &arr[i]);

 printf("\n Enter the value to be searched : ");

 scanf("%d", &val);

 pos = jump_search(arr, 0, n–1, val, n);

if(pos == –1)

 printf("\n %d is not found in the array", val);

 else

 printf("\n %d is found at position %d", val, pos);

 getch();

 return 0;

}

12.5 Comparison of Different Search Algorithms

To compare the linear and binary search algorithms, consider an array ARR of ten

Indexing, Searching & Sorting

339

elements shown in Figure 12.4, and we have to find element 18 in this array. Using

linear search, element 18 is compared with each element of ARR sequentially from the

first element, that is, 11 until either 18 is found or the end of the array is

encountered. Hence, it makes eight comparisons as 18 is present at 8th position in

ARR. On the other hand, using binary search, element 18 is compared with the middle

element of ARR (that is, 15). Since 18 is not equal to 15, the search list is reduced into

two halves, and the search proceeds in the second half (6th to 10th element). Now, 18 is

compared with the middle element of the second half, that is, 18. This makes the

search successful in just two comparisons.

Figure 12.4 An Array ARR of Ten Elements

It is clear from the above example that the performance of binary search is better than

the linear search. This is because the binary search reduces the search list to its half

in each iteration, thus, requiring less number of comparisons. However, it only works

on the sorted lists which is the main disadvantage of the binary search. Moreover,

implementing the binary search algorithm is more complex than linear search.

12.6 Summary

● The process of finding the occurrence of a particular data item in a list is known

as searching.

● The two main search techniques are linear search and binary search.

● In linear search, the array is traversed sequentially from the first element until

the value is found or the end of the array is reached. This technique is suitable

for performing a search in a small array or in an unsorted array.

● The binary search technique is used to search a particular element in a sorted

(in ascending or descending order) array. In this technique, the element to be

searched (say, item) is compared with the middle element of the array.

● Interpolation search, also known as extrapolation search, is a searching

technique that finds a specified value in a sorted array.

12.7 Key Terms

Indexing, Searching & Sorting

340

● Hash Table: It is merely an array of fixed size and elements in it are inserted

and searched using a function called a hash function.

● Interpolation Search: The searching technique that finds a specified value in a

sorted array.

● Hashing: The type of data structure used to map a given value with a particular

key for faster access of elements.

● Jump Search: The searching technique in which we can jump to the desired

element and there is no need to scan all the elements in the array.

12.8 Check Your Progress

Short- Answer type

Q1) Hashing uses a data structure called ________ which is merely an array of fixed

size.

Q2) For a binary search, the array should be already sorted. True/False?

Q3) Which of these searching techniques is suitable for unsorted arrays?

(a) Binary search (b) Linear search (c) None of these (d) Any of these

Q4) Interpolation search is also known as _________ search.

Q5) A linear search is more efficient than a binary search. True/False?

Long- Answer type

Q1) What is searching? Name the various searching techniques.

Q2) Give the comparison for various search algorithms with the help of an example.

Q3) Write a short note on the linear search algorithm.

Q4) Write an algorithm for binary search.

Q5) Write a short note on:

(a) Interpolation Search (b) Jump Search

References

• Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition.

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

Indexing, Searching & Sorting

341

Unit- 13 Sorting
Structure

13.0 Introduction

13.1 Unit Objectives

13.2 Sorting

13.3 Internal Sorting

 13.3.1 Insertion Sort

 13.3.2 Bubble Sort

 13.3.3 Selection Sort

 13.3.4 Heap Sort

 13.3.5 Merge Sort

 13.3.6 Quick Sort

 13.3.7 Shell Sort

13.4 Comparison of different sorting algorithms

13.5 External Sorting

13.6 Summary

13.7 Key Terms

13.8 Check Your Progress

13.0 Introduction

Searching and sorting are the two most useful operations that are to be performed on

a list, which is maintained either in an array or in the linked list. We have already

studied various searching algorithms. This unit focuses on Sorting techniques and

algorithms.

Various algorithms are available to sort a given list. All the sort algorithms take a list

as input and produce a sorted list as output. Some algorithms can be applied on both

arrays and linked lists, while some can be applied only on arrays. The simple sort

algorithms are bubble, selection, and insertion, and none of them requires any

additional data structure to sort a given list. On the other hand, sort algorithms such

as merge, quick, and heap use additional data structures. The merge and quicksort

algorithms use a stack, whereas heap sort makes use of the heap data structure. The

heap data structure can be viewed as a complete binary tree in which the value in the

Indexing, Searching & Sorting

342

parent node is greater than the value in each of its child nodes. In general, the bubble,

selection, and insertion sort algorithms are slower than the merge, quick, and heap

sort algorithms.

13.1 Unit Objectives

After going through this unit, the reader will be able to:

● Explain the basics and need for Sorting.

● Describe the fundamentals of internal sorting.

● Discuss the insertion, bubble, selection, merge, quick, and heap sort

techniques.

● Analyze the various sorting algorithms in terms of their time complexities.

13.2 Sorting

The process of arranging data in a particular logical order is known as sorting. The

order can be ascending or descending for numeric data and alphabetical for character

data. There are two types of sorting, namely internal sorting, and external sorting. If

all the data that are to be sorted fit entirely in the main memory, then internal (in-

memory) sorting is used. On the other hand, if all the data that are to be sorted do not

fit entirely in the main memory, external sorting is required. An external sort requires

the use of external memory, such as disks or tapes, during sorting. In external sorting,

some part of the data is loaded into the main memory, sorted using any internal

sorting technique, and written back to the disk in some intermediate file. This process

continues until all the data are sorted. This section covers only some of the internal

sorting algorithms. It also gives a brief comparison of various algorithms in terms of

their time complexities.

13.3 Internal Sorting

There are different internal sorting algorithms, such as insertion sort, bubble sort,

selection sort, heap sort, merge sort, and quicksort. The choice of a particular

algorithm depends on the properties of the data and the operations to be performed on

the data. For all these algorithms, we will consider an array ARR containing n

elements, which are to be sorted in ascending order.

Indexing, Searching & Sorting

343

13.3.1 Insertion Sort

The insertion sort algorithm selects each element and inserts it at its proper position

in the earlier sorted sublist. In the first pass, the element ARR[1] is compared with

ARR[0], and if ARR[1] and ARR[0]are not sorted, they are swapped. In the second pass,

the element ARR[2] is compared with ARR[0]and ARR[1], and it is inserted at its proper

position in the sorted sublist containing the elements ARR[0]and ARR[1]. Similarly,

during ith iteration, the element ARR[i] is placed at its proper position in the sorted

sublist containing the elements ARR[0], ARR[1], ARR[1],..., ARR[i–1].

In order to determine the actual position of the element (say, ARR[i]) in the sorted

sublist containing the elements ARR[0], ARR[1], ..., ARR[i-1], the element ARR[i] is

compared with all other elements to its left, until an element ARR[j] is found such that

ARR[j]<=ARR[i]. Now, to insert the element at its actual position, all the elements

ARR[i-1], ARR[i-2], ARR[i-3],..., ARR[j+1] are shifted one position towards the right to

create space for ARR[i], and then ARR[i] is inserted at (j+1) st position.

To understand the insertion sort algorithm, consider the following unsorted array. The

steps to sort the values stored in the array in ascending order using insertion sort are

given here.

Unsorted Array

1. The first value, that is 7, is trivially sorted by itself.

2. Then the second value 33 is compared with the first value 7. Since 33 is greater

than 7, no changes are made.

3. Next, the third element 20 is compared with its previous elements (elements

towards its left). Since 20 is smaller than 33 but greater than 7, it is inserted at

the second position. For this, element 33 is shifted one position towards the

right, and 20 is inserted at its appropriate (second) position.

Indexing, Searching & Sorting

344

4. Then the fourth element 11 is compared with its previous elements. Since 11 is

greater than 7 and less than 20 and 33, it is placed between 7 and 20. For this,

elements 20 and 33 need to be shifted one position towards the right.

5. Finally, the last element 6 is compared with all the elements preceding it. Since

it is smaller than all the other elements, preceding elements are shifted one

position towards the right and 6 is inserted at the first position in the array.

After this pass, the array is sorted.

Final Sorted Array

Algorithm 13.1 Insertion Sort

Indexing, Searching & Sorting

345

insertion_sort(ARR, size)

1. Set i = 1

2. While (i < size)

 Set temp = ARR[i]

 j = i - 1

 While (temp < ARR[j] AND j >= 0)

 Set ARR[j+1] = ARR[j]

 Set j = j - 1

 End While

 Set ARR[j+1] = temp

 Print ARR after i th pass

 Set i = i + 1

End While

3. Print “No. of passes: ”, i-1

4. End

Program 13.1: Write a program to show sorting of an array using insertion sort.

#include<stdio.h>

#include<conio.h>

#define MAX 10

/*Function prototype*/

void insertion_sort(int [], int);

void main()

{

int ARR[MAX], i, size;

do

{

clrscr();

printf(“\nEnter the size of the array (max %d): “,MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter the elements of the array:\n”);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

insertion_sort(ARR, size);

printf(“\nThe sorted array is: “);

Indexing, Searching & Sorting

346

for(i=0;i<size;i++)

{

printf(“%d “, ARR[i]);

}

getch();

}

void insertion_sort(int ARR[], int size)

{

int i, j, k, temp, count=0;;

for (i=1;i<size;i++)

{

temp=ARR[i];

j=i-1;

if(temp<ARR[j])

{

while(temp<ARR[j] && j>=0)

{

ARR[j+1]=ARR[j];

j—;

}

}

ARR[j+1]=temp;

printf(“\nArray after pass %d: “, i);

for(k=0;k<size;k++)

{

printf(“%d “, ARR[k]);

}

}

printf(“\nNo. of passes: %d”, i-1);

}

The output of the program is:

Enter the size of the array (max 10): 5

Enter the elements of the array:

35

Indexing, Searching & Sorting

347

20

4

10

5

Array after pass 1: 20 35 4 10 5

Array after pass 2: 4 20 35 10 5

Array after pass 3: 4 10 20 35 5

Array after pass 4: 4 5 10 20 35

No. of passes: 4

The sorted array is: 4 5 10 20 35

Analysis of insertion sort

In the worst case, when the input list is in descending order, the first pass of

insertion sort requires one comparison, second pass requires two comparisons,..., ith

pass requires i comparisons, and the last pass requires (n-1) comparisons. Therefore,

complexity of insertion sort algorithm is:

f(n) = 1 + 2 + 3 + ... + (n-i) + ... + (n-3) + (n-2) + (n-1)

 = n (n-1)/2

 = (n2 -n)/2

Since for all n, (n2 -n)/2 is always less than n2, the time complexity of insertion sort

algorithm is O (n2).

13.3.2 Bubble Sort

The bubble sort algorithm requires n-1 passes to sort an array. In the first pass, each

element (except the last) in the list is compared with the element next to it, and if it is

greater, then both the elements are swapped. After the first pass, the largest element

in the list is placed at the last position. Similarly, in the second pass, the second

largest element is placed at its appropriate position. Thus, in each subsequent pass,

one more element is placed at its appropriate position. Since this algorithm makes

the larger values to ‘bubble up’ to the end of the list, it is named bubble sort.

The bubble sort algorithm possesses an important property that if a particular pass

is made through the list without swapping any items, then there will be no further

Indexing, Searching & Sorting

348

swapping of elements in the subsequent passes. This property can be used to

eliminate the unnecessary passes once the list is sorted in the desired order. For

this, a flag variable can be used to detect if any interchange has been made during

the pass. We use flag=0 to indicate that no swaps have occurred in a particular pass,

therefore, no further passes are required.

To understand the bubble sort technique, consider the following unsorted array.

Unsorted Array

The steps to sort the values stored in the array in ascending order using bubble sort

are given here.

First pass:

1. The values 8 and 7 are compared with each other. Since 7 is smaller than 8,

both the values are swapped with each other.

2. Next, the values 8 and 65 are compared with each other. Since 8 is less than

65, that means they are in the proper order and hence, no swapping is

required. The list remains unchanged.

3. Then the values 65 and 5 are compared with each other. Since 5 is less than

65, both the values are swapped.

4. Next, the values 65 and 43 are compared with each other. Since 43 is less

Indexing, Searching & Sorting

349

than 65, both the values are swapped.

After the first pass, the largest value of the array (here, 65) is placed at the last

position.

Second pass:

1. The values 7 and 8 are compared with each other. Since 7 is smaller than 8,

no swapping is required.

2. Then the values 8 and 5 are compared. Since 8 is greater than 5, both are

swapped.

3. Next, the elements 8 and 43, and 43 and 65 are compared. Since they are

already in ascending order, they need not be swapped.

Third pass:

1. The values 7 and 5 are compared with each other. Since 7 is greater than 5,

both are swapped.

2. Since the remaining elements are already in ascending order, they are not

swapped.

Fourth pass:

In the fourth pass, no swapping is required as all the elements are already in

ascending order. Thus, at the end of this pass, the list is sorted in ascending order.

Algorithm 13.2 Bubble Sort

Indexing, Searching & Sorting

350

bubble_sort(ARR, size)

1. Set i = 0, flag = 1

2. While (i < size-1 AND flag = 1)

 Set j = 0

 Set flag = 0

 While (j < size-i-1)

 If (ARR[j] > ARR[j+1])

 Set flag = 1 //swap will occur, hence set flag = 1

 Set temp = ARR[j] //temp is temporary variable used to swap two values

 Set ARR[j] = ARR[j+1]

 Set ARR[j+1] = temp

 End If

 Set j = j + 1

 End While

 Print ARR after (i+1) th pass

 Set i = i + 1

 End While

3. Print “No. of passes: ”, i

4. End

Program 13.2: Write a program to show sorting of an array using bubble sort.

#include<stdio.h>

#include<conio.h>

#define MAX 10

/*Function prototype*/

void bubble_sort(int [], int);

void main()

{

int ARR[MAX],i, size;

do

{

clrscr();

printf(“\nEnter the size of the array (max %d): “, MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter the elements of the array:\n”);

for(i=0;i<size;i++)

Indexing, Searching & Sorting

351

scanf(“%d”, &ARR[i]);

bubble_sort(ARR, size);

printf(“\nThe sorted array is: “);

for(i=0;i<size;i++)

printf(“%d “, ARR[i]);

getch();

}

void bubble_sort(int ARR[], int size)

{

int i, j, k, temp, flag=1;

i=0;

while (i<size-1 && flag==1)

{

flag=0;

for(j=0;j<size-i-1; j++)

{

if (ARR[j]>ARR[j+1])

{

flag=1;

temp=ARR[j];

ARR[j]=ARR[j+1];

ARR[j+1]=temp;

}

}

printf(“\nArray after pass %d: “, i+1);

for(k=0;k<size;k++)

{

printf(“%d “, ARR[k]);

}

i++;

}

printf(“\nNo. of passes: %d”, i);

}

The output of the program is:

Indexing, Searching & Sorting

352

Enter the size of the array (max 10): 5

Enter the elements of the array:

8

7

65

5

43

Array after pass 1: 7 8 5 43 65

Array after pass 2: 7 5 8 43 65

Array after pass 3: 5 7 8 43 65

Array after pass 4: 5 7 8 43 65

No. of passes: 4

The sorted array is: 5 7 8 43 65

Analysis of bubble sort

To sort a list containing n elements, at most n-1 passes are required. The first pass

requires n-1 comparisons, second pass requires n-2 comparisons, ..., ith pass

requires n-i comparisons. Therefore, average complexity of bubble sort algorithm is:

f(n) = (n-1) + (n-2) + (n-3) + ... + (n-i) + ... +3 + 2 + 1

 = n(n-1)/2

 = (n2 -n)/2

 = O(n2)

Note that under best-case conditions (when the list is almost or completely sorted),

the bubble sort can approach the O(n) level of complexity. In other cases, the

complexity level is O(n2).

13.3.3 Selection Sort

In selection sort, first, the smallest element in the list is searched and is swapped

with the first element in the list (that is, it is placed at the first position). Then, the

second smallest element is searched and swapped with the second element in the list

(that is, it is placed at the second position), and so on.

Indexing, Searching & Sorting

353

Like the bubble sort algorithm, the selection sort also requires n-1 passes to sort an

array containing n elements. However, there is a slight difference between the

selection sort and bubble sort algorithm. In selection sort, the smallest element is the

first one to be placed at its correct position, then the second smallest element comes

at its position, and so on. In bubble

sort, on the other hand, the largest element is the first one to be placed at its

appropriate position, then the second-largest element, and so on.

To understand the selection sort algorithm, consider the following unsorted array.

The steps to sort the values stored in the array in ascending order using selection

sort are given here.

1. In the first pass, the entire array is scanned for the smallest element, which is

4 in this list. It is swapped with the first element, that is, 8. Thus, 4 is placed

at its correct position and is not used for any further comparisons.

2. In the second pass, the smallest element is searched from the last four

elements, which is 6. It is swapped with the second element, that is, 33.

3. In the third pass, the smallest element is searched from the last three

elements, which is 8. This value is swapped with the third element, that is, 33.

4. In the fourth pass, the smallest element is searched from the last two

elements. Since 21 is smaller than 33, no changes are made in the list

obtained after the third pass, and the list is sorted in ascending order. The

Indexing, Searching & Sorting

354

sorted list is shown below.

Algorithm 13.3 Selection Sort

1. Set i = 0

2. While (i < size-1)

 Set small = ARR[i]

 Set pos = i

 Set j = i + 1

 While (j < size) //searching the smallest element in unsorted list

 If (ARR[j]<small)

 Set small = ARR[j]

 Set pos = j

 End If

 Set j = j + 1

 End While

 Set ARR[pos] = ARR[i] //placing the smallest element at its correct position

 Set ARR[i] = small

3. Print ARR after (i+1)th pass

 Set i = i + 1

 End While

 Print “No. of passes: ”, i selection_sort(ARR, size)

4. End

Program 13.3: Write a program to show sorting of an array using selection sort.

#include<stdio.h>

#include<conio.h>

#define MAX 10

/*Function prototype*/

void selection_sort(int [], int);

void main()

{

int ARR[MAX], i, size;

do

{

clrscr();

Indexing, Searching & Sorting

355

printf(“\nEnter the size of the array (max %d): “, MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter the elements of the array:\n”);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

selection_sort(ARR, size);

printf(“\nThe sorted array is: “);

for(i=0;i<size;i++)

printf(“%d “, ARR[i]);

getch();

}

void selection_sort(int ARR[], int size)

{

int i, j, k, small, pos;

for (i=0;i<(size-1);i++)

{

small=ARR[i];

pos=i;

for (j=i+1;j<size;j++)

{

if (ARR[j]<small)

{

small=ARR[j];

pos=j;

}

}

ARR[pos]=ARR[i];

ARR[i]=small;

printf(“\nArray after pass %d: “, i+1);

for(k=0;k<size;k++)

printf(“%d “, ARR[k]);

}

printf(“\nNo. of passes: %d”, i);

}

Indexing, Searching & Sorting

356

The output of the program is:

Enter the size of the array (max 10): 5

Enter the elements of the array:

8

6

33

21

5

Array after pass 1: 5 6 33 21 8

Array after pass 2: 5 6 33 21 8

Array after pass 3: 5 6 8 21 33

Array after pass 4: 5 6 8 21 33

No. of passes: 4

The sorted array is: 5 6 8 21 33

Analysis of selection sort

Selection sort also requires n-1 passes to sort an array of n elements. The first pass

requires n-1 comparisons, second pass requires n-2 comparisons,..., ith pass requires

n-i comparisons and the last pass requires only one comparison. Therefore, average

complexity of selection sort algorithm is:

f(n) = (n-1) + (n-2) + (n-3) + ... + (n-i) + ... +3 + 2 + 1

 = n(n-1)/2

 = (n2 -n)/2

 = O(n2)

13.3.4 Heap Sort

Heapsort is a more efficient version of the selection sort. Like selection sort, it also

first determines the largest (or smallest) element of the list, places it at the end (or

beginning) of the list, and then continues with the rest of the list. However, it

accomplishes this task efficiently by using a different data structure called a heap,

which can be visualized as a complete binary tree. Recall that a complete binary tree

is completely filled, with the possible exception of the last level which is filled from

left to right (Figure 13.1).

Indexing, Searching & Sorting

357

Figure 13.1 A complete binary tree

Heaps can be of two types, namely max-heap and min-heap. A max-heap (or

descending heap) is a kind of heap in which the value present at any node is greater

than or equal to the value of each of its child nodes. On the other hand, a min-heap

(or ascending heap) is a kind of heap in which the value present at any node is

smaller than or equal to the value of each of its child nodes. The max-heap and min-

heap with 12 nodes are shown in figure 13.2. Note that the values in the child nodes

of a node may not be in order, that is, sometimes the value in the right child may be

more than that in the left child and at some other times, it may be less than the

value in the left child.

(a) Max- Heap

Indexing, Searching & Sorting

358

(b) Min- Heap

Figure 13.2 Types of Heap

A complete binary tree can be stored most efficiently as a single-dimensional array in

which the root node is stored at 0th position and its left and right child nodes are

stored at 1st and 2nd position respectively. For each ith node, the left and right child

exist at (2i+1)th and (2i+2)th position respectively. The parent node of ith node is stored

at [(i-1)/2]th node. For example, in Figure 13.2(a) the left and right child nodes of 4th

node are stored at 9th (2*4+1) and 10th (2*4+2) positions respectively. The parent node

of the 4th node is stored at 1st ((4-1)/2) position.

The array representation of the heap shown in Figure 13.2(a) is shown below.

To sort an array of size n in ascending order using heap sort, the following steps are

performed:

1. The initial max-heap is built from the given array.

2. The root element is swapped with the last element in the array.

3. The heap of remaining elements is restored.

4. Steps 2 and 3 are repeated until there are no more elements.

To understand the heap sort, consider an unsorted array ARR.

Let us first discuss the steps to build a heap out of the given array. The elements in

the given array are considered one by one. If an element ARR[i] is greater than its

Indexing, Searching & Sorting

359

parent which is stored at location (i-1)/2, then the element is swapped with its

parent. The element is then compared with its new parent and a swap occurs if it is

greater than its parent. This process continues until no more swapping is needed, or

we are at the root node. For example, the steps to construct a heap out of the array

ARR shown above are as follows:

1. The first element, that is, 9, is stored at position ARR[0].

2. The second element 11 is compared with its parent node which is at the

location (i-1)/2, that is, (1-1)/2=0. Since ARR[0]<ARR[1], they are swapped.

Now ARR is as follows:

3. The third element 6 is compared with its parent node which is at the location

(2-1)/2=0. Since ARR[0]>ARR[2], they are not swapped. ARR remains the

same.

4. The fourth element 45 is compared with its parent node which is at the

location (3-1)/2=1. Since ARR[1]<ARR[3], they are swapped. It is again

compared with its parent node which is at the location (1–1)/2=0. Since

ARR[0]>ARR[1], they are swapped. Now ARR is as follows:

5. The next element 22 is compared with its parent node which is at the location

(4-1)/2=1. Since ARR[1]<ARR[4], they are swapped. It is again compared with

its parent node which is at the location (1-1)/2=0. Since ARR[0]>ARR[1], they

are not swapped. ARR at this point is as follows:

6. The next element 10 is compared with its parent node which is at the location

(5-1)/2=2. Since ARR[2]<ARR[5], they are swapped. It is again compared with

its parent node which is at the location (2-1)/2=0. Since ARR[0]>ARR[1], they

are not swapped. ARR at this point is as follows:

Indexing, Searching & Sorting

360

7. The seventh element 12 is compared with its parent node which is at the

location (6-1)/2=2. Since ARR[2]<ARR[6], they are swapped. It is again

compared with its parent node which is at the location (2-1)/2=0. Since

ARR[0]>ARR[1], they are not swapped. ARR at this point is as follows:

8. The next element 90 is compared with its parent node which is at the location

(7-1)/2=3. Since ARR[3]<ARR[7], they are swapped. It is again compared with

its parent node which is at the location (3-1)/2=1. Since ARR[1]<ARR[3], they

are swapped. It is again compared with its parent node which is at the location

(1-1)/2=0. Since ARR[0]<ARR[1], they are swapped. ARR at this point is as

follows:

9. The next element 67 is compared with its parent node which is at the location

(8-1)/2=3. Since ARR[3]<ARR[8], they are swapped. It is again compared with

its parent node which is at the location (3-1)/2=1. Since ARR[1]<ARR[3], they

are swapped. It is again compared with its parent node which is at the location

(1-1)/2=0. Since ARR[0]>ARR[1], they are not swapped. ARR at this point is as

follows:

10. The last element 17 is compared with its parent node which is at the location

(9-1)/2=4. Since ARR[4]<ARR[9], they are swapped. It is again compared with

its parent node which is at the location (4-1)/2=1. Since ARR[1]>ARR[4], they

are not swapped. ARR at this point is as follows:

The initial max-heap for the array ARR is shown in figure 13.3.

Indexing, Searching & Sorting

361

Figure 13.3 Initial Max-heap for ARR

Once the max-heap is created, the root node is guaranteed to contain the largest

element of the list. This element is swapped with the last element in the list. It means

that the largest element of the list is placed at its proper position. Now, the maximum

index value of the array is reduced by one. The array at this point may not be

satisfying the properties of the heap. Therefore, the heap needs to be restored with

the remaining elements.

During the restoration, the element at the root node is compared with its child

node(s), and if it is smaller than its child nodes, then it is swapped with the greatest

of the two child nodes. Now, this element is compared with its current child nodes,

and again it is swapped with the greatest of the two-child nodes if it is smaller than

its child nodes. This process is repeated until this element is placed at its proper

position. At this time, the second-largest element is placed at the root node. Now,

this element is swapped with the second-last element in the list. It means that the

second largest element is placed at its proper position. The maximum index value of

the array is again reduced by one and the process continues until no more elements

remain in the heap.

For example, to sort the given array using the heap sort, first, the root element

(which is 90) is swapped with the last element (which is 11). This moves the largest

element to the end of the list. Now the heap is restored with the remaining elements.

Since the element at the root node, that is, 11 is smaller than its child nodes, it is

swapped with the greatest of the two child nodes. Here, it is swapped with 67. Since

element 11 is still smaller than its two child nodes, it is again swapped with the

largest of the two child nodes, which is 45. Finally, element 11 is swapped with 22.

The heap after this point is shown in Figure 13.4.

Indexing, Searching & Sorting

362

Figure 13.4 Heap after Eliminating 90

At this point, the second-largest element (that is, 67) is at the root node. Again 67 is

swapped with the second-last element in the array (that is, 11). The heap is again

restored with the remaining elements. This process is repeated until the array is

sorted.

Algorithm 13.4 Heap Sort

heap_sort(ARR, size)

1. Set i = size-1, j = 1

2. Call make_heap(ARR, size)

3. Print the initial heap

4. While (i > 0)

 Set temp = ARR[i]

 Set ARR[i] = ARR[0]

 Set ARR[0] = temp

 Call restore(ARR, i) //calling restore function to restore the heap with remaining elements

 Print Heap after j th pass

 Set j = j + 1

 Set i = i - 1

 End While

5. Print “No. of passes: ”, j-1

6. End

make_heap(ARR, size) //make_heap builds the initial heap of array ARR

1. Set i = 1

2. While (i < size)

 Set child = ARR[i]

 Set k = i

Indexing, Searching & Sorting

363

 Set parent = (k-1) / 2;

 While (k>0 AND ARR[parent]<child)

 Set ARR[k] = ARR[parent];

 Set k = parent;

 Set parent = (k-1) / 2;

 End While

 Set ARR[k] = child;

 Set i = i + 1

 End While

3. End

restore(ARR, size) //restoring the heap with remaining elements

1. Set i = 0

2. Do

 Set lchild = (2*i+1)

 Set rchild = (2*i+2)

 If (rchild >= size)

 If (lchild < size AND ARR[i] < ARR[lchild])

 Set temp = ARR[i]

 Set ARR[i] = ARR[lchild]

 Set ARR[lchild] = temp

 End If

 go to step 3

 Else If (ARR[i] < ARR[lchild] OR ARR[i] < ARR[rchild])

 If (ARR[lchild] > ARR[rchild])

 Set temp = ARR[i]

 Set ARR[i] = ARR[lchild]

 Set ARR[lchild] = temp

 Set i = lchild

 Else

 Set temp = ARR[i]

 Set ARR[i] = ARR[rchild]

 Set ARR[rchild] = temp

 Set i = rchild

 End If

 Else

 go to step 3

 End If

 While(1)

3. End

Indexing, Searching & Sorting

364

Program 13.4: Write a program to show sorting of an array using heap sort.

#include<stdio.h>

#include<conio.h>

#define MAX 20

/*Function prototypes*/

void make_heap(int [], int);

void heap_sort(int [], int);

void restore(int [], int);

void main()

{

int ARR[MAX], i, size;

do

{

clrscr();

printf(“\nEnter the size of the array (max %d): “, MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter the elements of the array:\n”);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

heap_sort(ARR, size);

printf(“\nThe sorted array is: “);

for(i=0;i<size;i++)

printf(“%d “, ARR[i]);

getch();

}

void make_heap(int ARR[], int size)

{

int i, k, parent, child;

for(i=1;i<size;i++)

{

child=ARR[i];

k=i;

parent=(k-1)/2;

Indexing, Searching & Sorting

365

while(k>0 && ARR[parent]<child)

{

ARR[k]=ARR[parent];

k=parent;

parent=(k-1)/2;

}

ARR[k]=child;

}

}

void restore(int ARR[], int size)

{

int i=0, lchild, rchild, temp;

do

{

lchild=(2*i+1);

rchild=(2*i+2);

if(rchild>=size)

{

if(lchild<size && ARR[i]<ARR[lchild])

{

temp=ARR[i];

ARR[i]=ARR[lchild];

ARR[lchild]=temp;

}

break;

}

else if(ARR[i]<ARR[lchild] || ARR[i]<ARR[rchild])

{

if(ARR[lchild]>ARR[rchild])

{

temp=ARR[i];

ARR[i]=ARR[lchild];

ARR[lchild]=temp;

i=lchild;

}

else

Indexing, Searching & Sorting

366

{

temp=ARR[i];

ARR[i]=ARR[rchild];

ARR[rchild]=temp;

i=rchild;

}

}

else

break;

}while(1);

}

void heap_sort(int ARR[], int size)

{

int i, j=1, k, temp;

make_heap(ARR, size);

printf(“\nInitial heap: “);

for(i=0;i<size;i++)

printf(“%d “, ARR[i]);

for(i=size-1;i>0;i—)

{

temp=ARR[i];

ARR[i]=ARR[0];

ARR[0]=temp;

restore(ARR, i); /*rebuilding heap with remaining elements*/

printf(“\nHeap after %d pass: “,j);

for(k=0;k<size;k++)

printf(“%d “, ARR[k]);

j++;

}

printf(“\nNo. of passes: %d”, j-1);

}

The output of the program is:

Enter the size of the array (max 20): 10

Enter the elements of the array:

Indexing, Searching & Sorting

367

9

11

6

45

22

10

12

90

67

17

Initial heap: 90 67 12 45 17 6 10 9 22 11

Heap after 1 pass: 67 45 12 22 17 6 10 9 11 90

Heap after 2 pass: 45 22 12 11 17 6 10 9 67 90

Heap after 3 pass: 22 17 12 11 9 6 10 45 67 90

Heap after 4 pass: 17 11 12 10 9 6 22 45 67 90

Heap after 5 pass: 12 11 6 10 9 17 22 45 67 90

Heap after 6 pass: 11 10 6 9 12 17 22 45 67 90

Heap after 7 pass: 10 9 6 11 12 17 22 45 67 90

Heap after 8 pass: 9 6 10 11 12 17 22 45 67 90

Heap after 9 pass: 6 9 10 11 12 17 22 45 67 90

No of passes: 9

The sorted array is: 6 9 10 11 12 17 22 45 67 90

Analysis of heapsort

A complete binary tree with n nodes has a depth of log n. Therefore, building the

initial heap of n elements requires n* log n comparisons, since inserting each

element requires at most log n comparisons. After the creation of the initial heap, the

element at the root node is swapped with the last element, and the heap is restored.

13.3.5 Merge Sort

Merge sort algorithm is based on the fact that it is easier and faster to sort two

smaller arrays than one larger array. Therefore, it follows the principle of divide-and-

Indexing, Searching & Sorting

368

conquer. In this sorting, the list is first divided into two halves. The left and right

sublists obtained are recursively divided into two sublists until each sublist contains

not more than one element. The sublists containing only one element do not require

any sorting. Therefore, we start merging the sublists of size one to obtain the sorted

sub-list of size two. Similarly, the sublists of size two are then merged to obtain the

sorted sub-list of size four. This process is repeated until we get the final sorted

array.

To understand the merge sort algorithm, consider the following unsorted array. The

steps to sort the values stored in the array in ascending order using merge sort are

given here.

1. Initially, low=0 and high=7, therefore, mid=(0+7)/2=3. Thus, the given list is

divided into two halves from the 4th element. The sub-lists are as follows:

2. The left sub-list is considered first, and it is again divided into two sublists.

Now, low=0 and high=3, therefore, mid=(0+3)/2=1. Thus, the left sublist is

divided into two halves from the 2nd element. The sub-lists are as follows:

3. These two sublists are again divided into sub-lists such that all of them

contain one element.

4. Since each sub-list now contains one element, all sub-lists are first merged to

produce the two arrays of size 2. First, the sublists containing the elements 18

and 13 are merged to give one sorted sub-array, and then sub-lists containing

the elements 5 and 20 are merged to give another sorted sub-array. The two

sorted subarrays are as follows:

5. Now, these two sub-arrays are again merged to give the following sorted

subarray of size 4.

6. After sorting the left half of the array, we perform the same steps for the right

half. The sorted right half of the array is given below:

Indexing, Searching & Sorting

369

7. Finally, the left and right halves of the array are merged to give the sorted

array.

Algorithm 13.5 Merge Sort

merge_sort(ARR, low, high)

1. If (low < high)

 Set mid = (low + high) / 2

 Call merge_sort(ARR, low, mid) //calling merge_sort recursively for left sub list

 Call merge_sort(ARR, mid+1, high) //calling merge_sort for right sub list

 Call merging(ARR, low, mid, mid+1, high)

 End If

2. End

merging(ARR, ll, lr, ul, ur)

//merging() merges the two sub-arrays to produce a sorted array named merged ll and ul are

the lower bounds of the left and right sub-list respectively.

//ul and ur the upper bounds of the left and right sub-list respectively.

1. Set i = ll, j = ul, k = ll

2. While(i <= lr AND j <= ur)

 If(ARR[i] <= ARR[j])

 Set merged[k] = ARR[i]

 Set i = i + 1

 Else

 Set merged[k] = ARR[j]

 Set j = j + 1

 End If

 Set k= k + 1

 End While

 If(i <= lr)

 While(i <= lr)

 Set merged[k] = ARR[i]

 Set i = i + 1

 Set k = k + 1

Indexing, Searching & Sorting

370

 End While

 End If

 If(j <= ur)

 While(j <= ur)

 Set merged[k] = ARR[j]

 Set j = j + 1

 Set k = k+ 1

 End While

 End If

 Set k = ll

 While (k <= ur)

 Set ARR[k] = merged[k]

 Set k = k + 1

 End While

3. End

Program 13.5: Write a program to show sorting of an array using merge sort.
#include<stdio.h>

#include<conio.h>

#define MAX 20

/*Function prototypes*/

void merging(int [], int, int, int, int);

void merge_sort(int [], int, int);

void main()

{

int ARR[MAX], i, size;

do

{

clrscr();

printf(“\nEnter the size of the array (max %d): “, MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter the elements of the array:\n”);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

merge_sort(ARR, 0, size-1);

printf(“\nThe sorted array is: “);

Indexing, Searching & Sorting

371

for(i=0;i<size;i++)

printf(“%d “, ARR[i]);

getch();

}

void merge_sort(int ARR[], int low, int high)

{

int mid;

if(low<high)

{

mid=(low+high)/2;

merge_sort(ARR, low, mid); /*calling merge_sort recursively for left sub list*/

merge_sort(ARR, mid+1, high); /*calling merge_sort recursively for right*/ /*sub list*/

merging(ARR, low, mid, mid+1, high);

}

}

void merging(int ARR[], int ll, int lr, int ul, int ur)

{

int i, j, k, merged[MAX];

i=ll;

j=ul;

k=ll;

while(i<=lr && j<=ur)

{

if(ARR[i]<=ARR[j])

{

merged[k]=ARR[i];

i++;

}

else

{

merged[k]=ARR[j];

j++;

}

k++;

}

if(i<=lr)

while(i<=lr)

{

merged[k]=ARR[i];

i++;

Indexing, Searching & Sorting

372

k++;

}

if(j<=ur)

while(j<=ur)

{

merged[k]=ARR[j];

j++;

k++;

}

for(k=ll;k<=ur;k++)

ARR[k]=merged[k];

}

The output of the program is:

Enter the size of the array (max 20): 10

Enter the elements of the array:

65

12

45

78

96

32

56

44

25

11

The sorted array is: 11 12 25 32 44 45 56 65 78 96

Analysis of merge sort

In the first pass of the merge sort algorithm, the given array is divided into two

halves and each half is sorted separately. In each of the recursive calls to the

merge_sort(), one for the left half and one for the right half, the array is further

divided into two halves, thereby resulting in four segments of the array. Thus, in

each pass, the number of segments of the array gets doubled until each segment

Indexing, Searching & Sorting

373

contains not more than one element. Therefore, the total number of divisions is log n.

Moreover, in any pass, at most n comparisons are required. Hence, the complexity of

the merge sort algorithm is O(n log n).

13.3.6 Quick Sort

Quicksort algorithm also follows the principle of divide-and-conquer. However, it does

not simply divide the list into halves. Rather, it first picks up a partitioning element,

called the pivot, that divides the list into two sublists such that all the elements in

the left sub-list are smaller than the pivot, and all the elements in the right sublist

are greater than the pivot. The same process is applied on the left and right sublists

separately. This process is repeated recursively until each sublist contains not more

than one element.

The main task in quicksort is to find the pivot that partitions the given list into two

halves so that the pivot is placed at its appropriate location in the array. The choice

of the pivot has a significant effect on the efficiency of the quick sort algorithm. The

simplest way is to choose the first element as a pivot. However, the first element is

not a good choice, especially if the given list is already or nearly ordered. For better

efficiency, the middle element can be chosen as a pivot. Note that we will take the

first element as a pivot for simplicity.

The steps involved in the quick sort algorithm are as follows:

1. Initially, three variables pivot, beg, and end are taken, such that both pivot

and beg refer to the 0th position, and end refers to (n-1)th position in the list.

2. Starting with the element referred to by the end, the array is scanned from

right to left, and each element on the way is compared with the element

referred to by pivot. If the element referred to by pivot is greater than the

element referred to by the end, both types of elements are swapped and step 3

is performed. Otherwise, the end is decremented by 1, and step 2 is continued.

3. Starting with the element referred to by beg, the array is scanned from left to

right, and each element on the way is compared with the element referred to

by pivot. If the element referred to by pivot is smaller than the element referred

to by the end, both types of elements are swapped and step 2 is performed.

Indexing, Searching & Sorting

374

Otherwise, beg is incremented by 1, and step 3 is continued.

The first pass terminates when pivot, beg, and end all refer to the same array

element. This indicates that the pivot element is placed at its final position. The

elements to the left of this element are smaller than this element, and elements to its

right are greater.

To understand the quick sort algorithm, consider the following unsorted array. The

steps to sort the values stored in the array in ascending order using quick sort are

given here.

Unsorted Array

First pass:

1. Initially, the index 0 in the list is chosen as the pivot, and the index variables

beg and end are initialized with index 0 and n-1 respectively.

2. The scanning of elements is started from the end of the list. ARR[pivot] (that

is, 8) is greater than ARR[end] (that is, 4). Therefore, they are swapped.

3. Now, the scanning of elements is started from the beginning of the list. Since

ARR[pivot] (that is, 8) is greater than ARR[beg] (that is 33), therefore beg is

incremented by 1, and the list remains unchanged.

4. Next, the element ARR[pivot] is smaller than ARR[beg], they are swapped.

Indexing, Searching & Sorting

375

5. Again, the list is scanned from right to left. Since ARR[pivot] is smaller than

ARR[end], therefore the value of end is decremented by 1, and the list remains

unchanged.

6. Next, the element ARR[pivot] is smaller than ARR[end], the value of the end is

decremented by 1, and the list remains unchanged.

7. Now, ARR[pivot] is greater than ARR[end], they are swapped.

8. Now, the list is scanned from left to right. Since ARR[pivot] is greater than

ARR[beg], the value of beg is incremented by 1, and the list remains

unchanged.

At this point, since the variables pivot, beg, and end all refer to the same element, the

first pass is terminated and the value 8 is placed at its appropriate position. The

elements to its left are smaller than 8, and elements to its right are greater than 8.

Indexing, Searching & Sorting

376

The same process is applied to the left and right sublists.

Algorithm 13.6 Quick Sort

quick_sort(ARR, size, lb, ub)

1. Set i = 1 //i is a static integer variable

2. If lb < ub

 Call splitarray(ARR, lb, ub) //returning an integer value pivot

 Print ARR after ith pass

 Set i = i + 1

 Call quick_sort(ARR, size, lb, pivot – 1) //recursive call to quick_sort() to sort left sub list

 Call quick_sort(ARR, size, pivot + 1, ub); //recursive call to quick_sort() to sort right sub list

 Else if (ub=size-1)

 Print “No. of passes: ”, i

 End If

3. End

splitarray(ARR, lb, ub) //split array partitions the list into two sublists such that the elements in the left

sub list are smaller than ARR[pivot], and elements in the right sub-list are greater than ARR[pivot]

1. Set flag = 0, beg = pivot = lb, end = ub

2. While (flag != 1)

 While (ARR[pivot] <= ARR[end] AND pivot != end)

 Set end = end – 1

 End While

 If pivot = end

 Set flag = 1

 Else

 Set temp = ARR[pivot]

 Set ARR[pivot] = ARR[end]

 Set ARR[end] = temp

 Set pivot = end

 End If

 If flag != 1

 While (ARR[pivot] >= ARR[beg] AND pivot != beg)

 Set beg = beg + 1

 End While

 If pivot = beg

 Set flag = 1

 Else

 Set temp = ARR[pivot]

 Set ARR[pivot] = ARR[beg]

Indexing, Searching & Sorting

377

 Set ARR[beg] = temp

 Set pivot = beg

 End If

 End If

 End While

3. Return pivot

4. End

Program 13.6: Write a program to show sorting of an array using quick sort.

#include<stdio.h>

#include<conio.h>

#define MAX 20

/*Function prototypes*/

void quick_sort(int [], int, int, int);

int splitarray(int [], int, int);

void main()

{

int ARR[MAX], i, size;

do

{

clrscr();

printf(“\nEnter the size of the array (max %d): “, MAX);

scanf(“%d”, &size);

}while(size>MAX);

printf(“\nEnter the elements of the array:\n”);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

quick_sort(ARR, size, 0, size-1);

printf(“\nThe sorted array is: “);

for(i=0;i<size;i++)

printf(“%d “, ARR[i]);

getch();

}

void quick_sort(int ARR[], int size, int lb, int ub)

{

int pivot, k;

Indexing, Searching & Sorting

378

static int i=0;

if (lb<ub)

{

pivot=splitarray(ARR, lb, ub);

printf(“\nArray after pass %d: “, i+1);

for (k=0;k<size;k++)

printf(“%d “, ARR[k]);

i++;

quick_sort(ARR, size, lb, pivot-1); //recursive call to function to sort left sub list

quick_sort(ARR, size, pivot+1, ub); //recursive call to function to sort right sub list

}

else if (ub==(size-1))

printf(“No. of passes: %d”, i);

}

int splitarray(int ARR[], int lb, int ub)

{

int pivot, beg, end, temp, flag=0;

beg=pivot=lb;

end=ub;

while(!flag)

{

while ((ARR[pivot]<=ARR[end]) && (pivot!=end))

end—;

if (pivot==end)

flag=1;

else

{

temp=ARR[pivot];

ARR[pivot]=ARR[end];

ARR[end]=temp;

pivot=end;

}

if (!flag)

{

while ((ARR[pivot]>=ARR[beg]) && (pivot!=beg))

beg++;

Indexing, Searching & Sorting

379

if (pivot==beg)

flag=1;

else

{

temp=ARR[pivot];

ARR[pivot]=ARR[beg];

ARR[beg]=temp;

pivot=beg;

}

}

}

return pivot;

}

The output of the program is:

Enter the size of the array (max 20): 5

Enter the elements of the array:

6

5

4

3

2

Array after pass 1: 2 5 4 3 6

Array after pass 2: 2 5 4 3 6

Array after pass 3: 2 3 4 5 6

Array after pass 4: 2 3 4 5 6

No. of passes: 4

The sorted array is: 2 3 4 5 6

Analysis of quicksort

The quicksort algorithm gives the worst-case performance when the list is already

sorted. In this case, the first element requires n comparisons to determine that it

remains in the first position; the second element requires n-1 comparisons to

Indexing, Searching & Sorting

380

determine that it remains in the second position, and so on. Therefore, the total

number of comparisons in this case is:

f(n) = n + (n-1) + ... + 3 + 2 +1

 = n(n+1)/2

 = O(n2)

Note that in the worst case, the complexity of the quick sort algorithm is equal to

that of the bubble sort algorithm. In the best case, when a pivot is chosen in such a

way that it partitions the list approximately in half, then there will be log n

partitions. Each pass does at most n comparisons. Therefore, the complexity of the

quick sort algorithm in this case is:

f(n) = n * log n

 = O(n log n)

13.3.7 Shell Sort

The shell sort algorithm was invented by Donald Shell in 1959. It is the most efficient

sorting algorithm among all the algorithms with O(n2) complexity. Note that the shell

sort algorithm does not actually sort the data itself; rather it increases the efficiency

of other sorting algorithms. Usually, an insertion or bubble sort is used to arrange

the data at each step, but other algorithms can be used. The algorithm performs

several passes through the list and in each pass, the elements separated by a specific

distance, say d, are arranged in order. Once all the elements with the current d are

in order, the value of d is reduced by some factor and the process continues in the

next pass.

Choosing the initial value of d is the most important task of the shell sort algorithm.

Originally Donald Shell suggested size/2 as the initial value for d, where size is the

number of elements in the array. However, d can be any number less than half the

number of elements in the array. Further, in each subsequent pass, the value of d is

reduced to half until it reaches 1.

To understand the shell sort algorithm, consider the following unsorted array with

size=8.

The steps to sort the values stored in the array in ascending order using shell sort

Indexing, Searching & Sorting

381

are given here.

First pass

The initial value of d=size/2, that is, 8/2=4. Therefore, the elements that are

separated with distance 4 are arranged in order.

In this iteration, a swap has occurred. Thus, one more iteration is required with d=4.

This time, no swap occurs throughout the iteration. It means that the elements

separated with distance 4 are in order. Hence, the first pass is completed.

Second pass

Now the value of d=d/2, that is, 4/2=2. Therefore, the elements that are separated

with distance 2 are arranged in order.

Indexing, Searching & Sorting

382

In this iteration, two swaps have occurred. Thus, one more iteration is required with

d=2.

This time, no swap occurs throughout the iteration. It means that the elements

separated with distance 2 are in order. Hence, the second pass is completed.

Third pass

Now the value of d=d/2, that is, 2/2=1. Therefore, the elements that are separated

with distance 1 are arranged in order.

In this iteration, three swaps have occurred. Thus, one more iteration is required

with d=1.

Indexing, Searching & Sorting

383

In this iteration, a swap has occurred. Thus, one more iteration is required with d=1.

Since no swap has occurred in this iteration. Therefore, the algorithm terminates

after this pass.

Algorithm 13.7 Shell Sort

Indexing, Searching & Sorting

384

shell_sort(ARR, size)

1. Set count = 0

2. Set d = size / 2

3. Do

 Do

 Set swap = 0, i = 0

 While (i < size-d)

 If(ARR[i] >ARR[i+d])

 Set temp = ARR[i];

 Set ARR[i] = ARR[i+d];

 Set ARR[i+d] = temp;

 Set swap = 1

 End If

 Set i = i + 1

 End While

 While (swap)

 Set count = count + 1

 Print ARR after count th pass

 While (d = d / 2)

4. Print “No. of passes: ”, count

5. End

Program 13.7: Write a program to show sorting of an array using shell sort.

#include<stdio.h>

#include<conio.h>

#define MAX 20

/*Function prototype*/

void shell_sort(int [], int);

void main()

{

int ARR[MAX],i, size;

do

{

clrscr();

printf(“\nEnter the size of the array: “);

scanf(“%d”, &size);

if (size>MAX)

Indexing, Searching & Sorting

385

{

printf(“\nInput size is greater than the maximum size.”);

getch();

}

}while(size>MAX);

printf(“\nEnter the elements of the array:\n”);

for(i=0;i<size;i++)

scanf(“%d”, &ARR[i]);

shell_sort(ARR, size);

printf(“\nThe sorted array is: “);

for(i=0;i<size;i++)

printf(“%d “, ARR[i]);

getch();

}

void shell_sort(int ARR[], int size)

{

int swap, temp, i, count=0, k;

int d=size/2;

do

{

do

{

swap=0;

for(i=0;i<size-d;i++)

{

if(ARR[i]>ARR[i+d])

{

temp=ARR[i];

ARR[i]=ARR[i+d];

ARR[i+d]=temp;

swap=1;/*swap=1 /*indicates that further execution with

current value of d is required*/

}

}

}while(swap);

count++;

Indexing, Searching & Sorting

386

printf(“\nArray after pass %d: “, count);

for(k=0;k<size;k++)

printf(“%d “, ARR[k]);

}while(d=d/2);

printf(“\nNo. of passes: %d”, count);

}

The output of the program is:

Enter the size of the array: 8

Enter the elements of the array:

11

33

99

22

88

77

55

44

Array after pass 1: 11 33 55 22 88 77 99 44

Array after pass 2: 11 22 55 33 88 44 99 77

Array after pass 3: 11 22 33 44 55 77 88 99

No. of passes: 3

The sorted array is: 11 22 33 44 55 77 88 99

Analysis of shell sort

It is very difficult to analyze the shell sort algorithm. This is because it is almost

impossible to show the effect of one pass on subsequent passes. However, one thing is

clear that if distance d is reduced each time to its half, then a total of log d passes are

required since d=1 will complete the algorithm. In each pass, either bubble or

insertion sort is used, each with the complexity of O(n2). Since shell sort moves the

values with giant steps towards their final position in initial passes, it may require less

number of iterations within each pass. However, the worst-case complexity of shell

sort is O(n2).

Indexing, Searching & Sorting

387

13.4 Comparison of Various Sorting Algorithms

We have discussed several algorithms that can be used to sort a given set of elements.

However, in order to choose an appropriate algorithm that suits a particular problem,

the analysis of algorithms is necessary. For this, a number of efficiency parameters are

considered. The two most important efficiency parameters are the time required to

execute the algorithm and the amount of memory space it requires.

Now we will discuss the efficiency of an algorithm in terms of the amount of time

required in its execution. The estimated amount of time required in executing an

algorithm is referred to as the time complexity (or time efficiency) of the algorithm.

In sorting algorithms, several operations are performed, such as comparison operation

(that compares two values to determine which is smaller or larger), interchange (swap)

operation, an increment of an index variable in a loop, etc. However, comparison and

interchange operations are the most significant operations as they require much more

time than any other simple operation. Moreover, the number of interchanges cannot

be greater than the number of comparisons. Therefore, we consider the number of

comparisons as a useful measure of a sort’s time efficiency.

In determining the time complexity of an algorithm, the size of an instance (input) also

plays an important role. If the size of an instance is n, then the time complexity of the

algorithm is some function of n. Thus, we need to determine a function f(n) that

relates the number of operations to be performed to the size of the input. While

comparing any two sorting algorithms, the algorithm whose function grows slower

than the other is considered to be better. In mathematical terms, this relation is

represented in Big Oh notation. In this notation, a function f(n) is O[g(n)], if there exist

positive integers k and c such that f(n)<=c*g(n), for all n>=k [where, f(n) and g(n) are

the functions of two different algorithms]. The expression O is also called Landau’s

symbol.

Using the concept of Big Oh notation, we can thus compare various sorting algorithms

and classify them as good or bad in general terms. If the algorithm has O(n)

complexity, it implies that it has linear complexity and it grows linearly with the size of

the input. For example, consider an algorithm that takes t time units to sort an array

of 10 elements. In this case, the algorithm will take 10*t time units for 100 elements

Indexing, Searching & Sorting

388

(10*10=100). Unfortunately, no such sorting algorithm exists. Generally, the

complexities of most of the sorting algorithms range between O(n2) and O(n log n).

O(n2) is known as the polynomial complexity and O(n log n) is known as the logarithmic

complexity. The insertion, bubble, selection, and shell sort algorithms have the

complexity of O(n2), while heap, merge and quick sort algorithms have the complexity

of O(n log n). If the size of the input is n, then O(n log n) is significantly faster than

O(n2) as shown in Table 13.1.

Table 13.1 Comparing O(n log n) with O(n2)

13.5 External Sorting

External sorting refers to the sorting of a file that is on a disk (or tape). Internal sorting

refers to the sorting of an array of data that is in RAM. The main concern with external

sorting is to minimize disk access since reading a disk block takes about a million

times longer than accessing an item in RAM.

Perhaps the simplest form of external sorting is to use a fast internal sort with a good

locality of reference (which means that it tends to reference nearby items, not widely

scattered items) and hope that your operating system’s virtual memory can handle it.

(Quicksort is a one sort algorithm that is generally very fast and has a good locality of

reference.) If the file is too huge, however, even virtual memory might be unable to fit

it. Also, the performance may not be too great due to a large amount of time it takes to

access data on disk.

Most external sort routines are based on mergesort. They typically break a large data

file into a number of shorter, sorted “runs”. These can be produced by repeatedly

reading a section of the data file into RAM, sorting it with ordinary quicksort, and

writing the sorted data to disk. After the sorted runs have been generated, a merge

algorithm is used to combine sorted files into longer sorted files. The simplest scheme

is to use a 2-way merge: merge 2 sorted files into one sorted file, then merge 2 more,

Indexing, Searching & Sorting

389

and so on until there is just one large sorted file. A better scheme is a multiway merge

algorithm: it might merge perhaps 128 shorter runs together.

13.6 Summary

● The process of arranging data in some logical order is known as sorting.

● The insertion sort algorithm selects each element and inserts it at its proper

position in the earlier sorted sub-list.

● The bubble sort algorithm requires n-1 passes to sort an array. In the first

pass, the largest element in the list is placed at the last position. Similarly,

after the second pass, the second largest element is placed at its appropriate

position. Thus, in each subsequent pass, one more element is placed at its

appropriate position.

● In selection sort, first, the smallest element in the list is searched and placed

at the first position by swapping it with the first element. Then, the second

smallest element is searched and placed at the second position, and so on.

● Heapsort uses a special data structure known as the heap, which is a

complete binary tree.

● The merge sort algorithm is based on the fact that it is easier and faster to sort

two smaller arrays than one larger array. Therefore, it follows the principle of

divide-and-conquer.

● The quicksort algorithm also follows the principle of divide-and-conquer. It

first picks up a partitioning element, called a pivot, that divides the list into

two sublists such that all the elements in the left sub-list are smaller than the

pivot, and all the elements in the right sub-list are greater than the pivot.

● The shell sort algorithm performs several passes through the list, and in each

pass, the elements that are separated by a specific distance, say d, are

arranged in order.

13.7 Key Terms

● Max-heap (or descending heap): A kind of heap in which the value present at

any node is greater than or equal to the value of each of its child nodes.

● Min-heap (or ascending heap): A kind of heap in which the value present at

Indexing, Searching & Sorting

390

any node is smaller than or equal to the value of each of its child nodes.

● Time complexity (or time efficiency) of the algorithm: The estimated

amount of time required in executing an algorithm.

● Pivot: It is a partitioning element, used in quicksort, that divides the list into

two sublists such that all the elements in the left sub-list are smaller than the

pivot, and all the elements in the right sublist are greater than the pivot.

13.8 Check Your Progress

Short- Answer type

Q1) Using the concept of ___________ notation, we can compare various sorting

algorithms and classify them as good or bad in general terms.

Q2) Heap sort makes use of a data structure called a ___________.

Q3) Which of these is an internal sorting technique?

(a) Heap sort (b) Quick sort (c) Merge sort (d) All of

these

Q4) Max-heap is also known as ascending heap. True/ False?

Q5) The quicksort algorithm is based on the principle of divide-and-conquer. True/

False?

Long- Answer type

Q1) What are the steps for sorting the values stored in an array in ascending order

using selection sort?

Q2) Define Merge sort. Differentiate between Merge sort and Quicksort.

Q3) Write a brief analysis of the insertion sort.

Q4) Write a program to sort an array of strings using bubble sort.

Q5) Sort the following array in descending order using heap sort.

1, 3, 24, 17, 5, 32, 6, 99

References

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition.

• Advanced Data Structures, Peter Brass, Cambridge University Press, New York, 2008.

• Data Structures and Algorithms, Aho, Ullman and Hopcroft, Addison Wesley

