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INTRODUCTION 
 

A data structure is defined as a set of data elements that represents operations such 

as insertion, deletion, modification and traversal of the values present in the data 

elements. Data elements are the data entries that are stored in the memory for 

organizing and storing data in an ordered and controlled way. The commonly used 

data structures in a programming language as C, such as are arrays, linked lists, 

stacks and trees. Data structures are of two types, linear and nonlinear. 

The study material is divided into four modules each containing units for the relevant 

topics.  

Module-1 is further divided into three units. Unit-1 & 2 provide the basic introduction 

to data structures and its types. Unit-3 discusses linked lists. It explains the various 

types of linked lists such as singly linked, doubly linked and circular linked lists. The 

unit also discusses how different operations can be performed on different types of 

linked lists. 

Module-2 describes the data structures like stacks, queues, Trees, and Graphs 

including their representations and types. The basic operations performed on these 

data structures are explained in detail.  

Types of advanced trees, their terminology, basic concepts, and applications are 

discussed in Module-3. It includes AVL trees, balanced trees, B-Trees, B+ trees, Quad 

trees, and KD trees. 

Module-4 depicts the concept of indexing in file organization in the computer’s 

memory. Unit-12 & 13  also deals with searching and sorting, including the use of 

various data structures for searching and sorting. 

This content is designed comprehensively and follows a simple approach, keeping in 

mind the syllabus of the program. It exhilarates interest and is sure to stimulate 

knowledge among the readers. Numerous figures and tables, key terms help in 

simplifying learning about the subject. The ‘Check Your Progress’ section intends the 

readers to test their knowledge. It is hoped that the language and the content 

demonstration is coherent to the readers and will enhance their learning in the best 

way possible. 

 

All the Best! 



 



 

 

 

 

 

 

 

Module: 1 

Introduction 
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Unit 1 Introduction  
Structure 

1.0 Introduction 

1.1 Unit Objectives 

1.2 Concept of Data type 

1.3 Data structures 

1.4 Abstract Data types 

1.5 Summary 

1.6  Key Terms 

1.7 Check Your Progress 

 

1.0 Introduction 

All computer programs involve operations on data. Data plays an important role in 

programming. The data may be defined as a value or a set of values, such as the name 

and age of a person, the grade of a student, the salary of an employee, and so on. It is 

just a collection of values and no conclusion can be drawn from it. However, after 

processing, it becomes information that can help in making decisions. In order to 

process data, it should be available in the main memory since the processor can only 

act on data in the main memory. In order to represent the data in the main memory, 

some model is needed to process it efficiently. This model is called a data structure. 

Various models are available, and this unit will introduce you to these various 

structures and the different operations that can be performed on them. 

 

1.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Understand the basic concept of data type 

● Explain the different types of data structures 

● Describe the abstract data types 

 

1.2 Concept of Data type 

Data is a value or a collection of values that may be obtained from an experiment, 

survey, etc. The term which is used to refer to a single unit of values is called a data 

item. A data item may be a group item or an elementary item. A group item is the one 
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that can be further divided into sub-items, whereas an elementary item is the one 

that cannot be divided further. The address of a person, for example, is a group item 

because it is usually divided into sub-items like house number, street, city, state, PIN 

code, etc. On the other hand, the state, city, PIN code, etc., are elementary items. 

A set of data items are used to represent a thing in the real world with the physical or 

the logical existence called an entity. In the context of entities, the data items are 

termed as attributes or properties of the entity. The attributes like name, roll number, 

marks, and so on, for example, can be used to represent an entity student. 

Generally, each attribute of an entity is assigned a particular value, such as the 

name is assigned a value ‘James’. A set of entities having similar attributes is called 

an entity set, e.g., all the students of a class, all the employees of an organization, 

and so on. 

Data type refers to the kind of data that may appear in the computation of any 

program. Some of the frequently used data types are Real, boolean, character, 

complex, numeric (integer), date, alphanumeric, graphics, string, Image, etc. 

The syntax for declaring data type and the variable name is given below: 

Syntax: 

<(data type)><variable names>; 

The data types can be broadly classified as Built-in data type and abstract data type. 

Every programming language contains a set of data types called built-in data types. 

For example,  

Data types in C: int, float, char, double, enum, etc. 

Data types in FORTRAN: INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE 

PRECISION, CHARACTER, etc. 

Pascal: Integer, Real, Character, Boolean, etc. 

 

The built-in data types are advantageous in processing various types of data. For 

instance, if a variable is declared of the type Real, then several things are 

automatically implied, such as how to store a value for that variable, what amount of 

memory is required to store, etc.  

 

When a program requires a special type of data that is not available as a built-in data 

type, then it is implemented by the user on its own. This implemented special type of 
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data is termed as an abstract data type. It is also known as a user-defined data 

type. In such a type of data, the user has to give more effort regarding how to store 

value for that data, operations to manipulate variables of that kind of data, etc. For 

example, to process a date (dd/mm/yy), no built-in data type is available in C, 

FORTRAN, and Pascal. This can be accomplished using an abstract data type. 

 

1.3 Data Structures 

The logical or mathematical model used to organize the data in main memory is 

called a data structure. Various data structures are available each with its special 

features. These features should be kept in mind while choosing a data structure for a 

particular situation. Generally, the choice of any data structure depends on its 

simplicity and effectiveness in processing data. In addition, we also consider how well 

it represents the actual relationship between the data in the real world.  

Data structures are helpful for programmers to manipulate and store the data 

effectively. They help in establishing the relationship of one data element with other 

data elements. Various methods are provided by data structures to organize and 

represent the data in the computer’s memory. The data structures also govern the 

dynamic behavior towards data handling. 

 

Different ways of data organization require different kinds of data structures. 

Basically, two complementary goals are implemented by data structures. The first 

goal is to develop mathematical entities and operations to solve particular problems. 

The second goal is to search for suitable representations for these entities and then 

carry out the desired operations. The second goal requires high-level data types to 

solve the problems. These high-level data types use existing data types.  

Generally, the following additional goals are involved in producing quality data 

structure to have quality software implementation: 

➔ Correctness: The design of a data structure should be such that it can 

operate correctly for all kinds of input, based on the domain of interest. For 

example, a data structure designed to store a collection of numbers, in a 

specific order, must make sure that the numbers are not stored in an 

unorganized way. 

➔ Efficiency:  The data structure must be efficient to process the data at high 
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speed without utilizing much of the computer memory.  

 

On the basis of their implementation, the data structures are divided into two 

categories, namely Primitive data structure and Non-primitive data structure. The 

primitive data structures further include Integer, Real, Character, and Boolean. The 

non-primitive data structures are further divided into two groups, Linear and Non- 

linear data structures. Arrays, linked lists, stacks, and queues are linear data 

structures while Trees and graphs are non-linear data structures. All these are 

discussed in the upcoming units in detail. 

 
Figure 1.1 Classification of Data Structures 

 

1.4 Abstract Data Types 

The data type whose behavior is defined as a set of values and a set of operations is 

known to be Abstract data type (ADT). ADT only mentions what operations are to be 

performed but not about the process of the operations to be implemented. It is 

known as “abstract” as it provides an implementation-independent view. Hiding the 

main details and providing only the essentials is known as abstraction.  

An Abstract Data Type [ADT] consists of two parts, namely, a value definition and 

an operator definition. A value definition consists of a definition clause and a 
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condition clause. The operator definition consists of three parts: a header, 

preconditions, and post-conditions. The preconditions and post-conditions are 

optional and can be used depending on the program requirement. 

 
Figure 1.2 Abstract Data Type (ADT) Model 

 

As shown in figure 1.2, the ADT model has two different parts- Functions (public and 

private) and Data structures. Both of these parts are confined to ADT and not a part 

of the application program. Data is entered, accessed, modified, and deleted through 

the external application programming interface. This interface can access only public 

functions. Every ADT operation has an algorithm to perform a specific task. 

 

Generally, three types of ADTs are defined: List ADT, Stack ADT, and Queue ADT. 

● List ADT 

The data is generally stored in a sequence in the form of a list that has a head 

structure consisting of count, pointers, and address of compare function 

needed to compare the data in the list. The data node contains the pointer to a 

data structure and another pointer that points to the next node in the list. 

Some of the operations performed on such list ADTs are: 

➔ get() – Return an element from the list at any given position. 

➔ insert() – Insert an element at any position of the list. 

➔ remove() – Remove the first occurrence of any element from a non-empty 
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list. 

➔ removeAt() – Remove the element at a specified location from a non-empty 

list. 

➔ replace() – Replace an element at any position by another element. 

➔ size() – Return the number of elements in the list. 

➔ isEmpty() – Return true if the list is empty, otherwise return false. 

➔ isFull() – Return true if the list is full, otherwise return false. 

● Stack ADT 

In stack ADTs, the pointer to data is stored in the nodes in place of the data 

itself. Memory is allocated for the data and the address is sent to the stack 

ADT. The head node and data nodes are encapsulated in ADT. Only a pointer to 

the stack is displayed to the calling function. The stack head contains a pointer 

to the top and also a count of the number of entries present in the stack. 

Conceptually, a stack is an arrangement of the same type of elements in 

sequential order. The operations take place only at the top end of the stack. 

Some of the operations performed on stack ADTs are: 

➔ push() – Insert an element at one end of the stack called top. 

➔ pop() – Remove and return the element at the top of the stack, if it is not 

empty. 

➔ peek() – Return the element at the top of the stack without removing it, if 

the stack is not empty. 

➔ size() – Return the number of elements in the stack. 

➔ isEmpty() – Return true if the stack is empty, otherwise return false. 

➔ isFull() – Return true if the stack is full, otherwise return false. 

● Queue ADT 

In a queue ADT, each node contains a void pointer to the data and the link 

pointer to the next element in the queue. The same type of elements are 

arranged in sequential order and operations take place at both the ends of a 

queue. Insertion is done at the end while deletion is done at the front. Some of 

the operations performed on stack ADTs are: 

➔ enqueue() – Insert an element at the end of the queue. 

➔ dequeue() – Remove and return the first element of the queue, if the queue 

is not empty. 
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➔ peek() – Return the element of the queue without removing it, if the queue 

is not empty. 

➔ size() – Return the number of elements in the queue. 

➔ isEmpty() – Return true if the queue is empty, otherwise return false. 

➔ isFull() – Return true if the queue is full, otherwise return false. 

 

1.5 Summary 

● Data is a value or a collection of values that may be obtained from an 

experiment, survey, etc.  

● A set of data items are used to represent a thing in the real world with the 

physical or the logical existence called an entity. 

● Data type refers to the kind of data that may appear in the computation of any 

program. Some of the frequently used data types are Real, boolean, character, 

complex, numeric (integer), date, alphanumeric, graphics, string, Image, etc. 

The data types can be broadly classified as Built-in data type and abstract 

data type. 

● The logical or mathematical model used to organize the data in main memory 

is called a data structure. The data structures are divided into two categories, 

namely primitive data structure and non- primitive data structure. 

● The data type whose behavior is defined as a set of values and a set of 

operations is known to be Abstract data type (ADT). ADT only mentions what 

operations are to be performed but not about the process of the operations to 

be implemented.  

 

1.5 Key Terms 

● Data item: A single unit of values. 

● Entity: A set of data items used to represent a thing in the real world with the 

physical or the logical existence. 

● Data structure: The logical or mathematical model used to organize the data 

in main memory. 

● Abstraction: Hiding the main details and providing only the essentials is 

known as abstraction. 

● Application Program: A program designed to perform a particular function 



Introduction 

8  
 

directly for the user or for another application program.  

 

 

1.6 Check Your Progress 

Short- Answer type 

Q1) Abstract Data types provide an implementation-independent view. True/ False? 

Q2) Define a data structure. 

Q3) Which of the following is not a linear data structure? 

(a) Stack (b) Queue (c) Tree (d) Linked List 

Q4) _________ are also known as user-defined data types. 

Q5) The two different parts of the ADT model are functions and __________. 

Long- Answer type 

Q1) Differentiate between Built-in and Abstract Data types 

Q2) Explain the basic concept of data types. 

Q3) Give the classification of Data structures. 

Q4) What are Abstract Data Types? Explain its types. 

Q5) Briefly explain the Abstract data type (ADT) model. 

 

References 

• Data Structures with C, Lipschutz, Seymour, Delhi: Tata McGraw Hill. 

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition. 
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Unit 2 – Primitive and Non-  

Primitive Data Structures  
Structure 

2.0 Introduction 

2.1 Unit Objectives 

2.2 Primitive Data Structures 

2.3 Operations on Primitive Data Structures 

2.4 Non- primitive Data Structures 

 2.4.1 Linear Data Structures 

 2.4.2 Non- Linear Data Structures 

2.5 Operations on Non- primitive Data Structures 

2.6 Summary 

2.7 Key Terms 

2.8 Check Your Progress 

 

2.0 Introduction 

We are already familiar with the definition of a data structure. Data structure provides 

a set of variables being associated with each other in different ways. Various 

programming languages utilize these variables to represent relationships between data 

elements and help in the easy processing of data. According to their utilization in 

distinct programming languages, data structures are classified as Primitive and non-

primitive data structures. This unit explains the use and representation of Primitive 

data structures in detail. 

 

2.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Understand the basic concept of primitive data structures. 

● Explain the use and representation of different primitive data structures. 

 

2.2 Primitive Data Structures 

The primitive data structures are used to represent numbers and characters that are 

included in the built-in programs. They are the basic data types of any programming 

language and are not composed of other data types. They can be manipulated or can 
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even be operated directly with the help of machine-level instructions. Primitive data 

structures include basic data types like Integer, Real, Character, and Boolean. 

1. Integer 

The integral or fixed-precision values are represented by integers (denoted as 

int). The type INTEGER includes a subset of the whole numbers with a 

variation in size for different computer systems. All the operations on this type 

of data are precise and also follow the basic laws of arithmetic. Though 

arithmetic operations yield accurate results if the result of such operations lies 

outside the subset, then the computation might fail. 

2. Real 

The REAL primitive data type includes a subset of the real numbers. The 

arithmetic operations performed on the REAL data types can be incorrect within 

the limits of round-off errors while the arithmetics performed on INTEGER type 

yield accurate results. This is considered to be the main difference between the 

INTEGER and REAL types.  

3. Character  

Denoted as Char, the character primitive data type consists of a set of 

structured and printable characters with 26 upper case letters, 26 lower case 

letters, 10 decimal digits, and various other graphic characters like punctuation 

marks. Every computer system stores character data in a one-byte field as an 

integer value. One byte comprises 8 bits so it has 256 possibilities having 

positive values of 0 to 255. 

4. Boolean 

This primitive data structure is used for Boolean values that are denoted by two 

identities TRUE and FALSE. The Boolean operators include logical conjunction 

(&), disjunction (OR), and negation (~).  

 

2.3 Operations on Primitive Data Structures 

Several operations can be performed on primitive data structures. Some of the general 

operations are: 

1. Creation Operation: The creation operation creates a data structure. For 

example,   

int x; 



Introduction 

11  
 

Here, the above-declared statement will create 2 bytes of memory space for 

variable ‘x’. This variable will be used to store only integer values. 

2. Destroy Operation: The destroy operation destroys the data structure. In C 

language, ‘free()’ operation is used to destroy the data structure. This helps 

using the memory of the system efficiently. 

3. Selection Operation: The selection operation is used to access data within a 

data structure. The significance of the selection operation is provided in a file 

data structure.  

4. Update Operation: To modify data in the data structure, the update operation 

is used. 

 

2.4 Non- primitive Data Structures 

The data structures derived from primitive data structures are known as Non-primitive 

data structures. These data structures cannot be manipulated or operated directly by 

machine-level instructions. A set of either homogeneous (same data type) or 

heterogeneous (different data type) data elements are formed. These are further 

divided into linear and non-linear data structures based on the structure and 

arrangement of data. 

 

2.4.1 Linear Data Structures 

The linear data structure is the one in which its elements form a sequence. It means 

each element in the structure has a unique predecessor and a unique successor. An 

array is the simplest linear data structure. Various other linear data structures are 

linked lists, stacks, and queues. 

● Arrays 

A finite collection of homogeneous elements is termed as an array. Here, the 

word ‘homogenous’ indicates that the data type of all the elements in the 

collection should be the same, that is, int or char or float or any other built-in 

or user-defined data type. However, an array cannot have elements of two or 

more data types together. 

Elements of an array are always stored in contiguous memory locations 

irrespective of the array size. The elements of an array can be referred to by 

using one or more indices or subscripts. An index or subscript is a positive 
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integer value that indicates the position of a particular element in the array. If 

the number of subscripts required to access any particular element of an 

array is one, then it is a single-dimensional array. Otherwise, it is a 

multidimensional array. The multi-dimensional array may be a two-dimensional 

array or even more. 

Consider a single-dimensional array Arr with size n, where n is the maximum 

number of elements that Arr can store. Mathematically,  the elements of Arr 

are denoted as Arr1, Arr2, Arr3,…, Arrn. In different programming languages, 

array elements are denoted by different notations, such as by parenthesis 

notation or by bracket notation. Table 1.1 shows the notation of elements of a 

single-dimensional array Arr with size n in different programming languages. 

Table 1.1 Different Notations of a Single-dimensional 

Array 

S.No. Notation Programming Language(s) 

1. Arr(1), Arr(2), Arr(3),.... Arr(n) BASIC and FORTRAN 

2. Arr[1], Arr[2], Arr[3],...... Arr[n] Pascal 

3. Arr[0], Arr[1], Arr[2],.... Arr[n-1] C, C++, and Java 

 

Note that in the languages like BASIC, PASCAL, and FORTRAN, the smallest 

subscript value is 1 and the largest subscript value is n. On the other hand, in 

languages like C, C++, and Java, the smallest subscript value is 0 and the 

largest subscript value is n–1. In general, the smallest subscript value used to 

access an array element is the lower bound (Lb) and the largest subscript value 

is the upper bound (Ub). 

In two-dimensional arrays, the elements can be viewed as arranged in the form 

of rows and columns (matrix form). To access an element of a two-dimensional 

array, two subscripts are used—the first one represents the row number and 

the second one represents the column number. Consider a two-dimensional 

array Arr with size m*n, where m and n represent the number of rows and 

columns respectively. Mathematically,  the array Arr is denoted as Arrij, where i 

and j indicate row number and column number with i< = m and j< =  n. Table 

1.2 shows the notation of elements of a two-dimensional array Arr in different 
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programming languages. 

 

 

Table 1.2 Different Notations of a Two-dimensional Array 

S.No. Notation Programming Language(s) 

1. Arr(i, j) with 0<i<=m and 0<j<=n BASIC and FORTRAN 

2. Arr[i, j] with 0<i<=m and 0<j<=n Pascal 

3. Arr [i] [j] with 0<=i<m and 0<=j<n C, C++, and Java 

 

● Linked Lists 

A linked list is a linear collection of similar data elements, called nodes, with 

each node containing some data and pointer(s) pointing to other nodes (s) in 

the list. Nodes of a linked list are not constrained to be at contiguous memory 

locations; instead, they can be stored anywhere in the memory. The linear 

order of the list is maintained by the pointer field(s) in each node. 

Depending on the pointer field(s) in each node, linked lists can be of different 

types. If each node of a linked list contains only one pointer and it points to the 

next node, then it is called a linear linked list or singly-linked list. In such 

types of lists, the pointer field in the last node contains NULL. However, if the 

pointer in the last node is modified to point to the first node of the list, then it 

is called a circular linked list. In addition to the pointer to the next node, 

each node of a linked list can also contain a pointer to its previous node. Such 

a type of linked list is called a doubly-linked list. Figure 1.2 shows a singly, 

circular, and doubly-linked list with five nodes each. 
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Figure 2.1 Various Types of Linked Lists 

 

● Stacks and Queues 

A stack is a linear list of data elements in which the addition of a new element 

or deletion of an element occurs only at one end. This end is called Top of the 

stack. The operation of adding a new element in the stack and deleting an 

element from the stack is called push and pop respectively. Since the addition 

and deletion of elements always occur at one end of the stack, the last element 

that is pushed onto the stack is the first one to come out. Therefore, a stack is 

also called a Last-In-First-Out (LIFO) list. 

 
Figure 2.2 A stack 

 

A queue is a linear data structure in which the addition or insertion of a new 

element occurs at one end, called Rear, and deletion of an element occurs at the 

other ends, called Front. Since insertion and deletion occur at opposite ends of the 

queue, the first element that is inserted in the queue is the first one to come out. 

Therefore, a queue is also called a First-In-First-Out (FIFO) list. 
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Figure 2.3 A queue 

 

2.4.2 Non- Linear Data Structures 

A non-linear data structure is one in which its elements do not form a sequence. It 

means, unlike linear data structure, each element is not constrained to have a 

unique predecessor and a unique successor. Trees and graphs are the two data 

structures that come under this category. 

 

● Trees 

Usually, we observe a hierarchical relationship between various data elements. 

This hierarchical relationship between data elements can easily be represented 

using a non-linear data structure called trees. A tree consists of multiple 

nodes with each node containing zero, one or more pointers to other nodes 

called child nodes. Each node of a tree has exactly one parent except a 

special node at the top of the tree called the root node. 

 
Figure 2.4 A Tree 

 

● Graphs 

A graph consists of a finite set of nodes (or vertices) and a set of edges 

connecting them. The graph is used to represent the non-hierarchical 

relationship among pairs of data elements. Let’s say, a graph G(V, E) consists 

of a pair of two non-empty sets V and E, where V is a set of vertices or nodes 

and E is a set of edges. The data elements become the vertices of the graph 

and the relationship is shown by edges between the two vertices. For example, 
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assume four places W, X, Y, and Z, such that: 

➔ There exists some path from X to Y, X to W, Y to W, Y to Z, and Z to W. 

➔ There is no direct path from X to Z. 

We can simply represent this situation using a graph where the places W, X, 

Y, and Z are represented as the nodes of the graph, and a path from one place 

to another place is represented by an edge between them. 

 

 
Figure 2.5 An example of a graph 

 

It is clear from the figure that each node can have links with multiple other 

nodes. This analogy suggests that it is similar to a tree. However, unlike trees, 

there is no root node in a graph. Further, graphs show relationships that may 

be non-hierarchical in nature. It means there is no parent and child 

relationship. However, a tree can be considered as a variant or a special type 

of graph. 

 

2.5 Operations on Non- primitive Data Structures 

The logical organization of data and their storage structure govern the operations on 

the non-primitive data structure. A set of either homogeneous (same data type) or 

heterogeneous (different data type) data elements are formed in non-primitive data 

structures. Therefore, these data structures cannot be operated or manipulated 

directly by the machine-level instructions. 

 

Some of the general operations on non-primitive data structures are: 

1. Traversing: The method in which each element of the data structure is 

processed exactly once is known as Traversing. This method is used for 

checking the availability of data elements in an array. Traversing is even used 

to check if the element is successfully inserted or deleted. 
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2. Sorting: The method of arranging the data elements in a logical order, maybe 

ascending or descending order, is known as sorting. Sorted lists are required by 

some algorithms. Thus, efficient sorting becomes essential for optimizing these 

algorithms to ensure their accuracy. 

3. Merging: Merging is a technique of combining the data elements of two 

different sorted lists into a single sorted list. The basic idea behind this method 

is based on the divide-and-conquer algorithm.  

4. Searching: Searching is the method of finding the location of an element with a 

given key value, or finding the location of an element that satisfies a given 

condition. Searching helps in finding unambiguous items from the set of 

elements, just like a particular file from the memory of the system. 

5. Insertion: Insertion operation is used to add a new element to the data 

structure. The insertion process may add a new element in the ith position of the 

data structure. In addition to insertion, if sorting also needs to be performed, 

first we need to assign an item to the given elements and compare it with the 

previous elements. If the assigned element is smaller than the previous element, 

we need to swap the positions of both these items. This process is repeated 

until the correct position of the item is Identified. 

6. Deletion: Deletion means removing an item from the structure. When any node 

is not required in the data structure, it can be removed using the delete 

operation. 

 

2.6 Summary 

● The data structure can be classified into two categories: primitive data 

structure and non-primitive data structure. 

● Basic data types such as integer, real, character, and Boolean are categorized 

under primitive data structures. These data types are also known as simple 

data types because they consist of characters that cannot be divided. 

● Operations like creation, destroy, selection, and update are performed on the 

primitive data structures. 

● Non-primitive data structures are further divided into linear and non-linear 

data structures based on the structure and arrangement of data. Arrays, linked 

lists, stacks, queues are examples of linear data structure. Trees and graphs 
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are examples of non-linear data structures. 

● Some general operations that can be performed on non-primitive data 

structures are traversing, sorting, merging, searching, insertion, and deletion. 

 

2.7 Key Terms  

● Array: A finite collection of homogeneous elements. 

● Linked list: A linear collection of similar data elements, called nodes, with 

each node containing some data and pointer(s) pointing to other nodes (s) in 

the list. 

● Stack: A linear list of data elements in which the addition of a new element or 

deletion of an element occurs only at one end. 

● Queue: A linear data structure in which the addition or insertion of a new 

element occurs at one end, called rear, and deletion of an element occurs at 

other ends, called the front. 

 

2.8 Check Your Progress 

Short- Answer type 

Q1) Deletion operation occurs at the rear end of a queue. True/ False? 

Q2) List four major operations on linear data structures. 

Q3) A ______ is a linear list of data elements in which the addition of a new element 

or deletion of an element occurs only at one end. 

Q4) If the number of subscripts required to access any particular element of an array 

is one, then it is a _________ array. 

Q5) An array always contains similar data elements. True/ False? 

 

Long- Answer type 

Q1) Write a short note on: 

a) Arrays 

b) Trees 

Q2) Why is the stack also called a Last-in First-out (LIFO) list? 

Q3) Briefly explain the basic operations on Non- primitive data structures. 

Q4) Differentiate between a linear data structure and a non-linear data structure. 

Q5) Explain the different types of linked lists. 



Introduction 

19  
 

 

 

References 

• Data Structures with C, Lipschutz, Seymour, Delhi: Tata McGraw Hill. 

• Data Structures Using C, Reddy. A.M Padma (2006), Bangalore: Sri Nandi Publications. 

• Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition. 

  



Introduction 

20  
 

Unit 3 – Linked Lists 
Structure 

3.0 Introduction 

3.1 Unit Objectives    

3.2 Singly-Linked Lists 

3.2.1 Memory Representation 3.2.2 Operations 

3.3 Circular Linked Lists 

3.3.1 Traversing   3.3.2 Insertion 

3.3.3 Deletion 

3.4 Doubly-Linked Lists 

3.4.1 Insertion   3.4.2 Deletion 

3.5 Dynamic Storage Management: Application of a Doubly-Linked List 

3.6 Generalized Lists 

3.7 Garbage Collection 

3.8 Summary 

3.9 Key Terms 

3.10 Check Your Progress 

 

3.0 Introduction 

In the simplest terms, a list refers to a collection of data items of similar type 

arranged in a sequence (that is, one after another), e.g., list of students’ names, list of 

addresses, etc. One way to store such lists in memory is to use an array. However, 

arrays have certain problems associated with them. As array elements are stored in 

adjacent memory locations, a sufficient block of memory is allocated to an array at 

compilation time. Once the memory is allocated to an array, it cannot be expanded or 

contracted. This is why an array is called a static data structure. If the number of 

elements to be stored in an array increases or decreases significantly at run-time, it 

may require more memory space or may result in wastage of memory, both of which 

are unacceptable. Another problem is that the insertion and deletion of an element 

into an array are expensive operations, since they may require a number of elements 

to be shifted. As a result of these problems, arrays are not generally used to 

implement linear lists; instead, another data structure known as a linked list is used. 

A linked list is a linear collection of homogeneous elements called nodes. The 
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successive nodes of a linked list need not occupy adjacent memory locations and the 

linear order between the nodes is maintained by means of pointers. This unit 

discusses different types of linked lists, such as singly-linked lists, circular linked 

lists, and doubly-linked lists, and the various operations, such as creation, traversal, 

search, insertion, and deletion, that can be performed on them. It also discusses how 

data structures, stacks, and queues are implemented using linked lists. 

 

3.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Explain the singly linked list data structure. 

● Understand the salient features and applications of circular linked lists. 

● Understand the salient features and applications of doubly-linked lists, 

including dynamic storage management. 

● Describe the applications of generalized lists. 

● Explain the meaning and applications of garbage collection. 

 

3.2 Singly-Linked Lists 

In a singly-linked list (also called linear linked list), each node consists of two fields: 

info and next (Figure 3.1). The info field contains the data and the next field 

contains the address of the memory location where the next node is stored. The last 

node of the singly-linked list contains NULL in its next field that indicates the end of 

the list. 

 
Figure 3.1 Node of a linked list 

 

The data stored in the info field may be a single data item of any data type or a 

complete record representing a student or an employee or any other entity. In this 

unit, however, we assume the info field contains integer data. As each node of the list 

contains only a single pointer pointing to the next node (not to the previous node) 

thereby allowing traversing in only one direction, it is also referred to as a one-way 

list. Figure 3.2 shows a singly-linked list with four nodes. 
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Figure 3.2 A Singly-linked List with Four Nodes 

 

The linked list overcomes all the drawbacks of arrays. It is a dynamic data structure, 

which implies that the memory is allocated dynamically at run-time. Also, there is no 

upper limit on the size of the linked list and new nodes can be inserted into it as far 

as memory is available. Moreover, since the successive nodes of a linked list are 

stored in non-contiguous memory locations, nodes can be inserted or deleted without 

shifting of the existing nodes. 

 

3.2.1 Memory Representation 

To maintain a linked list in memory, two parallel arrays of equal size are used. One 

array (say, INFO ) is used for the info field, and another array (say, NEXT ) for the 

next field of the nodes of the list. The values in the arrays are stored such that the ith 

location in arrays INFO and NEXT contain, respectively, the info and next fields of a 

node of the list. In addition, a pointer variable Start is maintained in memory that 

stores the starting address of the list. Figure 3.3 shows the memory representation of 

a linked list where each node contains an integer. 

 

 
Figure 3.3 Memory Representation of a Singly- linked list 

 

In this figure, the pointer variable Start contains 25, that is, the address of the first 



Introduction 

23  
 

node of the list, which stores the value 37 in array INFO and its corresponding 

element in array NEXT stores 49, that is, the address of the next node in the list, and 

so on. Finally, the node at address 24 stores value 69 in array INFO and NULL in 

array NEXT, thus, it is the last node of the list. Note that the values in array INFO 

are stored randomly and the array NEXT is used to keep track of the values in the 

list.  

 

Memory allocation 

As memory is allocated dynamically to the linked list, a new node can be inserted 

anytime in the list. For this, the memory manager maintains a special linked list 

known as a free-storage list or memory bank or free pool that consists of unused 

memory cells. This list keeps track of the free space available in the memory and a 

pointer to this list is stored in a pointer variable Avail (Figure 3.4). Note that the end 

of the free-storage list is also denoted by storing NULL in the last available block of 

memory. 

 
Figure 3.4 Free- storage List 

 

In this figure, Avail contains 22, hence, INFO[22] is the starting point of the free-

storage list. Since NEXT[22] contains 26, INFO[26] is the next free memory location. 

Similarly, other free spaces can be accessed and the NULL in NEXT[23] indicates the 

end of the free-storage list. While creating a linked list or inserting an element into a 

linked list, whenever a request for the new node arrives, the memory manager 

searches through the free- storage list for the block of the desired size. If the block of 
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the desired size is found, it returns a pointer to that block. However, sometimes there 

is no space available, that is, the free-storage list is empty. This situation is termed 

as overflow. In this situation, the memory manager replies accordingly. 

 

3.2.2 Operations 

A number of operations can be performed on the singly-linked lists. These operations 

include traversing, searching, inserting, and deleting nodes, and reversing, sorting, 

and merging linked lists. Before implementing these operations, first, we need to 

understand how a node of a linked list is created.  

 

Creating a Node 

Creating a node means defining its structure, allocating memory to it, and its 

initialization. As discussed earlier, the node of a linked list consists of data and a 

pointer to the next node. To define a node containing integer data and a pointer to 

the next node in C language, we can use a self-referential structure whose definition 

is shown here. 
 

typedef struct node 

{ 

     int info;    /*to store integer type data*/ 

     struct node *next;             /*to store a pointer to next node*/ 

} Node; 

     Node *nptr;                        /*nptr is a pointer to node*/ 

 

After declaring a pointer nptr to the new node, the memory needs to be allocated 

dynamically to it. If the memory is allocated successfully (that is, no overflow), the 

node is initialized. The info field is initialized with a valid value and the next field is 

initialized with NULL . 

 
Algorithm 3.1 Creation of Node 

create_node() 

1. Allocate memory for nptr                          //nptr is a pointer to the new node 

2. If nptr = NULL 

       Print “Overflow: Memory not allocated!” and go to step 7 

    End If 
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3. Read item                                               //item is the value to be inserted in the new node 

4. Set nptr->info = item 

5. Set nptr->next = NULL 

6. Return nptr                                            //returning pointer nptr 

7. End 

 

Now, the linked list can be formed by creating several nodes of type Node and 

inserting them either in the beginning or at the end or at a specified position in the 

list. 

 

Traversing 

Traversing a list means accessing its elements one by one to process all or some of 

the elements. For example, if we need to display values of the nodes, count the 

number of nodes, or search a particular item in the list, then traversing is required. 

We can traverse the list by using a temporary pointer variable (say, temp), which 

points to the node currently being processed. Initially, we make temp point to the 

first node, a process that element, then move temp to point to the next node using 

statement temp=temp->next, a process that element and move so on as long as the 

last node is not reached, that is, until temp becomes NULL. 

 

Algorithm 3.2 Traversing a list 
display(Start) 

1. If Start = NULL                          //Start points to the first node of the list 

       Print “List is empty!!” and go to step 4 

    End If 

2. Set temp = Start                       //initialising temp with Start 

3. While temp != NULL 

       Print temp->info                   //displaying value of each node 

       Set temp = temp->next       //moving temp to point to next node 

    End While                              

 

Insertion 

To insert a node in the linked list, a new node is created (as explained in Algorithm 

3.1) and then placed at the desired position by adjusting the pointers. Nodes can be 

inserted either in the beginning or at the end or at any specified position in the list as 

discussed in this section. 
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a) Insertion at the beginning: To insert a node at the beginning of the list, the 

next field of the new node (pointed to by nptr) is made to point to the existing 

first node and the Start pointer is modified to point to the new node (Figure 

3.5). 

 
Figure 3.5 Insertion at the Beginning of a Linked List 

 

Algorithm 3.4 Insertion in Beginning 

insert_beg(Start) 

1. Call create_node()                    //creating a new node pointed to by nptr 

2. Set nptr->next = Start 

3. Set Start = nptr                        //Start pointing to new node  

4. End                             

 

b) Insertion at the end: To insert a node at the end of a linked list, the list is 

traversed up to the last node and the next field of this node is modified to 

point to the new node. However, if the linked list is initially empty, then the 

new node becomes the first node, and Start points to it. Figure 3.6(a) shows a 

linked list with a pointer variable temp pointing to its first node and Figure 

3.6(b) shows temp pointing to the last node and the next field of last node 

pointing to the new node. 
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Figure 3.6 Insertion at the End of a Linked List 

 

Algorithm 3.5 Insertion at End 

insert_end(Start) 

1. Call create_node()                             //creating a new node pointed to by nptr 

2. If Start = NULL                                  //checking for empty list 

       Set Start = nptr                              //inserting new node as the first node 

    Else 

       Set temp = Start 

       While temp->next != NULL            //traversing up to the last node 

                 Set temp = temp->next 

       End While 

                 Set temp->next = nptr         //appending new node at the end 

    End If 

3. End                        

 

c) Insertion at a specified position: To insert a node at a position (say, pos) 

specified by the user, the list is traversed up to the pos-1 position. Then the 

next field of the new node is made to point to the node that is already at the 

pos position and the next field of the node at the pos-1 position is made to 

point to the new node. Figure 3.7 shows the insertion of the new node pointed 

to by nptr at the third position. 
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Figure 3.7 Insertion at a Specified Position in a Linked List 

 
Algorithm 3.6 Insertion at a Specified Position 

insert_pos(Start) 

1. Call create_node()                       //creating a new node pointed to by nptr 

2. Set temp = Start 

3. Read pos                                    //position at which the new node is to be inserted 

4. Call count_node(temp)              //counting total number of nodes in count variable 

5. If (pos > count + 1 OR pos = 0) 

       Print “Invalid position!” and go to step 7 

    End If 

6. If pos = 1 

       Set nptr->next = Start 

       Set Start = nptr                     //inserting new node as the first node 

    Else 

       Set i = 1 

       While i < pos - 1                  //traversing up to the node at pos-1 position 

                Set temp = temp->next 

                Set i = i + 1 

   End While 

   Set nptr->next = temp->next   //inserting new node at pos position 

   Set temp->next = nptr 

   End If 

7. End   
 

Deletion 

Like insertion, nodes can be deleted from the linked list at any point of time and from 

any position. Whenever a node is deleted, the memory occupied by the node is de-

allocated. Note that while performing deletions, we need to keep track of the node 

that is the immediate predecessor of the node to be deleted. Thus, two temporary 

pointer variables are used (except in case of deletion from the beginning) while 

traversing the list. 

a) Deletion from the beginning: To delete a node from the beginning of a linked 

list, the address of the first node is stored in a temporary pointer variable 

temp and Start is modified to point to the second node in the linked list. After 

that, the memory occupied by the node pointed to by temp is de-allocated. 

Figure 3.8 shows the deletion of a node from the beginning of a linked list. 
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Figure 3.8 Deletion from the Beginning of a Linked List 

 

Algorithm 3.7 Deletion from Beginning 

delete_beg(Start) 

1. If Start = NULL                                        //checking for underflow 

       Print “Underflow: List is empty!” and go to step 5 

    End If 

2. Set temp = Start                                     //temp pointing to the first node 

3. Set Start = Start->next                           //moving Start to point to the second node 

4. Deallocate   temp                                  //deallocating memory 

5. End 

 

b) Deletion from the end: To delete a node from the end of a linked list, the list is 

traversed up to the last node. Two pointer variables save and the temp is used 

to traverse the list, where save points to the node previously pointed to by 

temp. At the end of traversing, temp points to the last node and save points to 

the second-last node. Then the next field of the node pointed to by save is 

made to point to NULL, and the memory occupied by the node pointed to by 

temp is de-allocated. Figure 3.9 shows the deletion of a node from the end of a 

linked list. 
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Figure 3.9 Deletion from the End of a Linked List 

 

 

Algorithm 3.8 Deletion from the End 

delete_end(Start) 

1. If Start = NULL                                            //checking for underflow 

       Print “Underflow: List is empty!” and go to step 6 

    End If 

2. Set temp = Start                                         //temp pointing to the first node 

3. If temp->next = NULL                                //deleting the only node of the list 

       Set Start = NULL 

    Else 

       While (temp->next) != NULL                 //traversing up to the last node 

                 Set save = temp                         //save pointing to node previously 

                                                                    //pointed to by temp 

                 Set temp = temp->next              //moving temp to point to next node 

       End While 

    End If 

4. Set save->next = NULL                          //making new last node to point to NULL 

5. Deallocate temp                                     //deallocating memory 

6. End 

 

c) Deletion from a specified position: To delete a node from the position (say, pos 

) specified by the user, the list is traversed up to the pos position using pointer 
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variables temp and save. At the end of traversing, temp points to the node at 

the pos position and saves points to the node at the pos-1 position. Then the 

next field of the node pointed to by save is made to point to the node at pos+1 

position, and the memory occupied by the node pointed to by temp is de-

allocated. Figure 3.10 shows the deletion of a node in the third position.  

 
Figure 3.10 Deletion from a Specified Position in a Linked List 

 
Algorithm 3.9 Deletion from a Specified Position 
delete_pos(Start) 

1. If Start = NULL                                 //checking for underflow 

       Print “Underflow: List is empty!” and go to step 8 

    End If 

2. Set temp = Start 

3. Read pos                                        //position of the node to be deleted 

4. Call count_node(Start)                   //counting total number of nodes in the count variable 

5. If pos > count OR pos = 0 

       Print “Invalid position!” and go to step 8 

    End If 

6. If pos = 1 

       Set Start = temp->next              //deleting the first node 

    Else 

       Set i = 1 

       While i < pos                             //traversing up to the node at position pos 

                 Set save = temp 

                 Set temp = temp->next 

                 Set i = i + 1 

       End While 

       Set save->next = temp->next        //deleting the node at position pos 

    End If 

7. Deallocate temp                              //deallocating memory 
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8. End 
 

Program 3.1: A program to illustrate the implementation of a singly-linked list. 

#include<stdio.h> 

#include<conio.h> 

#define True 1 

#define False 0 

typedef struct node 

{ 

int info; 

struct node *next; 

}Node; 

/* Function prototypes */ 

Node * create_node(); 

int isempty(Node *); 

void display(Node *); 

int count_node(Node *); 

void insert_beg(Node **); 

void insert_end(Node **); 

void insert_pos(Node **); 

void delete_beg(Node **); 

void delete_end(Node **); 

void delete_pos(Node **); 

void main() 

{ 

int item,ch,ch1; 

Node *Start=NULL; 

do 

{ 

clrscr(); 

printf(“\n\n\tMain Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Delete”); 

printf(“\n3. Display”); 

printf(“\n4. Exit\n”); 

printf(“\nEnter your choice: “); 
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scanf(“%d”,&ch); 

switch(ch) 

{ 

case 1: printf(“\n1. Insert in the beginning”); 

printf(“\n2. Insert at the end”); 

printf(“\n3. Insert at a specified 

position”); 

printf(“\n4. Back to main menu\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”,&ch1); 

switch(ch1) 

{ 

case 1:     insert_beg(&Start); 

  break; 

case 2:     insert_end(&Start); 

              break; 

case 3:     insert_pos(&Start); 

  break; 

case 4: break; 

default: printf(“\nInvalid choice!”); 

} 

break; 

case 2 : printf (“ \ n1 . Delete from the beginning”); 

printf(“\n2. Delete from the end”); 

printf(“\n3. Delete from a specified 

position”); 

printf(“\n4. 

Back to main menu\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”,&ch1); 

switch(ch1) 

{ 

 case 1:     delete_beg(&Start); 

   break; 

case 2:     delete_end(&Start); 

   break; 

case 3:     delete_pos(&Start); 
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   break; 

case 4: break; 

default: printf(“\nInvalid 

choice!”); 

} 

break; 

case 3: display(Start); 

 break; 

case 4: exit(); 

default: printf(“\nInvalid choice!”); 

       } 

       getch(); 

}while(1); 

       } 

       Node * create_node() 

{ 

Node *nptr; 

int item; 

nptr=(Node *)malloc(sizeof(Node)); 

if(nptr==NULL) 

{ 

printf(“\nOverflow: Memory not allocated!”); 

exit(); 

} 

printf(“\nEnter the value to be inserted: “); 

scanf(“%d”,&item); 

nptr->info=item; 

nptr->next=NULL; 

return(nptr); 

} 

int isempty(Node *Start) 

{ 

if(Start==NULL) 

return True; 

else 

return False; 

} 
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void display(Node *Start) 

{ 

Node *temp=Start; 

if(isempty(temp)) 

{ 

printf(“\nList is empty!!”); 

return; 

} 

printf(“\nThe linked list is: “); 

while(temp != NULL) 

{ 

printf(“%d “,temp->info); 

temp=temp->next; 

} 

     } 

int count_node(Node *Start) 

{ 

Node *temp=Start; 

int count=0; 

while(temp != NULL) 

{ 

count++; 

temp=temp->next; 

} 

return(count); 

} 

void insert_beg(Node **Start) 

{ 

Node *nptr=create_node(); 

nptr->next=*Start; 

*Start=nptr; 

printf(“\nNode inserted.”); 

} 

void insert_end(Node **Start) 

{ 

Node *temp=*Start; 

Node *nptr=create_node(); 
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if(isempty(temp)) 

*Start=nptr; 

else 

{ 

while(temp->next != NULL) 

temp=temp->next; 

temp->next=nptr; 

} 

printf(“\nNode inserted.”); 

} 

void insert_pos(Node **Start) 

{ 

int i,pos,count; 

Node *nptr=create_node(); 

Node *temp=*Start; 

printf(“\nEnter the position at which you want to insert:“); 

scanf(“%d”,&pos); 

count=count_node(temp); 

if(pos>count+1 || pos==0) 

{ 

printf(“\nInvalid position!”); 

return; 

} 

if(pos==1) 

{ 

nptr->next=*Start; 

*Start=nptr; 

} 

else 

{ 

for(i=1;i<pos-1;i++) 

temp=temp->next; 

nptr->next=temp->next; 

temp->next=nptr; 

} 

printf(“\nNode inserted.”); 

} 
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void delete_beg(Node **Start) 

{ 

Node *temp=*Start; 

if(isempty(temp)) 

{ 

printf(“\nUnderflow: List is empty!”); 

return; 

} 

*Start=temp->next; 

free(temp); 

printf(“\nNode deleted.”); 

} 

void delete_end(Node **Start) 

{ 

Node *temp=*Start; 

Node *save; 

if(isempty(temp)) 

{ 

printf(“\nUnderflow: List is empty!”); 

return; 

} 

if(temp->next==NULL) 

*Start=NULL; 

else 

{ 

while(temp->next != NULL) 

{ 

save=temp; 

temp=temp->next; 

} 

save->next=NULL; 

} 

free(temp); 

printf(“\nNode deleted.”); 

} 

void delete_pos(Node **Start) 

{ 
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Node *temp=*Start,*save; 

int i,pos,count; 

if(isempty(temp)) 

{ 

printf(“\nUnderflow: List is empty!”); 

return; 

} 

printf(“\nEnter the position of the node to be deleted:“); 

scanf(“%d”,&pos); 

count=count_node(temp); 

if(pos>count || pos==0) 

{ 

printf(“\nInvalid position!”); 

return; 

} 

if(pos==1) 

*Start=temp->next; 

else 

{ 

for(i=1;i<pos;i++) 

{ 

save=temp; 

temp=temp->next; 

} 

save->next=temp->next; 

} 

free(temp); 

printf(“\nNode deleted.”); 

 } 

 

The output of the program is: 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 
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Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Insert at a specified position 

4. Back to main menu 

Enter your choice: 1 

Enter the value to be inserted: 1 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Insert at a specified position 

4. Back to main menu 

Enter your choice: 2 

Enter the value to be inserted: 3 

Node inserted 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Insert at a specified position 

4. Back to main menu 

Enter your choice: 3 

Enter the value to be inserted: 2 
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Enter the position at which you want to insert: 2 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 1 2 3 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Delete from a specified position 

4. Back to main menu 

Enter your choice: 1 

Node deleted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 2 3 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 
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Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Delete from a specified position 

4. Back to main menu 

Enter your choice: 3 

Enter the position of the node to be deleted: 2 

Node deleted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Delete from a specified position 

4. Back to main menu 

Enter your choice: 2 

Node deleted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

List is empty!! 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 4 
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Searching 

Searching a value (say, item) in a linked list means finding the position of the node, 

which stores the item as its value. If an item is found in the list, the search is 

successful and the position of that node is displayed. However, if an item is not 

found till the end of the list, then the search is unsuccessful and an appropriate 

message is displayed. Note that the linked list may be in sorted or unsorted order. 

Therefore, we are discussing two searching algorithms: one for sorted and another for 

an unsorted linked list. Only linear search can be performed on linked lists. 

a) Searching in an unsorted list: If the data in the linked list are not arranged in 

a specific order, the list is traversed completely starting from the first node 

towards the last node and the value of each node (that is, node–>info) is 

compared with the value to be searched. 

b) Searching in a sorted list: The process of searching an item into a sorted 

(ascending order) linked list is similar to that of an unsorted linked list. 

However, while comparing, once the value of any node exceeds the item (the 

value to be searched), the search is stopped immediately. In that case, the list 

is not required to be traversed completely. 

 
Algorithm 3.10 Searching in an Unsorted List 
search_unsort(Start) 

1. If Start = NULL 

       Print “List is empty!!” and go to step 7 

    End If 

2. Set ptr = Start                                             //ptr pointing to the first node 

3. Set pos = 1 

4. Read item                                                  //item is the value to be searched 

5. While ptr != NULL                                 //traversing up to the last node 

     If item = ptr->info 

              Print “Value found at position”, pos and go to step 7 

     Else 

             Set ptr = ptr->next                           //moving ptr to point to next node 

             Set pos = pos + 1 

     End If 

     End While 

6. Print “Value not found”                             //search unsuccessful 
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7. End 
 

Algorithm 3.11 Searching in a Sorted List 
search_sort(Start) 

1. If Start = NULL 

       Print “List is empty!!” and go to step 7 

    End If 

2. Set ptr = Start                             //ptr pointing to the first node 

3. Set pos = 1 

4. Read item 

5. While ptr->next != NULL           //traversing up to the last node 

    If item < ptr->info                      //comparing item with the value of current node 

             Print “Value not found” and go to step 7 

    Else If item = ptr->info 

             Print “Value found at position”, pos and go to step 7 

    Else 

             Set ptr = ptr->next          //moving ptr to point to next node 

    Set pos = pos + 1 

    End If 

    End While 

6. Print “Value not found”          //search unsuccessful 

7. End 
 

Reversing 

To reverse a singly-linked list, the list is traversed up to the last node, and the links 

of the nodes are reversed such that the first node of the list becomes the last node 

and the last node becomes the first node. For this, three-pointer variables (say, save, 

ptr, and temp) are used. Initially, temp points to Start, and both ptr and save point to 

NULL. While traversing the list, temp points to the current node, ptr points to the 

node previously pointed to by temp, and save points to the node previously pointed to 

by ptr. The links between nodes are reversed by making the next field of the node 

pointed to by ptr to point to the node pointed to by save. At the end of traversing, 

temp points to NULL, ptr points to the last node, and save points to the second last 

node of the list. Then Start is made to point to the node pointed to by ptr in order to 

make the last node the first node of the list. Figure 3.11 (a–f) shows the process of 

reversing a linked list. 
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Figure 3.11 Reverse of a Linked List 
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3.3 Circular- Linked Lists 

A linear linked list in which the next field of the last node points back to the first 

node instead of containing NULL is termed as a circular linked list. The main 

advantage of a circular linked list over a linear linked list is that in the former by 

starting with any node in the list, we can reach any of its predecessor nodes. This is 

because when we traverse a circular linked list starting with a particular node, we 

come back to the same node at the end. Figure 3.12 shows an example of a circular 

linked list. 

 
Figure 3.12 An example of a Circular Linked List 

 

All the operations that can be performed on linear linked lists can easily be 

performed on circular linked lists but with some modifications. Some of these 

operations are discussed as follows. 

Note: The process of creating a node of a circular linked list is the same as that of a 

linear linked list. 

 

3.3.1 Traversing 

We can traverse a circular linked list in the same way as a linear linked list except for 

the condition for checking the end of the list. Here, the list is traversed until we reach 

a node in the list that contains the address of the first node in its next field rather 

than NULL as in the case of a linear linked list. 

 
Algorithm 3.13 Traversing a Circular Linked List 

display(Start) 

1. If Start = NULL 

       Print “List is empty!!” and go to step 4 

    End If 

2. Set temp = Start                           //initialising temp with Start 

3. Do 
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           Print temp->info                    //displaying value of each node 

           Set temp = temp->next 

    While temp != Start 

4. End 
 

3.3.2 Insertion 

Like linear linked lists, nodes can be inserted at any position in a circular linked list. 

To insert a new node (pointed to by nptr ) at the beginning of a circular linked list 

[Figure 3.13(b)], the next field of the new node is made to point to the existing first 

node and the Start pointer is modified to point to the new node. Now, since the first 

node of the list is changed, the next field of the last node also needs to be modified to 

point to the new node. However, if initially, the list is empty, a new node is inserted 

as the first node and its next field is made to point to itself [Figure 3.13(a)]. 

 

                                
     (a)        (b) 

Figure 3.13 Insertion in the beginning of a circular linked list 

 
Algorithm 3.14 Insertion in the Beginning 
insert_beg(Start) 

1. Call create_node()                               //creating a new node pointed to by nptr 

2. If Start = NULL                                    //checking for empty list 

               Set Start = nptr                        //inserting new node as the 

     first node 

               Set Start->next = Start 

               Else 

               Set temp = Start 

               While temp->next != Start       //traversing up to the last node 

                         Set temp = temp->next 

               End While 

               Set nptr->next = Start             //inserting new node in the beginning 

               Set Start = nptr                      //Start pointing to new node 



Introduction 

47  
 

               Set temp->next = Start          //next field of last node pointing to new node 

               End If 

3. End 
 

While inserting a new node (pointed to by nptr ) at the end of a circular linked list, 

the list is traversed up to the last node. The next field of the last node is made to 

point to the new node and the next field of the new node is made to point to Start. 

However, if the circular linked list is empty, a new node becomes the first node, and 

Start points to it. In addition, the next field of the new node points to itself as it is the 

single node in the list. Figure 3.14 shows the insertion of a new node pointed to by 

nptr at the end of a circular linked list. 

 
Figure 3.14 Insertion at the end of a circular linked list 

 

Algorithm 3.15 Insertion at the End 

insert_end(Start) 

1. Call create_node()                        //creating a new node pointed to by nptr 

2. If Start = NULL                             //checking for empty list 

             Set Start = nptr                   //inserting new node in the empty linked list 

             Set Start->next = Start       //next field of first node pointing to itself 

             Else 

             Set temp = Start 

             While temp->next != Start   //traversing up to the last node 

                      Set temp = temp->next 

             End While 

             Set temp->next = nptr        //next field of last node pointing to new node 

             Set nptr->next = Start        //next field of new node pointing to Start 

    End If 

3. End 
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3.3.3 Deletion 

To delete a node from the beginning of a circular linked list, Start is modified to point 

to the second node, and the next field of the last node is made to point to the new 

first node. For this, two-pointer variables temp and ptr are used. The pointer temp 

stores the address of the node to be deleted (that is, the address of the first node), 

and Start is modified to point to the second node. The pointer ptr is used for 

traversing the list and at the end of traversing, it stores the address of the last node. 

Then the next field of the last node is made to point to the new first node. Also, the 

memory occupied by the node pointed to by temp is de-allocated. Figure 3.15 shows 

the deletion of a node from the beginning of a circular linked list. 

 
Figure 3.15 Deletion from the beginning of a circular linked list 

 

Algorithm 3.16 Deletion from Beginning 

delete_beg(Start) 

1. If Start = NULL 

       Print “Underflow: List is empty!” and go to step 8 

    End If 

2. Set temp = Start 

3. Set ptr = temp 

4. While ptr->next != Start                    //traversing up to the last node 

             Set ptr = ptr->next 

     End While 

5. Set Start = Start->next                  //Start pointing to the next node 

6. Set ptr->next = Start                     //last node pointing to new first node 

7. Deallocate temp                           //deallocating memory 

8. End 
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To delete a node from the end of a circular linked list, two-pointer variables save and 

the temp is used. The pointer variable temp is used to traverse the list and save 

points to the node previously pointed to by temp. At the end of traversing, temp 

points to the last node and save points to the second-last node. Then the next field of 

save is made to point to Start, and the memory occupied by the last node (that is, 

pointed to by temp ) is de-allocated. Figure 3.16 shows the deletion of a node from 

the end of a circular linked list. 

 
Figure 3.16 Deletion from the end of a circular linked list 

 

Algorithm 3.17 Deletion from the End 

delete_end(Start) 

1. If Start = NULL                                        //checking for underflow 

       Print “Underflow: List is empty!” and go to step 5 

    End If 

2. Set temp = Start 

3. If temp->next = Start                              //deleting the only node of the list 

       Set Start = NULL 

    Else 

    While temp->next != Start//traversing up to the last node 

              Set save = temp 

              Set temp = temp->next 

     End While 

              Set save->next = Start               //second last node becomes the last node 

    End If 

4. Deallocate temp                                  //deallocating memory 

5. End 

 

Note: The process of deleting a node from a specified position in a circular linked list 

is the same as that of a singly-linked list. 
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Program 3.2: A program to illustrate the implementation of a circular linked list. 

#include<stdio.h> 

#include<conio.h> 

#define True 1 

#define False 0 

typedef struct node 

{ 

int info; 

struct node *next; 

}Node; 

/* Function prototypes */ 

Node * create_node(); 

int isempty(Node *); 

void display(Node *); 

void insert_beg(Node **); 

void insert_end(Node **); 

void delete_beg(Node **); 

void delete_end(Node **); 

void main() 

{ 

int item,ch,ch1; 

Node *Start=NULL; 

do 

{ 

clrscr(); 

printf(“\n\n\tMain Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Delete”); 

printf(“\n3. Display”); 

printf(“\n4. Exit\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”,&ch); 

switch(ch) 

{ 

case 1: printf(“\n1. Insert in the beginning”); 

printf(“\n2. Insert at the end”); 

printf(“\n3. Back to main menu\n”); 
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printf(“\nEnter your choice: “); 

scanf(“%d”,&ch1); 

switch(ch1) 

{ 

case 1: insert_beg(&Start); 

break; 

case 2: insert_end(&Start); 

break; 

case 3: break; 

default: printf(“\nInvalid choice!”); 

} 

break; 

case 2: printf(“\n1. Delete from the beginning”); 

printf(“\n2. Delete from the end”); 

printf(“\n3. Back to main menu\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”,&ch1); 

switch(ch1) 

{ 

case 1: delete_beg(&Start); 

break; 

case 2: delete_end(&Start); 

break; 

case 3: break; 

default: printf(“\nInvalid choice!”); 

} 

break; 

case 3: display(Start); 

break; 

case 4: exit(); 

default: printf(“\nInvalid choice!”); 

} 

     getch(); 

     }while(1); 

} 

Node * create_node() 

{ 
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Node *nptr; 

int item; 

nptr=(Node *)malloc(sizeof(Node)); 

if(nptr==NULL) 

{ 

printf(“\nOverflow: Memory not allocated!”); 

exit(); 

} 

printf(“\nEnter the value to be inserted: “); 

scanf(“%d”,&item); 

nptr->info=item; 

nptr->next=NULL; 

return(nptr); 

} 

int isempty(Node *Start) 

{ 

if(Start==NULL) 

return True; 

else 

return False; 

} 

void display(Node *Start) 

{ 

Node *temp=Start; 

if(isempty(temp)) 

printf(“\nList is empty!!”); 

else 

{ 

printf(“\nThe linked list is: “); 

do 

{ 

printf(“%d “,temp->info); 

temp=temp->next; 

}while(temp != Start); 

} 

} 

void insert_beg(Node **Start) 
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{ 

Node *nptr=create_node(); 

Node *temp=*Start; 

if(isempty(temp)) 

{ 

*Start=nptr; 

(*Start)->next=*Start; 

} 

else 

{ 

while(temp->next != *Start) 

temp=temp->next; 

nptr->next=*Start; 

*Start=nptr; 

temp->next=*Start; 

} 

printf(“\nNode inserted.”); 

} 

void insert_end(Node **Start) 

{ 

Node *temp=*Start; 

Node *nptr=create_node(); 

if(isempty(temp)) 

{ 

*Start=nptr; 

(*Start)->next=*Start; 

} 

else 

{ 

while(temp->next != *Start) 

temp=temp->next; 

temp->next=nptr; 

nptr->next=*Start; 

} 

printf(“\nNode inserted.”); 

} 

void delete_beg(Node **Start) 
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{ 

Node *temp=*Start; 

Node *ptr=temp; 

if(isempty(temp)) 

{ 

printf(“\nUnderflow: List is empty!”); 

return; 

} 

while(ptr->next != *Start) 

ptr=ptr->next; 

*Start=(*Start)->next; 

ptr->next=*Start; 

free(temp); 

printf(“\nNode deleted.”); 

} 

void delete_end(Node **Start) 

{ 

Node *temp=*Start; 

Node *save; 

if(isempty(temp)) 

{ 

printf(“\nUnderflow: List is empty!”); 

return; 

} 

if(temp->next==*Start) 

*Start=NULL; 

else 

{ 

while(temp->next != *Start) 

{ 

save=temp; 

temp=temp->next; 

} 

save->next=*Start; 

} 

free(temp); 

printf(“\nNode deleted.”); 
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} 

 

The output of the program is: 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Back to main menu 

Enter your choice: 1 

Enter the value to be inserted: 5 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Back to main menu 

Enter your choice: 1 

Enter the value to be inserted: 4 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 1 
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1. Insert in the beginning 

2. Insert at the end 

3. Back to main menu 

Enter your choice: 2 

Enter the value to be inserted: 6 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 4 5 6 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Back to main menu 

Enter your choice: 1 

Node deleted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 5 6 

Main Menu 

1. Insert 
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2. Delete 

3. Display 

4. Exit 

Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Back to main menu 

Enter your choice: 2 

Node deleted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 5 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 4 

 

3.4 Doubly- Linked Lists 

In a singly-linked list, each node contains a pointer to the next node and it has no 

information about its previous node. Thus, we can traverse only in one direction, that 

is, from beginning to end. However, sometimes it is required to traverse in the 

backward direction, that is, from end to the beginning. This can be implemented by 

maintaining an additional pointer in each node of the list that points to the previous 

node. Such a type of linked list is called the doubly-linked list. 

Each node of a doubly-linked list consists of three fields: prev, info, and next (Figure 

3.17). The info field contains the data, the prev field contains the address of the 

previous node and the next field contains the address of the next node. 
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Figure 3.17 Node of a Doubly-linked List 

 

Since a doubly-linked list allows traversing in both forward and backward directions, 

it is also referred to as a two-way list. Figure 3.18 shows an example of a doubly-

linked list having four nodes. Note that the prev field of the first node and the next 

field of the last node in a doubly-linked list points to NULL. 

 
Figure 3.18 An Example of a Doubly-linked List with Four Nodes 

 

To define the node of a doubly-linked list in the ‘C’ language, the structure used to 

represent the node of the singly-linked list is extended to have an extra pointer, 

which points to the previous node.  

 

The structure of a node of a doubly-linked list is shown here.  

typedef struct node 

{ 

int info;     /*to store integer type data*/ 

struct node *next;   /*to store a pointer to next node*/ 

struct node *prev;   /*to store a pointer to previous node*/ 

}Node; 

            Node *nptr;    /*nptr is a pointer to node*/ 

 

When memory is allocated successfully to a node, that is, there is no overflow, the 

node is initialized. The info field is initialized with a valid value and the prev and next 
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fields are initialized with NULL. 

 

Algorithm 3.18 Creating a Node of Doubly Linked List 
create_node() 

1. Allocate memory for nptr                       //nptr is a pointer to a new node 

2. If nptr = NULL 

             Print “Overflow: Memory not allocated!” and go to step 8 

3. Read item                                            //item is the value stored in the node 

4. Set nptr->info = item 

5. Set nptr->next = NULL 

6. Set nptr->prev = NULL 

7. Return nptr 

8. End 

 

Note that all the operations that are performed on singly-linked lists can also be 

performed on doubly-linked lists. In this section, we will discuss only insertion and 

deletion operations on doubly-linked lists. 

 

3.4.1 Insertion 

To insert a new node at the beginning of a doubly-linked list, a pointer (say, nptr ) to 

a new node is created. The next field of the new node is made to point to the existing 

first node and the prev field of the existing first node (that has become the second 

node now) is made to point to the new node. After that, Start is modified to point to a 

new node. Figure 3.19 shows the insertion of a node at the beginning of a doubly-

linked list. 

 
Figure 3.19 Insertion at the beginning of a doubly-linked list  
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Algorithm 3.19 Insertion in the Beginning 
insert_beg(Start) 

1. Call create_node()                         //creating a new node pointed to by nptr 

2. If Start != NULL 

              Set nptr->next = Start          //inserting node in the beginning 

        Set Start->prev = nptr 

        End If 

3. Set Start = nptr                             //making Start point to the new node 

4. End 

 

To insert a new node at the end of a doubly-linked list, the list is traversed up to the 

last node using some pointer variable (say, temp ). At the end of traversing, temp 

points to the last node. Then, the next field of the last node (pointed to by temp) is 

made to point to the new node and the prev field of the new node is made to point to 

the node pointed to by temp. However, if the list is empty, the new node is inserted 

as the first node in the list.  

Figure 3.20 shows the insertion of a new node at the end of a doubly-linked list. 

 
Figure 3.20 Insertion at the end of a doubly linked list  

 
Algorithm 3.20 Insertion at the end 

insert_end(Start) 

1. Call create_node()                        //creating a new node pointed to by nptr 

2. If Start = NULL 

        Set Start = nptr                        //inserting new node as the first node 

   Else 

        Set temp = Start                     //pointer temp used for traversing 

      While temp->next != NULL 

                Set temp = temp->next 
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     End While 

     Set temp->next = nptr 

     Set nptr->prev = temp 

    End If 

3. End 
 

To insert a new node (pointed to by nptr ) at a specified position (say, pos ) in a 

doubly-linked list, the list is traversed up to the pos-1 position. At the end of 

traversing, temp points to the node at the pos-1 position. For simplicity, we use 

another pointer variable (say, ptr ) to point to the node that is already at the pos 

position. Then, the prev field of the node pointed to by ptr is made to point to the new 

node and the next field of the new node is made to point to the node pointed to by 

ptr. Also, the prev field of the new node is made to point to the node pointed to by 

temp and the next field of the node pointed to by temp is made to point to the new 

node.  

Figure 3.21 shows the insertion of a new node at the third position in a doubly-

linked list. 

 
Figure 3.21 Insertion at a specified position of a doubly linked list  

 
Algorithm 3.21 Insertion at a Specified Position 

insert_pos (Start) 

1. Call create_node()                             //creating a new node pointed to by nptr 

2. Set temp = Start 

3. Read pos 

4. Call count_node(temp)                     //counting number of nodes in count variable 

5. If pos = 0 OR pos > count + 1 

       Print “Invalid position!” and go to step 7 
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    End If 

6. If pos = 1 

                 Set nptr->next = Start        //inserting node at the beginning  

          Set Start = nptr                     //Start pointing to new node 

   Else 

          Set i = 1 

          While i < pos-1                     //traversing up to the node at pos-1 position 

                    Set temp = temp->next 

                    Set i = i + 1 

          End While 

          Set ptr = temp->next 

          Set ptr->prev = nptr 

          Set nptr->next = ptr 

          Set nptr->prev = temp 

          Set temp->next = nptr 

    End If 

7. End 
 

3.4.2 Deletion 

To delete a node from the beginning of a doubly-linked list, a pointer variable (say, 

temp ) is used to point to the first node. Then Start is modified to point to the next 

node and the prev field of this node is made to point to NULL. After that, the memory 

occupied by the node pointed to by temp is de-allocated. Figure 3.22 shows the 

deletion of a node from the beginning of a doubly-linked list. 

 

 
Figure 3.22 Deletion from the beginning of a doubly-linked list  

 
Algorithm 3.22 Deletion from the beginning 

delete_beg(Start) 

1. If Start = NULL 
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       Print “Underflow: List is empty!” and go to step 6 

    End If 

2. Set temp = Start                           //temp points to the node to be deleted 

3. Set Start = Start->next                 //making Start to point to next node 

4. Set Start->prev = NULL 

5. Deallocate temp                          //de-allocating memory 

6. End 
 

Note: The process of deleting a node from the end of a doubly-linked list is the same 

as that of the singly-linked list. 

To delete a node from a position (say, pos) specified by the user, the list is traversed 

up to the pos position using pointer variables temp and save. At the end of 

traversing, temp points to the node at the pos position and save points to the node at 

the pos-1 position. Here, for simplicity, we use another pointer variable ptr to point 

to the node at the pos+1 position. Then, the next field of the node at pos-1 position 

(pointed to by save) is made to point to the node at pos+1 position (pointed to by ptr). 

In addition, the prev field of the node at pos+1 position (pointed to by ptr) is made to 

point to the node at pos-1 position (pointed to by save). After that, the memory 

occupied by the node pointed to by temp is de-allocated. Figure 3.23 shows the 

deletion of a node at the third position from a doubly-linked list. 

 
Figure 3.23 Deletion from a Specified Position of a doubly-linked list  

 
Algorithm 3.23 Deletion from a Specified Position 

delete_pos(Start) 

1. If Start = NULL 

       Print “Underflow: List is empty!” and go to step 8 

    End If 

2. Set temp = Start 

3. Read pos 

4. Call count_node(temp)                            //counting total number of nodes in count variable 
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5. If pos > count OR pos = 0 

       Print “Invalid position!” and go to step 6 

    End If 

6. If pos = 1 

       Set Start = Start->next                        //deleting the first node 

       Start->prev = NULL 

    Else 

       Set i = 1 

       While i < pos                                      //traversing up to the node at pos position 

                 Set save = temp                      //save pointing to the node at pos-1 position 

                 Set temp = temp->next           //making temp to point to next node 

                 Set i = i + 1 

       End While 

       Set ptr = temp->next 

       Set save->next = ptr 

       Set ptr->prev = save 

    End If 

7. Deallocate temp                                  //deallocating memory 

8. End 

 

Note: A doubly-linked list in which the next field of the last node points to the first 

node instead of NULL is termed as a doubly-circular linked list. 

 

Program 4.4: A program to illustrate the implementation of a doubly-linked list. 

#include<stdio.h> 

#include<conio.h> 

#define True 1 

#define False 0 

typedef struct node 

{ 

int info; 

struct node *next; 

struct node *prev; 

}Node;       /* node of a doubly linked list */ 

/* Function prototypes */ 

Node * create_node(); 

int isempty(Node *); 

void display(Node *); 
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int count_node(Node *); 

void insert_beg(Node **); 

void insert_end(Node **); 

void insert_pos(Node **); 

void delete_beg(Node **); 

void delete_end(Node **); 

void delete_pos(Node **); 

/*Main Function*/ 

void main() 

{ 

int item,ch,ch1; 

Node *Start=NULL; 

do 

{ 

clrscr(); 

printf(“\n\n\tMain Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Delete”); 

printf(“\n3. Display”); 

printf(“\n4. Exit\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”,&ch); 

switch(ch) 

{ 

case 1: printf(“\n1. Insert in the beginning”); 

printf(“\n2. Insert at the end”); 

printf(“\n3. Insert at a specified position”); 

printf(“\n4. Back to main menu\n”); 

printf(“\nEnter your choice:“); 

scanf(“%d”,&ch1); 

switch(ch1) 

{ 

case 1:insert_beg(&Start); 

break; 

case 2:insert_end(&Start); 

break; 

case 3:insert_pos(&Start); 
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break; 

case 4:break; 

default:printf(“\nInvalid choice!”); 

} 

break; 

case 2 : printf (“\n1. Delete from the beginning”); 

printf(“\n2. Delete from the end”); 

printf(“\n3. Delete from a specified position”); 

printf(“\n4. Back to main menu\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”,&ch1); 

switch(ch1) 

{ 

case 1:delete_beg(&Start); 

break; 

case 2:delete_end(&Start); 

break; 

case 3:delete_pos(&Start); 

break; 

case 4:break; 

default: printf(“\nInvalid choice!”); 

} 

break; 

case 3:display(Start); 

break; 

case 4: exit(); 

default: printf(“\nInvalid choice!”); 

} 

getch(); 

}while(1); 

} 

Node * create_node() 

{ 

Node *nptr; 

int item; 

nptr=(Node *)malloc(sizeof(Node)); 

if(nptr==NULL) 
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{ 

printf(“\nOverflow: Memory not allocated!”); 

exit(); 

} 

printf(“\nEnter the value to be inserted: “); 

scanf(“%d”,&item); 

nptr->info=item; 

nptr->next=NULL; 

nptr->prev=NULL; 

return(nptr); 

} 

int isempty(Node *Start) 

{ 

if(Start==NULL) 

return True; 

else 

return False; 

} 

void display(Node *Start) 

{ 

Node *temp=Start; 

if(temp==NULL) 

printf(“\nList is empty!!”); 

else 

{ 

printf(“\nThe linked list is: “); 

while(temp != NULL) 

{ 

printf(“%d “,temp->info); 

temp=temp->next; 

} 

} 

} 

int count_node(Node *Start) 

{ 

Node *temp=Start; 

int count=0; 
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while(temp != NULL) 

{ 

count++; 

temp=temp->next; 

} 

return(count); 

} 

void insert_beg(Node **Start) 

{ 

Node *nptr=create_node(); 

if (*Start != NULL) 

{ 

nptr->next=*Start; 

(*Start)->prev=nptr; 

} 

*Start=nptr; 

printf(“\nNode inserted.”); 

} 

void insert_end(Node **Start) 

{ 

Node *temp; 

Node *nptr=create_node(); 

if(*Start==NULL) 

*Start=nptr; 

else 

{ 

temp=*Start; 

while(temp->next != NULL) 

temp=temp->next; 

temp->next=nptr; 

nptr->prev=temp; 

} 

printf(“\nNode inserted.”); 

} 

void insert_pos(Node **Start) 

{ 

int i,pos,count; 
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Node *nptr=create_node(); 

Node *temp=*Start,*ptr; 

printf(“\nEnter the position at which you want to insert:“); 

scanf(“%d”,&pos); 

count=count_node(temp); 

if(pos==0 || pos>count+1) 

{ 

printf(“\nInvalid position!”); 

return; 

} 

if(pos==1) 

{ 

nptr->next=*Start; 

*Start=nptr; 

} 

else 

{ 

for(i=1;i<pos-1;i++) 

temp=temp->next; 

ptr=temp->next; 

ptr->prev=nptr; 

nptr->next=ptr; 

nptr->prev=temp; 

temp->next=nptr; 

} 

printf(“\nNode inserted.”); 

} 

void delete_beg(Node **Start) 

{ 

Node *temp=*Start; 

*Start=(*Start)->next; 

(*Start)->prev=NULL; 

free(temp); 

printf(“\nNode deleted.”); 

} 

void delete_end(Node **Start) 

{ 



Introduction 

70  
 

Node *temp=*Start; 

Node *save; 

if(isempty(temp)) 

{ 

printf(“\nUnderflow: List is empty!”); 

return; 

} 

if(temp->next==NULL) 

*Start=NULL; 

else 

{ 

while(temp->next != NULL) 

{ 

save=temp; 

temp=temp->next; 

} 

save->next=NULL; 

} 

free(temp); 

printf(“\nNode deleted.”); 

} 

void delete_pos(Node **Start) 

{ 

Node *temp=*Start,*save,*ptr; 

int i,pos,count; 

printf(“\nEnter the position of the node to be deleted:“); 

scanf(“%d”,&pos); 

count=count_node(temp); 

if(pos>count) 

{ 

printf(“\nInvalid position!\n”); 

return; 

} 

if(pos==1) 

{ 

*Start=temp->next; 

(*Start)->prev=NULL; 
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} 

else 

{ 

for(i=1;i<pos;i++) 

{ 

save=temp; 

temp=temp->next; 

} 

ptr=temp->next; 

save->next=ptr; 

ptr->prev=save; 

} 

free(temp); 

printf(“\nNode deleted.\n”); 

} 

 

The output of the program is: 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Insert at a specified position 

4. Back to main menu 

Enter your choice: 1 

Enter the value to be inserted: 6 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 
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Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Insert at a specified position 

4. Back to main menu 

Enter your choice: 2 

Enter the value to be inserted: 5 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 1 

1. Insert in the beginning 

2. Insert at the end 

3. Insert at a specified position 

4. Back to main menu 

Enter your choice: 3 

Enter the value to be inserted: 8 

Enter the position at which you want to insert: 2 

Node inserted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 6 8 5 

Main Menu 

1. Insert 

2. Delete 

3. Display 
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4. Exit 

Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Delete from a specified position 

4. Back to main menu 

Enter your choice: 3 

Enter the position of the node to be deleted: 4 

Invalid position! 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Delete from a specified position 

4. Back to main menu 

Enter your choice: 1 

Node deleted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 8 5 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 
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Enter your choice: 2 

1. Delete from the beginning 

2. Delete from the end 

3. Delete from a specified position 

4. Back to main menu 

Enter your choice: 2 

Node deleted. 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 3 

The linked list is: 8 

Main Menu 

1. Insert 

2. Delete 

3. Display 

4. Exit 

Enter your choice: 4 

 

3.5 Dynamic Storage Management: Application of a Doubly-Linked List 

As we know in a multiprogramming environment, multiple programs reside in the 

main memory at one time in order to efficiently utilize the memory. Whenever a 

program requests a memory block of some specific size, the memory manager 

allocates memory to it, if available. Once a program completes its execution, it 

releases the memory allocated to it so that other programs may use it. In a dynamic 

storage management scheme, the memory requirements of the programs are not 

known in advance. In addition, the order in which the memory is de-allocated by the 

programs may be different from that of memory allocation. 

Initially, when there are no jobs in the memory, the whole memory is available for 

allocation and is considered as a single large block of available memory (a hole). As 

programs enter the system and request variable-size blocks, the memory manager 
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allocates them the memory blocks that are large enough to accommodate the 

programs. As soon as any program terminates, the memory occupied by it is de-

allocated. Thus, at a given point of time, some blocks of memory may be in use while 

others may be free [Figure 3.24 (a)]. Now to make further allocations, the memory 

manager must keep track of the free space in memory. For this, the memory manager 

maintains a free-storage list that keeps track of the unused blocks (holes of variable 

sizes) of memory. The free-storage list is implemented as a linked list where each 

node contains the size of the block and the address of the next available block 

[Figure 3.24 (b)]. 

 
Figure 3.24 Memory Status and Free- storage List 

 

If any program requests for a block of size n, the memory manager may adopt one of 

the following strategies to select a hole from the free-storage list.  

● First-fit: In this technique, the memory manager searches the free-storage list 

for the first hole of size >= n and allocates its n bytes to the program. 

Searching can start either from the beginning of the list or where the previous 

first-fit search ended in case the free-storage list has been implemented as a 

circular linked list.  

● Best-fit: In this technique, the memory manager searches the free-storage list 

for the smallest hole whose size is more than or equal to n and allocates its n 

bytes to the program. Searching always starts from the beginning of the list 

unless the list is sorted by size. 

● Worst-fit: In this technique, the memory manager searches the free-storage 

list for the largest hole and allocates its n bytes to the program. Searching 

always starts from the beginning of the list unless the list is sorted by size.  
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Note: If only a portion of a free block and not the entire block is to be allocated, the 

allocation is made from the bottom of the block to avoid changing links in the free-

storage list. 

Out of the above-mentioned strategies, the first-fit is generally faster and simple 

enough to understand. However, both first-fit and best-fit suffer from external 

fragmentation which leads to the fragmentation of memory into many small holes of 

variable sizes that individually are not large enough to satisfy a request. This 

happens when allocating a portion of a free block to a program leaves behind a hole 

that is smaller than any requests made to the system. If a program, for example, 

requests for a block of size 4400 bytes and a free block of size 4500 bytes is 

available, then allocating a portion of this block would result in a hole of 100 bytes 

that is too small to satisfy any other request made to the system. Moreover, the 

overhead to keep track of this small hole is larger than the hole itself. To get rid of 

this problem, some suitable constant (say, α) is chosen such that if the allocation of a 

portion of the free block to any program results in a hole of size less than α, then the 

entire block is allocated to the program. 

Once a program terminates, the block of memory allocated to it gets released and is 

returned to the free storage list. Along with the returning of blocks, the operating 

system must also check whether its adjacent blocks in the free-storage list can be 

combined with it to form a single block. If program P2, for example, terminates 

[consider Figure 3.24(a)], then instead of adding this block as a node to the free- 

storage list [Figure 3.25(a)], it should coalesce with its left neighbor [first node of the 

free-storage list shown in Figure 3.24(b)] as shown in Figure 3.25(b). The coalescing 

of free blocks is necessary because the allocation algorithm makes the memory 

fragmented into small holes. With small holes, it becomes almost impossible to 

satisfy the larger requests even if the total free space is available. 

 
(a) 
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(b) 

Figure 3.25 Free- storage List 

 

Therefore, it is necessary to check whether the adjacent blocks of the block being 

returned are free and if they are so, they should coalesce. To examine the adjacent 

blocks of the block is returned, its left and right neighbors in the free-storage list 

need to be accessed. Since a singly-linked list is being used, accessing the right 

neighbor is easy. However, accessing the left neighbor requires traversing the list 

from the first node. This process has to be repeated every time a block is returned to 

the free-storage list, which becomes very time-consuming. 

Therefore, the memory manager uses a doubly-linked list to manage the memory in 

order to facilitate efficient memory de-allocation. Each node of this list consists of 

four fields: prev, size, status, and next. The prev field contains the address of the 

previous block, the size field contains the size of the block, the status field contains 

either 0 or 1 to indicate whether it is a free or allocated block, respectively, and the 

next field contains the address of the next block. The use of a doubly-linked list 

makes the traversal of the list in both forward and backward directions more 

convenient. Therefore, accessing the adjacent nodes of a given node becomes easier. 

Moreover, the inclusion of the status field in the node structure helps in determining 

whether the adjacent block is free or allocated. 

 

3.6 Generalized Lists 

The linked lists that we have discussed so far can contain only atomic values, such 

as integers, floating-point numbers, characters, etc. On the other hand, a generalized 

list is a general form of a linked list whose elements are either atoms or generalized 

lists in themselves (also called sublists). Formally, it is defined as a finite sequence of 

zero or more elements {a0, a1,......ak} such that ai is either an atom or a sublist. It can 

be represented as a simple linked list; however, to indicate whether the element is an 

atom or a sublist, an extra field (say, tag ) that takes either 0 or 1 is included in each 
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node (Figure 3.26). If the value of the tag is 1, then the element represented by the 

node is a sublist, otherwise, it is an atom. In case a node represents a sublist, it 

stores the address of the first node of the sub list. 

 

  
Figure 3.26 Node of a Generalized List 

 

The structure definition of the node of a generalized list in ‘C’ language is as follows: 

 

typedef struct node 

{ 

int tag;     /*to indicate atom or sublist*/ 

struct node *next;   /*to store pointer to next node*/ 

union     /*to store either data or pointer*/ 

{ 

int info;    /*to store data*/ 

struct node *downptr;   /*to store address of the first node of sub list*/ 

}data_ptr; 

}GNode;     /*node of a generalized list*/ 

 

For example, a generalized list {3, {4,5}, 6, {{7,8,9}, 10}}, whose first and third 

elements are atoms while others are sublists, can be represented as shown in Figure 

3.27. 

 
Figure 3.27 Representation of Generalized List 

 

An important application of generalized lists is to represent polynomials in multiple 
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variables. To understand this, consider a polynomial in two variables  

f(x,y)=2x5 y3 + 4x5 -3x3 y2+7x-9y3 +7y.  

The polynomial f(x,y) can also be written as  

(2y 3 +4)x5 +(-3y 2 )x3 +7x+(-9y3 +7y)x0  by factoring out the variable x.  

 

Now, f(x,y) may be viewed as Ax5 +Bx3 +Cx+Dx0, where A, B, and D are polynomials 

(or sub-lists) in single variable y and C is a constant (or atom). Thus, this polynomial 

can be represented using a generalized list (Figure 3.28), where each node consists of 

four fields: tag, coeff, expo, and next. 

 

 
Figure 3.28 Representation of f(x,y) using Generalized List 

 

3.6 Garbage Collection 

Whenever a node of a linked list or the entire list is deleted, some memory space 

becomes free which can be reused by adding it to the free-storage list. To do this, 

there exists a program in memory called garbage collector, which returns unused 

space to the free-storage list so that it can be reused in the future. This process of 

collecting unused space and returning it to the free-storage list is called garbage 

collection. It may take place at the moment a node releases the memory allocated to 

it. Alternatively, the operating system may periodically search the memory to collect 

and return the unused memory space to the free-storage list, e.g., whenever there is 

some or no space available in the free-storage list or whenever the CPU is idle. 

The former method of accomplishing garbage collection is very time- consuming. So, 

the latter method can be chosen, which requires two phases to carry out the garbage 

collection: in the first phase, the operating system goes through the memory to mark 

all those blocks that are still in use; and in the second phase, the operating system 

collects all unmarked memory blocks and returns them to the free-storage list. 
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3.7 Summary 

● A linked list is a linear collection of homogeneous elements called nodes. The 

successive nodes of a linked list need not occupy adjacent memory locations, 

and the linear order between nodes is maintained by means of pointers. 

● In a singly-linked list (also called linear linked list), each node consists of two 

fields: info and next. The info field contains the data and the next field 

contains the address of the memory location where the next node is stored. 

● A linear linked list in which the next field of the last node points back to the 

first node instead of containing NULL is termed as a circular linked list. The 

main advantage of a circular linked list over a linear linked list is that by 

starting with any node in the circular list, we can reach any of its predecessor 

nodes. 

● A linked list that maintains an additional pointer pointing to the previous node 

in each node of the list is termed as a doubly-linked list. Each node of a 

doubly-linked list consists of three fields: prev, info, and next. The info field 

contains the data, the prev field contains the address of the previous node and 

the next field contains the address of the next node. 

● A generalized list is a general form of a linked list whose elements are either 

atoms or generalized lists in themselves (also called sub-lists). 

 

3.8 Key Terms 

● Free-storage list or memory bank or free pool: A special list consisting of 

unused memory cells. 

● Overflow: A situation when there is no space available, that is, the free-

storage list is empty. 

● Underflow: A situation where the user tries to delete a node from an empty 

linked list. 

● Garbage collection: The process of collecting unused space and returning it 

to the free-storage list. 

 

3.9 Check Your Progress 

Short- Answer type 

Q1) A linked list is a linear collection of homogeneous elements called ______. 
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Q2) What is the structure of the node of a singly-linked list? 

Q3) A new node can be inserted only at the beginning or at the end of a linked list. 

(True/ False?) 

Q4) When a new node is inserted in between a linked list, which of these is true? 

(a) Only the nodes that appear after the new node need to be moved 

(b) Only the nodes that appear before the new node need to be moved 

(c) The nodes that appear before and after the new node need to be moved 

(d) None of the above 

Q5) The process of collecting unused space and returning it to the free-storage list is 

called ______________. 

Long- Answer type 

Q1) Write an algorithm to insert a new node in a singly-linked list. 

Q2) Write a brief note on  

(a) Garbage collection 

(b) Generalized Lists 

Q3) Differentiate between a singly linked list and a circular linked list. 

Q4) Describe Traversing Operation in singly linked list and circular linked list. 

Q5) Write an algorithm to delete a node from a specified position in a doubly-linked 

list. 
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4.0 Introduction 

A stack is a linear data structure in which an element can be added or removed only 

at one end, called the top of the stack. This unit discusses the memory 

representation of stacks. Various applications of stacks, such as recursion, string 

reversal, and Polish notation are also introduced in this unit. If a function definition 

includes a call to itself, it is referred to as a recursive function and the process is 

known as recursion or circular definition. Reversing strings is a simple application of 

stacks. To reverse a string, the characters of the string are pushed onto the stack one 

by one as the string is read from left to right. The evaluation of arithmetic 

expressions is another important application of stacks. The general way of writing 

arithmetic expressions is known as the infix notation in which the binary operator is 

placed between two operands on which it operates. 

 

4.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Explain the memory representation of stacks. 

● Explain the push and pop operations performed on stacks. 

● Describe different applications of stacks, including recursion, string reversal, 

and evaluation of arithmetic expressions. 
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4.2 Stacks 

A stack is a linear list of data elements in which the addition of a new element or 

deletion of an element occurs only at one end. This end is called Top of the stack. 

The operation of adding a new element in the stack and deleting an element from the 

stack is called push and pop respectively. Since the addition and deletion of 

elements always occur at one end of the stack, the last element that is pushed onto 

the stack is the first one to come out. Therefore, a stack is also called a Last-In-First-

Out (LIFO) list. 

A pile of books is one of the common examples of a stack. A new book to be added to 

the pile is placed at the top and a book to be removed is also taken off from the top. 

The book that is put most recently on the pile is the first one to be taken off. 

Similarly, the book at the bottom is the last one to be removed. Therefore, in order to 

take out the book at the bottom, all the books above it need to be removed from the 

pile. 

Although arrays, linked lists, and stacks are linear data structures, the difference 

lies in insertion and deletion operations. In arrays and linked lists, insertion and 

deletion can take place at any place while in the case of stacks, these operations are 

limited to the top of the stack. 

 
Figure 4.1 Schematic representation of a stack 

(Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition, Chapter- 4, Page No.- 106) 

 

4.3 Memory Representation of Stacks 

A stack can be represented in memory either as an array or as a singly-linked list. In 

both cases, insertion and deletion of elements are allowed at one end only. Insertion 
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and deletion in the middle of the array or the linked list are not allowed. An array 

representation of a stack is static. However, the linked list representation is dynamic 

in nature. Though array representation is a simple technique, it provides less 

flexibility and is not very efficient with respect to memory utilization. This is because 

if the number of elements to be stored in the stack is less than the allocated memory, 

then the memory space will be wasted. Conversely, if the number of elements to be 

handled by the stack is more than the size of the stack, then it will not be possible to 

increase the size of the stack to store these elements. 

 

Array Representation of Stacks 

When stacks are represented as arrays, a variable named Top is used to point to the 

top element of the stack. Initially, the value of Top is set to –1 to indicate an empty 

stack. To push an element onto the stack, Top is incremented by one, and the 

element is pushed at that position. When Top reaches MAX-1 and an attempt is 

made to push a new element, then stack overflows. Here, MAX is the maximum size 

of the stack. Similarly, to pop (or remove) an element from the stack, the element on 

the top of the stack is assigned to a local variable, and then Top is decremented by 

one. When the value of Top is equal to –1 and an attempt is made to pop an element, 

the stack underflows. 

Therefore, before inserting a new element onto the stack, it is necessary to test the 

condition of overflow. Similarly, before removing the top element from the stack, it is 

necessary to check the condition of the underflow. The total number of elements in a 

stack at a given point of time can be calculated from the value of Top as follows: 

Number of elements = Top + 1 

Figure 4.2 shows an empty STACK with size 3 and Top = –1. 

 

 
Figure 4.2 Initial State of STACK 
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To insert an element 1 in the Stack, Top is incremented by one and the element 1 is 

stored at Stack [ Top ]. Similarly, other elements can be added to the Stack until Top 

reaches 2 (Figure 4.3). To pop an element from the Stack (data element 3), Top is 

decremented by one, which removes element 3 from the Stack. Similarly, other 

elements can be removed from the Stack until Top reaches –1. Figure 4.3 shows 

different states of Stack after performing push and pop operations on it. 

 

 
Figure 4.3 Various States of STACK after Push and Pop Operations 

 

To implement a stack as an array in C language, the following structure named stack 

needs to be defined. 
struct stack 

{ 

int item[MAX]; 
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int Top; 

}; 

 

Algorithm 4.1 Push Operation on Stack 

push(s, element)                                                 //s is a pointer to stack 

1. If s->Top = MAX-1                                          //checking for stack overflow 

           Print “Overflow: Stack is full!” and go to step 5 

    End If 

2. Set s->Top = s->Top + 1                                //incrementing Top by 1 

3. Set s->item[s->Top] = element                     //inserting element in the stack 

4. Print “Value is pushed onto the stack...” 

5.End 

 

Algorithm 4.2 Pop Operation on Stack 

pop(s) 

1. If s->Top = -1                                        //checking for stack underflow 

          Print “Underflow: Stack is empty!” 

          Return 0 and go to step 5 

    End If 

2. Set popped = s->item[s->Top]            //taking off the top element from the stack 

3. Set s->Top = s->Top - 1                     //decrementing Top by 1 

4. Return popped 

5. End 

 

Program 4.1: A program to implement a stack as an array. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

#define True 1 

#define False 0 

typedef struct stack 

{ 

int item[MAX]; 

int Top; 

}stk; 

/*Function prototypes*/ 
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void createstack(stk *);   /*to create an empty stack*/ 

void push(stk *, int);   /*to push an element onto the stack*/ 

int pop(stk *);    /*to pop the top element from the stack*/ 

int isempty(stk *);   /*to check for the underflow condition*/ 

int isfull(stk *);     /*to check for the overflow condition*/ 

void main() 

{ 

int choice; 

int value; 

stk s; 

createstack(&s); 

do{ 

clrscr(); 

printf(“\n\tMain Menu”); 

printf(“\n1. Push”); 

printf(“\n2. Pop”); 

printf(“\n3. Exit\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”, &choice); 

switch(choice) 

{ 

case 1: printf(“\nEnter the value to be inserted: “); 

scanf(“%d”, &value); 

push(&s, value); 

getch(); 

break; 

case 2: value=pop(&s); 

if (value==0) 

printf(“\nUnderflow: Stack is empty!”); 

else 

printf(“\nPopped element is: %d”, value); 

getch(); 

break; 

case 3: exit(); 

default: printf(“\nInvalid choice!”); 

} 

}while(1); 
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} 

void createstack(stk *s) 

{ 

s->Top=-1; 

} 

void push(stk *s, int element) 

{ 

if (isfull(s)) 

{ 

printf(“\nOverflow: Stack is full!”); 

return; 

} 

s->Top++; 

s->item[s->Top]=element; 

printf(“\nValue is pushed onto the stack...”); 

} 

int pop(stk *s) 

{ 

int popped; 

if (isempty(s)) 

return 0; 

popped=s->item[s->Top]; 

s->Top—; 

return popped; 

} 

int isempty(stk *s) 

{ 

if (s->Top==-1) 

return True; 

else 

return False; 

} 

int isfull(stk *s) 

{ 

if (s->Top==MAX-1) 

return True; 

else 
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return False; 

} 

 

The output of the program is: 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 23 

Value is pushed onto the stack… 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 35 

Value is pushed onto the stack... 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 40 

Value is pushed onto the stack… 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 2 

Popped element is: 40 

Main Menu 

1. Push 
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2. Pop 

3. Exit 

Enter your choice: 2 

Popped element is: 35 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 2 

Popped element is: 23 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 2 

Underflow: Stack is empty! 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 3 

 

Linked List Representation of Stacks 

A stack implemented as a singly-linked list is commonly known as a linked stack. 

When a stack is implemented as a linked list, a pointer variable Top is used to point 

to the top element of the stack. Initially, Top is set to NULL to indicate an empty 

stack. Whenever a new element is to be inserted in the stack, a new node is created, 

and the element is inserted into the node. Then the Top is modified to point to this 

new node. Since the memory is allocated dynamically, a linked stack reaches the 

overflow condition when no more memory space is available to be allocated 

dynamically. 

Consider a linked stack, say, Stack. Each node of Stack has two members, info and 

next that represent the element in a stack and a pointer to the next node, 
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respectively. The pointer Top points to the top node of Stack and is initially set to 

NULL for an empty stack. To push an element onto the Stack, a new node nptr is 

created and the element is inserted into it. Then, the Top is modified to point to nptr. 

On the other hand, to pop an element from the Stack, a temporary pointer is created 

which is made to point to the node pointed to by Top. Then Top is modified to point 

to the next node in the Stack, and the temporary node is deleted from the memory. 

The different states of Stack after performing push and pop operations on it are 

shown in Figure 4.4. 

 
Figure 4.4 Various States of Linked Stack after Push and Pop Operations 
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Algorithm 4.3 Push Operation on Linked Stack 

push(Top,element) 

1. Allocate memory for nptr                         //nptr is a pointer to the new node 

2. If nptr = NULL                                         //checking for stack overflow 

           Print “Overflow: Memory not allocated!” and go to step 6 

    End If 

3. Set nptr->info = element 

4. Set nptr->next = Top 

5. Set Top = nptr 

6. End 

 

Algorithm 4.4 Pop Operation on Linked Stack 

pop(Top) 

1. If Top = NULL                            //checking for stack underflow 

           Print “Underflow: Stack is empty!” 

           Return 0 and go to step 7 

    End If 

2. Set popped = Top->info            //popped is a data item at the top of the stack 

3. Set temp = Top                        //temp is a temporary pointer, initialized with Top 

4. Set Top = Top->next                //making Top point to the next node in the linked stack 

5. Deallocate temp                      //de-allocating memory 

6. Return popped 

7. End 

 

Program 4.2: A program to illustrate the implementation of a stack as linked list. 

#include<stdio.h> 

#include<conio.h> 

#define True 1 

#define False 0 

typedef struct node 

{ 

int info; 

struct node *next; 

}Node; 

void createstack(Node **); 
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int isempty(Node *); 

void push(Node **,int); 

int pop(Node **); 

void main() 

{ 

int choice, value; 

Node *Top; 

createstack(&Top); 

do 

{ 

clrscr(); 

printf(“\n\tMain Menu”); 

printf(“\n1. Push “); 

printf(“\n2. Pop “); 

printf(“\n3. Exit\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”, &choice); 

switch(choice) 

{ 

case 1: printf(“\nEnter the value to be inserted: “); 

scanf(“%d”,&value); 

push(&Top,value); 

getch(); 

break; 

case 2: value=pop(&Top); 

if(value==0) 

printf(“\nUnderflow: Stack is empty! “); 

else 

printf(“\nPopped item is: %d”,value); 

getch(); 

break; 

case 3: exit(); 

default: printf(“\nInvalid choice!”); 

} 

}while(1); 

} 

void createstack(Node **Top) 
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{ 

*Top=NULL; 

} 

int isempty(Node *Top) 

{ 

if(Top==NULL) 

return True; 

else 

return False; 

} 

void push(Node **Top, int element) 

{ 

Node *nptr; 

nptr=(Node*)malloc(sizeof(Node)); 

if (nptr==NULL) 

{ 

printf(“\nOverflow: Memory not allocated!”); 

return; 

} 

nptr->info=element; 

nptr->next=*Top; 

*Top=nptr; 

printf(“\nValue is pushed onto the stack...”); 

} 

int pop(Node **Top) 

{ 

int popped; 

Node *temp; 

if(isempty(*Top)) 

return 0; 

popped=(*Top)->info; 

temp=*Top; 

*Top=(*Top)->next; 

free(temp); 

return popped; 

} 
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The output of the program is: 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 23 

Value is pushed onto the stack… 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 34 

Value is pushed onto the stack... 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 2 

Popped item is: 34 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 2 

Popped item is: 23 

Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 2 

Underflow: Stack is empty! 
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Main Menu 

1. Push 

2. Pop 

3. Exit 

Enter your choice: 3 

 

4.4 Stack Applications 

Stacks are used where the last-in-first-out principle is required, such as 

implementing recursion, string reversal, evaluation of arithmetic expressions, 

implementing function calls, etc. Some of the applications are discussed below. 

 

4.4.1 Recursion 

When a function definition includes a call to itself, it is referred to as a recursive 

function and the process is known as recursion or circular definition. A recursive 

function is said to be well-defined if it satisfies the following two properties: 

● The arguments passed to the recursive function must have certain base values 

for which the function does not call itself. In simple words, a recursive 

function must include a condition or a statement to terminate the function. 

● Each time the function calls itself (directly or indirectly), the argument of the 

function must get closer to the base value. 

In each recursive call, the current values of the parameters, local variables, and the 

return address where the control has to return from the call are required to be 

stored. For storing all these values, a stack is maintained. When a recursive function 

is called for the first time, space is set aside in the memory to execute this call and 

the function body is executed. Then a second call to the function is made; again 

space is set for this call, and so on. These memory areas for each function call are 

arranged in the stack. Each time the function is called, its memory area is placed on 

the top of the stack and is removed when the execution of the call is completed 

(Figure 4.5). 
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Figure 4.5 Calling Recursive Functions 

 

Recursion is one of the most powerful concepts in computer science. Many 

mathematical problems, such as computing factorial of a given number, finding the 

Fibonacci series, determining the Greatest Common Divisor (GCD) of two positive 

numbers, computing binary equivalent of a decimal number, computing binomial 

coefficient, etc., can be solved efficiently using recursion. In this section, we are 

discussing some of these problems. 

 

Factorial of a given number 

The factorial of a given positive number n is defined as the product of all the 

numbers from 1 to n (both inclusive). It is usually denoted by n! that is: 

n!=1*2*3*4*...*(n-2)*(n-1)*n 

For example, if n=6, then 6! = 1*2*3*4*5*6 = 720 

Observe that 6! = 6*5! 

Similarly, 5! = 5*4! 

In general, for every positive number n, n! = n*(n-1)!. Note that for n=0, we can define 

0! = 1. Therefore, when n becomes zero, the recursive function terminates (thus, 0 is 

the base value in this case). 
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Algorithm 4.5 Factorial of a Number 

fact(n) 

1. If (n == 0) 

           return 1 and go to step 2 

    Else 

           return (n * fact(n-1)) //recursive call to fact() 

    End If 

2. End 

 

Program 4.3: A program to implement the recursive function for computing factorial 

of a given number. 

#include<stdio.h> 

#include<conio.h> 

/*Function prototype*/ 

int fact(int); 

void main() 

{ 

int n; 

clrscr(); 

printf(“Enter a number: “); 

scanf(“%d”, &n); 

printf(“\nFactorial of %d is %d”, n, fact(n)); 

getch(); 

} 

int fact(int i) 

{ 

if(i==0) 

return 1; 

else 

return (i*fact(i-1));           /*recursive call to fact()*/ 

} 

 

The output of the program is: 

Enter a number: 7 

Factorial of 7 is 5040 
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Fibonacci series 

The Fibonacci series up to n terms (generally denoted by F0, F1, F3, ..., Fn), is 

generated as follows: 

0, 1, 1, 2, 3, 5, 8, 13, 21... 

That is, each successive term is the sum of its two preceding terms. That is, 

If n = 0 or n=1 (0 and 1 are the base values in this case) 

Then 

Fn= n, 

Else 

Fn = Fn-2 + Fn-1 

 

Algorithm 4.6 Fibonacci Series up to n terms 

fib(n) 

1. If (n == 0 OR n == 1) 

           return n and go to step 2 

    Else 

           return (fib(n-1) + fib(n-2)) 

fib() 

    End If 

2. End 

 

Program 4.4: A program to implement the recursive function for finding the 

Fibonacci series up to n terms. 

#include<stdio.h> 

#include<conio.h> 

/*Function prototype*/ 

unsigned fib(unsigned int); 

void main() 

{ 

unsigned int n; 

int i; 

clrscr(); 

printf(“Enter the number of terms to be generated: “); 

scanf(“%d”, &n); 
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printf(“\nFibonacci series up to %d terms is: \n\n”, n); 

for(i=0;i<n;i++) 

printf(“%u “, fib(i)); 

getch(); 

} 

unsigned fib(unsigned int i) 

{ 

if(i==0 || i==1) 

return i; 

else 

return (fib(i-1)+fib(i-2));  /*recursive call to fib()*/ 

} 

 

The output of the program is: 

Enter the number of terms to be generated: 15 

Fibonacci series up to 15 terms is: 

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 

 

Greatest common divisor 

Another example of recursive function is to determine the greatest common divisor 

(GCD) of two positive numbers using Euclid’s algorithm, which is given below: 

GCD(n2, n1),   if (n1<n2) 

GCD(n1, n2) =  n2,    if (n1>=n2) and n1 mod n2=0 

GCD(n2, n1 mod n2),  otherwise 

 

Algorithm 4.7 GCD of Two Numbers 

GCD(p, q) 

1. Set rem = p % q 

2. If (p >= q AND rem == 0) 

       return q and go to step 3 

   Else 

      Call GCD(q, rem) //recursive call to GCD() 

   End If 

3. End 
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Program 4.5: A program to implement the recursive function for finding the GCD of 

two positive numbers. 

#include<stdio.h> 

#include<conio.h> 

/*Function prototype*/ 

int GCD(int, int); 

void main() 

{ 

int num1, num2; 

clrscr(); 

printf(“Enter first number: “); 

scanf(“%d”, &num1); 

printf(“\nEnter second number: “); 

scanf(“%d”, &num2); 

printf(“\nGCD of %d and %d is: %d”, num1, num2, GCD(num1, num2)); 

getch(); 

} 

int GCD(int p, int q) 

{ 

int rem=p%q; 

if((p>=q) && (rem==0)) 

return q; 

else 

GCD(q, rem);    /*recursive call to GCD()*/ 

} 

 

The output of the program is: 

Enter the first number: 49 

Enter second number: 63 

GCD of 49 and 63 is: 7 

 

Decimal to binary conversion 

The conversion of decimal number n to its equivalent binary number can also be performed in a 

recursive manner. The recursive function, in this case, terminates when n becomes 0 or 1. 

Therefore, 0 and 1 are the base values in this case. 
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Algorithm 4.8 Decimal to Binary Conversion 

binary(n) 

1. If (n == 1 OR n == 0) 

       Print n and go to step 2 

    Else 

       Set rem = n % 2 

       Set n = n / 2 

       Call binary(n)                  //recursive call to binary() 

       Print rem 

    End If 

2. End 

 

Program 4.6: A program to implement the recursive function for finding the binary equivalent of 

a decimal number. 

#include<stdio.h> 

#include<conio.h> 

/*Function prototype*/ 

void binary(int); 

void main() 

{ 

int num; 

clrscr(); 

printf(“Enter a number: “); 

scanf(“%d”, &num); 

printf(“\nBinary equivalent of this number is “); 

binary(num); 

getch(); 

} 

void binary(int n) 

{ 

int rem; 

if (n==1||n==0) 

printf(“%d”, n); 

else 
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{ 

rem=n%2; 

n=n/2; 

binary(n);   /*recursive call to binary()*/ 

printf(“%d”, rem); 

} 

} 

 

The output of the program is: 

Enter a number: 89 

Binary equivalent of this number is 1011001 

 

4.4.2 Reversing Strings 

Another simple application of stacks is reversing strings. To reverse a string, the 

characters of the string are pushed onto the stack one by one as the string is read 

from left to right. Once all the characters of the string are pushed onto the stack, 

they are popped one by one. Since the character last pushed in comes out first, 

subsequent pop operations result in the reversal of the string. 

For example, to reverse the string “REVERSE”, the string is read from left to right 

and its characters are pushed onto a stack, starting from the letter R, then E, V, E, 

and so on as shown in Figure 4.6. 

 
Figure 4.6 Reversing a String using a Stack 

 

Once all the letters are stored in the stack, they are popped one by one. Since the 

letter at the top of the stack is E, it is the first letter to be popped. The subsequent 

pop operations take out the letters S, R, E, and so on. Thus, the resultant string is 

the reverse of the original one as shown in the above figure. 
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Algorithm 4.9 String Reversal using Stack 

reversal(s, str) 

1. Set i = 0 

2. While(i < length_of_str) 

             Push str[i] onto the stack 

             Set i = i + 1 

    End While 

3. Set i = 0 

4. While(i < length_of_str) 

          Pop the top element of the stack and store it in str[i] 

          Set i = i + 1 

    End While 

5. Print “The reversed string is: ”, str 

6. End 

 

Program 4.7: A program to reverse a given string using stacks. 

#include<stdio.h> 

#include<conio.h> 

#include<string.h> 

#define MAX 101 

typedef struct stack 

{ 

char item[MAX]; 

int Top; 

}stk; 

/*Function prototypes*/ 

void createstack(stk *); 

void reversal(stk *, char *); 

void push(stk *, char); 

char pop(stk *); 

void main() 

{ 

stk s; 

char str[MAX]; 

int i; 
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createstack(&s); 

clrscr(); 

do 

{ 

printf(“Enter any string (max %d characters): “, MAX-1); 

for(i=0;i<MAX;i++) 

{ 

scanf(“%c”, &str[i]); 

if(str[i]==’\n’) 

break; 

} 

str[i]=’\0'; 

}while(strlen(str)==0); 

reversal(&s, str); 

getch(); 

} 

void createstack(stk *s) 

{ 

s->Top=-1; 

} 

void reversal(stk *s, char *str) 

{ 

int i; 

for (i=0;i<strlen(str);i++) 

push(s, str[i]); 

for(i=0;i<strlen(str);i++) 

str[i]=pop(s); 

printf(“\nThe reversed string is: %s”, str); 

} 

void push(stk *s, char item) 

{ 

s->Top++; 

s->item[s->Top]=item; 

} 

char pop(stk *s) 

{ 

char popped; 
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popped=s->item[s->Top]; 

s->Top—; 

return popped; 

} 

 

The output of the program is: 

Enter any string (max 100 characters): Hello World 

The reversed string is: dlroW olleH 

 

4.4.3 Polish Notation 

Another important application of stacks is the evaluation of arithmetic expressions. 

The general way of writing arithmetic expressions is known as the infix notation 

where the binary operator is placed between two operands on which it operates. (For 

simplicity, we have ignored expressions containing unary operators). The expressions 

a+b and (a-c)*d, ((a+b)*(d/f)-f) , for example, are in infix notation. The order of 

evaluation in these expressions depends on the parentheses and the precedence of 

operators. The order of evaluation of the expression (a+b)*c, for example, is different 

from that of a+(b*c). As a result, it is difficult to evaluate an expression in infix 

notation. Thus, the arithmetic expressions in the infix notation are converted to 

another notation, which can be easily evaluated by a computer system to produce 

correct results.  

A Polish mathematician, Jan Lukasiewicz, suggested two alternative notations to 

represent an arithmetic expression. In these notations, the operators can be written 

either before or after the operands on which they operate. 

The notation in which an operator occurs before its operands are known as the prefix 

notation (also known as the Polish notation). For example, the expressions +ab and *-

acd are in prefix notation. On the other hand, the notation in which an operator 

occurs after its operands is known as the postfix notation (also known as the Reverse 

Polish or suffix notation). The expressions ab+ and ac-d*, for example, are in postfix 

notation. 

A characteristic feature of prefix and postfix notations is that the order of evaluation 

of an expression is determined by the position of the operator and operands in the 

expression. In other words, the operations are performed in the order in which the 

operators are encountered in the expression. Hence, parentheses are not required for 
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the prefix and postfix notations. Moreover, while evaluating the expression, the 

precedence of operators is insignificant. As a result, they are compiled faster than the 

expressions in infix notation. Note that the expressions in infix notation can be 

converted to both prefix and postfix notations. Here we will discuss infix to postfix 

conversion only and the evaluation of postfix expressions. 

 

Conversion of infix to postfix notation 

To convert an arithmetic expression from infix notation to postfix notation, the 

precedence and associativity rules of operators are always kept in mind. The 

operators of the same precedence are evaluated from left to right. This conversion 

can be performed either manually (without using stacks) or by using stacks. The 

three steps for converting the expression manually are given here. 

Step1: The actual order of evaluation of the expression in infix notation is 

determined by inserting parentheses in the expression according to the precedence 

and associativity of operators. 

Step 2: The expression in the innermost parentheses is converted into postfix 

notation by placing the operator after the operands on which it operates. 

Step 3: Step 2 is repeated until the entire expression is converted into a postfix 

notation. 

For example, to convert the expression a+b*c into equivalent postfix notation, the 

following steps are performed: 

1. Since the precedence of * is higher than +, the expression b*c has to be 

evaluated first. Hence, the expression is written as: 

(a+(b*c)) 

2. The expression in the innermost parentheses, that is, b*c is converted into its 

postfix notation. Hence, it is written as bc*. The expression now becomes: 

(a+bc*) 

3. Now the operator + has to be placed after its operands. The two operands for 

the + operator are a and the expression bc*. The expression now becomes: 

(abc*+) 

Hence, the equivalent postfix expression is: 

abc*+ 

When expressions are complex, manual conversion becomes difficult. On the other 
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hand, the conversion of an infix expression into a postfix expression is simple when it 

is implemented through stacks. In this method, the infix expression is read from left 

to right, and a stack is used to temporarily store the operators and the left 

parenthesis. The order in which the operators are pushed onto and popped from the 

stack depends on the precedence of operators and the occurrence of parenthesis in 

the infix expression. The operands in the infix expression are not pushed onto the 

stack; rather they are directly placed in the postfix expression. Note that the 

operands maintain the same order as in the original infix notation. 

 

Algorithm 4.10 Infix to Postfix Conversion 

infixtopostfix(s, infix, postfix) 

1. Set i = 0 

2. While (i < number_of_symbols_in_infix) 

          If infix[i] is a whitespace or comma 

                Set i = i + 1 and continue 

         If infix[i] is an operand, add it to postfix 

         Else If infix[i] = ‘(’, push it onto the stack 

         Else If infix[i] is an operator, follow these steps: 

                 i. For each operator on the top of the stack whose precedence is greater than or 

equal 

to the precedence of the current operator, pop the operator from the stack and add 

it to the postfix 

                 ii. Push the current operator to the stack 

         Else If infix[i] = ‘)’, follow these steps: 

                 i. Pop each operator from the top of the stack and add it to postfix until ‘(’ is 

encountered in the stack 

                 ii. Remove ‘(’ from the stack and do not add it to the postfix 

              End If 

              Set i = i + 1 

    End While 

3. End 

 

For example, consider the conversion of the following infix expression to postfix 

expression: 
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a-(b+c)*d/f 

Initially, a left parenthesis ‘(’ is pushed onto the stack, and the infix expression is 

appended with a right parenthesis ‘)’. The initial state of the stack, infix expression, 

and postfix expression is shown in Figure 4.7. 

 
Figure 4.7 Initial State of the Stack, Infix Expression, and Postfix Expression 

 

infix is read from left to right and the following steps are performed. 

1. The operand ‘a’ is encountered, which is directly put to postfix. 

2. The operator ‘–’ is pushed onto the stack. 

3. The left parenthesis ‘(’ is pushed onto the stack. 

4. The next element is b which being an operand is directly put to postfix. 

5. ‘+’ being an operator is pushed onto the stack. 

6. Next, ‘c’ is put to postfix. 

7. The next element is the right parenthesis ‘)’ and, hence, the operators on the 

top of the stack are popped until ‘(’ is encountered in the stack. Till now, the 

only operator in the stack above the ‘(’ is ‘+’, which is popped and put to 

postfix. ‘(’ is popped and removed from the stack (Figure 4.8 (a). Figure 4.8 (b) 

shows the current position of the stack. 
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Figure 4.8 Intermediate States of Postfix and Infix Expressions and the Stack 

 

8. After this, the next element ‘*’ is an operator and, hence, it is pushed onto the 

stack. 

9. Then, ‘d’ is put to postfix. 

10. The next element is ‘/’. Since the precedence of / is the same as the 

precedence of *, the operator * is popped from the stack and / is pushed onto 

the stack ( Figure 4.9). 

11. The operand ‘f’ is directly put to postfix after which ‘)’ is encountered. 

12. On reaching ‘)’, the operators in the stack before the next ‘(’ is reached are 

popped. Hence, / and – are popped and put to postfix as shown in Figure 4.9. 

 
Figure 4.9 The State when – and / are Popped 
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13. ‘(’ is removed from the stack. Since the stack is empty, the algorithm is 

terminated and a postfix is printed. 

 

The stepwise conversion of expression a-(b+c)*d/f into its equivalent postfix expression 

is shown in Table 2.1. 

Table 2.1 Conversion of Infix Expression into Postfix 

 
 

Program 4.8: A program to convert an expression from infix notation to postfix 

notation. 

#include<stdio.h> 

#include<conio.h> 

#include<string.h> 

#define MAX 102 

typedef struct stack 

{ 

char item[MAX]; 

int Top; 

}stk; 

/*Function prototypes*/ 

void createstack(stk *); 

void infixtopostfix(stk *, char *, char *); 

int precedence(char); 

int isOperator(char); 

void push(stk *, char); 

char pop(stk *); 

void main() 

{ 
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stk s; 

char infix[MAX], *postfix; 

int i, len; 

clrscr(); 

createstack(&s); 

do 

{ 

printf(“\nEnter expression in infix notation (max %d characters): “, MAX-2); 

for(i=0;i<MAX-1;i++) 

{ 

scanf(“%c”, &infix[i]); 

if(infix[i]==’\n’) 

break; 

} 

infix[i]=’)’; 

infix[i+1]=’\0'; 

}while(strlen(infix)==0); 

push(&s, ‘(‘); 

len=strlen(infix); 

postfix=(char*)malloc(len+1); 

infixtopostfix(&s, infix, postfix); 

printf(“\nThe equivalent postfix expression is %s”, postfix); 

getch(); 

} 

void createstack(stk *s) 

{ 

s->Top=-1; 

} 

void infixtopostfix(stk *s, char *in, char *po) 

{ 

int i,j,len, preStack, preOp; 

char popped; 

len=strlen(in); 

i=j=0; 

while(i<len) 

{ 

if (in[i]==’ ‘||in[i]==’\t’ || in[i]==’,’) 
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{ 

i++; 

continue; 

} 

if(in[i]==’(‘) 

push(s, in[i]); 

else if(isOperator(in[i])) 

{ 

preStack=precedence(s->item[s->Top]); 

preOp=precedence(in[i]); 

while(preStack>=preOp) 

{ 

po[j++]=pop(s); 

preStack=precedence(s->item[s->Top]); 

} 

push(s, in[i]); 

} 

else if(in[i]==’)’) 

{ 

while((popped=pop(s))!=’(‘) 

{ 

po[j++]=popped; 

} 

} 

else 

po[j++]=in[i]; 

i++; 

} 

po[j]=’\0'; 

} 

void push(stk *s, char item) 

{ 

s->Top++; 

s->item[s->Top]=item; 

} 

char pop(stk *s) 

{ 
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char popped; 

popped=s->item[s->Top]; 

s->Top—; 

return popped; 

} 

int isOperator(char op) 

{ 

switch(op) 

{ 

case ‘^’: 

case ‘+’: 

case ‘-’: 

case ‘*’: 

case ‘/’: return 1; 

} 

return 0; 

} 

int precedence(char op) 

{ 

switch(op) 

{ 

case ‘^’: return 3; 

case ‘/’: 

case ‘*’: 

case ‘%’: return 2; 

case ‘+’: 

case ‘-’: return 1; 

} 

return 0; 

} 

 

The output of the program is: 

Enter expression in infix notation (max 100 characters): A+(B*C- (D/E^F)*)*H 

The equivalent postfix expression is ABC*DEF^/*-H*+ 

 

 



Other Data Structures 
 

115  
 

Evaluation of postfix expression 

In a computer system when an arithmetic expression in an infix notation needs to be 

evaluated, it is first converted into its postfix notation. The equivalent postfix 

expression is then evaluated. The evaluation of postfix expressions is also 

implemented through stacks. Since the postfix expression is evaluated in the order of 

appearance of operators, parentheses are not required in the postfix expression. 

During the evaluation, a stack is used to store the intermediate results of the 

evaluation. Since an operator appears after its operands in a postfix expression, the 

expression is evaluated from left to right. Each element in the expression is checked 

whether it is an operator or an operand. If the element is an operand, it is pushed 

onto the stack. On the other hand, if the element is an operator, the first two 

operands are popped from the stack and the operation is performed on them. The 

result of the operation is then pushed back to the stack. This process is repeated 

until the entire expression is evaluated. 

 

Algorithm 4.11 Evaluation of a Postfix Expression 
evaluationofpostfix(s, postfix) 

1. Set i = 0, RES=0.0 

2. While (i < number_of_characters_in_postfix) 

              If postfix[i] is a whitespace or comma 

                      Set i = i + 1 and continue 

              If postfix[i] is an operand, push it onto the stack 

              If postfix[i] is an operator, follow these steps: 

I.  Pop the top element from stack and store it in operand2 

II.  Pop the next top element from stack and store it in operand1 

III.  Evaluate operand2 op operand1, and store the result in RES (op is the current operator) 

IV.  Push RES back to stack 

          End If 

          Set i = i + 1 

    End While 

3. Pop the top element and store it in RES 

4. Return RES 

5. End 
 

For example, consider the evaluation of the following postfix expression using stacks: 

abc+d*f/- 
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where, a=6, b=3, c=6, d=5, f=9 

After substituting the values of a, b, c, d, and f, the postfix expression becomes: 

636+5*9/- 

The expression is evaluated as follows: 

1. The expression is read from left to right and each element is checked whether 

it is an operand or an operator. 

2. The first element is ‘6’, which being an operand is pushed onto the stack. 

3. Similarly, operands ‘3’ and ‘6’ are pushed onto the stack. 

4. The next element is ‘+’, which is an operator. Hence, the element at the top of 

stack ‘6’ and the next top element ‘3’ are popped from the stack as shown in 

Figure 4.10. 

 
Figure 4.10 Evaluation of the Expression using Stacks 

5. The expression 3+6 is evaluated and the result (that is, 9) is pushed back to 

stack as shown in Figure 4.11. 

6. The next element in the expression, that is 5, is pushed to the stack. 

7. The next element is ‘*’, which is a binary operator. Hence, the stack is popped 

twice and elements 5 and 9 are taken off from the stack as shown in Figure 

4.11. 
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Figure 4.11 Popping 9 and 5 from Stack 

8. The expression ‘9*5’ is evaluated and the result, that is ‘45’, is pushed back to 

the stack. 

9. The next element in the postfix expression is ‘9’, which is pushed onto the 

stack. 

10. The next element is the operator ‘/’. Therefore, the two operands from the top of 

the stack, that is ‘9’ and ‘45’, are popped from the stack, and operation ‘45/9’ is 

performed. Result ‘5’ is again pushed to the stack. 

11. The next element in the expression is ‘–’. Hence, ‘5’ and ‘6’ are popped from the 

stack, and operation ‘6-5’ is performed. The resulting value, that is ‘1’, is 

pushed to the stack (Figure 4.12). 

 
Figure 4.12 Final State of Stack with the Result 

12. There are no more elements to be processed in the expression. The element on 

top of the stack is popped, which is the result of the evaluation of the postfix 
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expression. Thus, the result of the expression is ‘1’. 

The step-wise evaluation of the expression 636+5*9/- is shown in Table 2.2. 

 

Table 2.2 Evaluation of the Postfix Expression 

 
 

Program 4.9: A program to evaluate a postfix expression. 

#include<stdio.h> 

#include<conio.h> 

#include<string.h> 

#include<math.h> 

#define MAX 102 

typedef struct stack 

{ 

float item[MAX]; 

int Top; 

}stk; 

/*Function prototypes*/ 

void createstack(stk *); 

float evaluationofpostfix(stk *, char *); 

void push(stk *, float); 
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float pop(stk *); 

void main() 

{ 

stk s; 

char postfix[MAX]; 

int i; 

float result; 

clrscr(); 

createstack(&s); 

do 

{ 

printf(“\nEnter expression in postfix notation (max %d characters): “, MAX-2); 

for(i=0;i<MAX-1;i++) 

{ 

scanf(“%c”, &postfix[i]); 

if(postfix[i]==’\n’) 

break; 

} 

postfix[i]=’\0'; 

}while(strlen(postfix)==0); 

result=evaluationofpostfix(&s, postfix); 

printf(“\nThe result of postfix expression is %7.2f”, result); 

getch(); 

} 

void createstack(stk *s) 

{ 

s->Top=-1; 

} 

float evaluationofpostfix(stk *s, char *po) 

{ 

int i, len; 

int number; 

float operand1, operand2; 

float res=0.0; 

len=strlen(po); 

i=0; 

while(i<len) 
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{ 

if (po[i]==’ ‘||po[i]==’\t’ || po[i]==’,’) 

{ 

i++; 

continue; 

} 

if(isdigit(po[i])) 

{ 

number=(int)(po[i]-’0'); 

i++; 

while (isdigit(po[i])) 

{ 

po[i]=(int)(po[i]-’0');               / * converting char to int*/ 

number=number*10; 

number+=po[i]; 

i++; 

} 

push(s, number); 

} 

else 

{ 

operand2=pop(s); 

operand1=pop(s); 

switch(po[i]) 

{ 

case ‘+’: res=operand1+operand2; 

break; 

case ‘-’: res=operand1-operand2; 

break; 

case ‘*’: res=operand1*operand2; 

break; 

case ‘/’: res=(float)operand1/operand2; 

break; 

case‘%’: res=(int)operand1%(int)operand2; 

break; 

case ‘^’: res=pow(operand1, operand2); 

break; 
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default: printf(“\nIllegal expression...”); 

getch(); 

exit(); 

} 

push(s, res); 

} 

i++; 

} 

res=pop(s); 

return res; 

} 

void push(stk *s, float item) 

{ 

s->Top++; 

s->item[s->Top]=item; 

} 

float pop(stk *s) 

{ 

float popped; 

popped=s->item[s->Top]; 

s->Top—; 

return popped; 

} 

 

The output of the program is: 

Enter expression in postfix notation (max 100 characters): 7 5 - 9 2 / * 

The result of postfix expression is 9.00 

 

4.5 Summary 

● A stack is a linear data structure in which an element can be added or 

removed only at one end called the top of the stack. 

● In stack terminology, the insert and delete operations are known as push and 

pop operations respectively. A stack works on the principle of ‘last-in-first-out’ 

and is also known as a Last-In-First-Out (LIFO) list. 

● A stack can be represented in memory either as an array or as a singly linked 
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list. An array representation of a stack is static and linked list representation 

is dynamic in nature. 

● When a function definition includes a call to itself, it is referred to as a 

recursive function and the process is known as recursion or circular 

definition. 

● To reverse a string, the characters of the string are pushed onto the stack one 

by one as the string is read from left to right. Once all the characters of the 

string are pushed onto the stack, they are popped one by one. 

● The notation in which an operator occurs before its operands are known as 

the prefix notation (also known as the Polish notation). On the other hand, the 

notation in which an operator occurs after its operands is known as the 

postfix notation (also known as the Reverse Polish or suffix notation). 

 

4.6 Key Terms 

● Recursive function: A function whose definition includes a call to itself. 

● Infix notation: The general way of writing arithmetic expressions in which the 

binary operator is placed between two operands on which it operates. 

● Prefix notation: The notation in which an operator occurs before its operands 

(also known as the Polish notation). 

● Postfix notation: The notation in which an operator occurs after its operands 

(also known as the Reverse Polish or suffix notation). 

● Dynamic Allocation: Automatic memory allocation where memory is allocated 

as required at run-time. 

 

4.7 Check Your Progress 

Short- Answer type 

Q1) A stack can be represented as an array as well as a linked list. (True/False?) 

Q2) When a function definition includes a call to itself, it is referred to as a ________. 

Q3) The condition Top= –1 indicates that: 

(a) Stack is empty  (b) Stack is full  (c) Stack has only one element 

(d) None of the above 

Q4) An infix expression can be converted into a postfix expression with the help of 

stacks. (True/False?) 
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Q5) Define String Reversal. 

Long- Answer type 

Q1) Write a C program to convert an infix expression into a postfix notation. 

Q2) What are the two ways of implementing stacks? Which one is preferred over the 

other and why? 

Q3) Write the algorithm to implement push and pop operations on a stack. 

Q4) What are the various applications of stacks? Write a C program to implement 

any one of them. 

Q5) Differentiate between infix, postfix, and prefix expressions. 
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Unit 5  Queues 
Structure 

5.0 Introduction 

5.1 Unit Objectives 

5.2 Basic terminology of Queues 

5.3 Queue Operations 

5.4 Representation of a Queue 

5.4.1 Using an array 5.4.2 Using a Linked List 

5.5 Various Queue Structures 

 5.5.1 Circular Queue 5.5.2 Priority Queue 

5.6 Summary 

5.7  Key Terms 

5.8 Check Your Progress 

 

5.0 Introduction 

A queue refers to a linear data structure in which a new element is inserted at one 

end and another element is deleted from the other end. The first element added to 

the queue is to be removed first. It means that the queue works on the principle of 

‘first-in-first-out’. This is why it is also known as a First-In-First-Out (FIFO) list. 

Queues, such as stacks, can be represented in memory by using an array or a singly 

linked list. You will learn about two types of queues: circular queue and priority 

queue. In a circular queue, as soon as the rear index of the queue reaches the 

maximum size of the array, the rear is reset to the beginning of the queue, provided it 

is free. A priority queue refers to a type of queue in which each element is assigned a 

priority and the elements are added or removed according to that priority. 

A common example of a queue is people waiting in line at a bus stop. The first person 

in the queue enters the bus first. Any new person has to join at the end of the queue. 

In other words, the order in which people take the bus in the order in which they 

have joined the queue. The size of the queue is not fixed and it keeps varying as per 

the number of people joining and leaving the queue. 

 

5.1 Unit Objectives 

After going through this unit, the reader will be able to: 
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● Discuss the basic terminology of Queues. 

● Representation of a Queue using an array and Linked List. 

● Explain different types of Queue structures. 

 

5.2 Basic terminology of Queues 

An ordered collection of homogeneous data elements in which insertion and deletion 

operations take place at two extreme ends is called a queue. A queue is also a linear 

structure like an array, a linked list, and a stack but a queue is a first-in-first-out 

(FIFO) list. It means that the data in the queue is processed in the same order as it 

had entered. The process of inserting a data element into a queue is termed 

ENQUEUE and deletion is termed as DEQUEUE. Both the operations take place at 

the two ends of the queue called REAR and FRONT respectively. An element in the 

queue is termed as an ITEM. The number of elements a queue can hold is termed as 

the LENGTH of the queue. Figure 5.1 shows the schematic of a queue with REAR and 

FRONT ends.  

 
Figure 5.1 Schematic representation of a queue 

Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition 

 

5.3 Queue Operations 

Basically, there are two operations performed on a queue, insertion, and deletion. 

The insertion of any item at the REAR end of the queue is referred to as ENQUEUE 

and the deletion of any item at the FRONT end of the queue is referred to as  

 

DEQUEUE.   

The queue supports the following operations: 

● enqueue( obj ): Insert obj at the end of the queue, making it the last item. 

● dequeue(): Return the first object from the queue and remove it from the 

queue. 
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● queue empty(): Test whether the queue is empty. 

 

Insert at Rear-End (ENQUEUE) 

For inserting an item into a queue, firstly we have to verify whether the queue is full 

or not. If the queue is full, then a new item can not be inserted. After verifying this 

condition, items can be inserted at the rear end of the queue. After insertion, the 

value of the rear is incremented by 1. 

 

Delete from the Front End (DEQUEUE)  

To delete an item from the queue, firstly we have to verify that the queue should not 

be empty. After verifying this condition that the queue is not empty, the items are 

deleted from the front end of the queue. After deleting an item, the value of the front 

is incremented by 1. 

For example, figure 5.2 represents the basic operations of a queue. The first element 

to be inserted into the queue is 10, the second element to be inserted is 15 and so 

on. 30 is the last inserted element. Accordingly, the first element to be deleted from 

the queue is 10. If we have to add a new element, then it can be inserted after 30 and 

it will be at the last place in the queue. We can not insert a new element in the queue 

when the queue is full. 

 

 
Figure 5.2 Example of basic operations in a queue  

 

5.4  Representation of a Queue 

Like stacks, queues can also be represented in memory by using an array or a singly 

linked list. An array representation of a queue is static. However, the linked list 

representation is dynamic in nature. Though array representation is a simple 

technique, it provides less flexibility and is not very efficient with respect to memory 

utilization. This is because an array reserves a fixed memory for the number of 
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elements to be stored in the queue. So, it could result in generating possible overflow 

errors. Let's discuss both the methods of representing a queue in detail. 

 

5.4.1 Using an array 

When a queue is implemented as an array, all the characteristics of an array are 

applicable to the queue. Since an array is a static data structure, the array 

representation of a queue requires the maximum size of the queue to be 

predetermined and fixed. As we know that the queue keeps on changing as the 

elements are inserted or deleted, the maximum size should be large enough for a 

queue to expand or shrink. 

The representation of a queue as an array needs an array to hold the elements of the 

queue and two variables, Rear and Front, to keep track of the rear and the front ends 

of the queue respectively. Initially, the value of the Rear and Front is set to –1 to 

indicate an empty queue. Before we insert a new element in the queue, it is 

necessary to test the condition of overflow. The queue is in a condition of overflow 

(full) when Rear is equal to the MAX -1, where MAX is the maximum size of the array. 

If the queue is not full, the insert operation can be performed. To insert an element in 

the queue, the Rear is incremented by one, and the element is inserted at that 

position.  

Similarly, before we delete an element from the queue, it is necessary to test the 

condition of the underflow. The queue is in the condition of underflow (empty) when 

the value of Front is –1. If the queue is not empty, a delete operation can be 

performed. To delete an element from the queue, the element referred to by the Front 

is assigned to a local variable, and then the Front is incremented by one. 

The total number of elements in a queue at a given point of time can be calculated 

from the values of the Rear and Front as given here. 

Number of elements = Rear – Front + 1 

To understand the implementation of the queue as an array in detail, consider a 

queue stored in the memory as an array named Queue that has MAX as its 

maximum number of elements. Rear and Front store the indices of the rear and front 

elements of the Queue. Initially, the Rear and Front are set to –1 to indicate an empty 

queue (Figure 5.3 (a)). 

Whenever a new element has to be inserted in the queue, the Rear is incremented by 
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one and the element is stored at Queue [Rear]. Suppose element 9 is to be inserted in 

the queue. In this case, the rear is incremented from –1 to 0, and the element is 

stored at Queue [0]. Since it is the first element to be inserted, the Front is also 

incremented by one to make it refer to the first element of the queue (Figure 5.3 (b)). 

For subsequent insertions, the value of Rear is incremented by one, and the element 

is stored at Queue [Rear]. However, the Front remains unchanged (Figure 5.3 (c)). 

Observe that the Front and Rear elements of the Queue are the first and the last 

elements of the list, respectively. 

Whenever an element is to be deleted from the queue, the Front is incremented by 

one. Suppose that an element is to be deleted from the Queue. Then, here, it must be 

9. It is because the deletion is always made at the front end of a queue. The deletion 

of the first element results in the queue as shown in Figure 5.3(d). Similarly, deletion 

of the second element results in a queue as shown in Figure 5.3(e). Observe that after 

deleting the second element from the queue, values of Front and Rear are equal. 

Here, it is apparent that when values of Front and Rear are equal other than –1, 

there is only one element in the queue. When this only element of the queue is 

deleted, both Rear and Front are again made equal to –1 to indicate an empty queue. 

Further, suppose that some more elements are inserted and the Rear reaches the 

maximum size of the array (Figure 5.3 (f)). That means Queue is full and no more 

elements can be inserted in Queue even though the space is vacant on the left of the 

Front. This problem can be resolved using circular queues. 

To implement a queue as an array in C language, the following structure named 

queue is used. 

struct queue 

{ 

int item[MAX]; 

int Front; 

int Rear; 

}; 

Algorithm 5.1 Insert Operation on Queue 

qinsert(q, val))         //q is a pointer to structure type queue and val is the value to be inserted 

1. If q->Rear = MAX-1          //check if queue is full 

        Print “Overflow: Queue is full!” and go to step 5 

    End If 

2. If q->Front = -1                //check if queue is empty 
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        Set q->Front = 0         //make front to refer to first element 

    End If 

3. Set q->Rear = q->Rear + 1          //increment Rear by one 

4. Set q->item[q->Rear] = val               //insert val 

5. End 

 

 
Figure 5.3 Various States of a Queue after Insert and Delete Operations 
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Algorithm 5.2 Delete Operation on Queue 

qdelete(q) 

1. If q->Front = -1                                           //check if queue is empty 

        Print “Underflow: Queue is empty!” 

        Return 0 and go to step 5 

    End If 

2. Set del_val = q->item[q->Front]                //del_val is the value to be deleted 

3. If q->Front = q->Rear                               //check if there is only one element 

        Set q->Front = q->Rear = -1 

    Else 

        Set q->Front = q->Front + 1                //increment Front by one 

    End If 

4. Return del_val 

5. End 

 

Program 5.1: A program to implement a queue as an array. 

/* Function prototypes */ 

void createqueue(que *); 

void qinsert(que *,int); 

int qdelete(que *); 

int isempty(que); 

int isfull(que); 

void main() 

{ 

int choice,val,element; 

que q; 

createqueue(&q); 

do 

{ 

clrscr(); 

printf(“\n\t Main Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Delete”); 

printf(“\n3. Exit\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”, &choice); 

switch(choice) 
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{ 

case 1: printf(“\nEnter the value to be inserted: “); 

scanf(“%d”, &element); 

qinsert(&q, element); 

getch(); 

break; 

case 2: val=qdelete(&q); 

if(val==0) #include<stdio.h> 

#include<conio.h> 

#define MAX 4 

#define True 1 

#define False 0 

typedef struct queue 

{ 

int item[MAX]; 

int Front; 

int Rear; 

}que; 

printf(“\nUnderflow: Queue is empty!”); 

else 

printf(“\nDeleted item is: %d\n”, val); 

getch(); 

break; 

case 3: exit(); 

default: printf(“Invalid choice”); 

} 

} while(1); 

} 

void qinsert(que *q, int val) 

{ 

if(isfull(*q)) 

{ 

printf(“\nOverflow: Queue is full!”); 

return; 

} 

if(isempty(*q)) 

q->Front=0; 
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(q->Rear)++; 

q->item[q->Rear]=val; 

printf(“\nValue is inserted in queue...”); 

} 

int qdelete(que *q) 

{ 

int del_val; 

if(isempty(*q)) 

return 0; 

del_val=q->item[q->Front]; 

if(q->Front==q->Rear) 

q->Front=q->Rear=-1; 

else 

(q->Front)++; 

return del_val; 

} 

void createqueue(que *q) 

{ 

q->Front=q->Rear=-1; 

return; 

} 

int isempty(que q) 

{ 

if(q.Front==-1) 

return True; 

else 

return False; 

} 

int isfull(que q) 

{ 

if(q.Rear==MAX-1) 

return True; 

else 

return False; 

} 
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The output of the program is: 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 2 

Underflow: Queue is empty! 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 3 

Value is inserted in queue... 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 5 

Value is inserted in queue... 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 2 

Deleted item is: 3 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 3 
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5.4.2 Using a Linked List 

A queue implemented as a linked list is known as a linked queue. A linked queue is 

represented using two pointer variables Front and Rear that point to the first and the 

last node of the queue, respectively. Initially, the Rear and Front are set to NULL to 

indicate an empty queue. 

 

To understand the implementation of a linked queue, consider a linked queue, say, 

Queue. The info and next field of each node represent the element of the queue and a 

pointer to the next element in the queue, respectively. Whenever a new element is to 

be inserted in the queue, a new node nptr is created and the element is inserted into 

the node. If it is the first element being inserted in the queue, both Front and Rear 

are modified to point to this new node. On the other hand, in subsequent insertions, 

only the Rear is modified to point to the new node, and the Front remains 

unchanged. 

 

Whenever an element is deleted from the Queue, a temporary pointer is created 

which is made to point to the node pointed to by Front. Then Front is modified to 

point to the next node in the Queue, and the temporary node is deleted from the 

memory. Figure 5.4 shows various states of the queue after insert and delete 

operations.  

 

Note: Since the memory is allocated dynamically, a linked queue reaches the 

overflow condition when no more memory space is available to be dynamically 

allocated. 
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Figure 5.3 Various States of Linked queue after Insert and Delete Operations 

 
Algorithm 5.3 Insert Operation on Linked Queue 

qinsert(q, element) 

1. Allocate memory for nptr                     //nptr is a pointer to the new node to be inserted 

2. If nptr = NULL                                     //checking for queue overflow 

       Print “Overflow: Memory not allocated!” and go to step 6 

       End If 

3. Set nptr->info = element 

4. Set nptr->next = NULL 

5. If Front = NULL                                         //check if queue is empty 

       Set (*q)->Rear = (*q)->Front = nptr       //rear and front are made to point to new node 

       Else 

       Set (*q)->Rear->next = nptr 

       Set (*q)->Rear = nptr                           //rear is made to point to new node 

       End If 

6. End 
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Algorithm 5.4 Delete Operation on Linked Queue 

qdelete(q) 

1. If Front = NULL 

       Print “Underflow: Queue is empty!” 

       Return 0 and go to step 7 

    End if 

2. Set del_val = (*q)->Front->info                //del_val is the element pointed by the Front 

3. Set temp = (*q)->Front                            //temp is the temporary pointer to Front 

4. If (*q)->Front = (*q)->Rear                      //checking if there is one element in the queue 

       Set (*q)->Front = (*q)->Rear = NULL 

    Else 

       Set (*q)->Front = ((*q)->Front)->next   //making Front point to next node 

       End If 

5. Deallocate temp                                    //deallocating memory 

6. Return del_val 

7. End 

 

Program 5.2: A program to illustrate the implementation of a queue as linked list. 

#include<stdio.h> 

#include<conio.h> 

#define True 1 

#define False 0 

typedef struct node 

{ 

int info; 

struct node *next; 

}Node; 

typedef struct queue 

{ 

Node *Front; 

Node *Rear; 

}que; 

void createqueue(que **); 

int isempty(que *); 

void qinsert(que **, int); 
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int qdelete(que **); 

void main() 

{ 

que q; 

int choice,val,element; 

createqueue(&q); 

do 

{ 

clrscr(); 

printf(“\n\tMain Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Delete”); 

printf(“\n3. Exit\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”, &choice); 

switch(choice) 

{ 

case 1: printf(“\nEnter the value to be inserted: “); 

scanf(“%d”, &element); 

qinsert(&q,element); 

getch(); 

break; 

case 2: val=qdelete(&q); 

if(val==0) 

printf(“\nUnderflow: Queue is empty!”); 

else 

printf(“\nDeleted item is: %d”, val); 

getch(); 

break; 

case 3: exit(); 

default: printf(“Invalid choice!”); 

} 

}while(1); 

} 

void createqueue(que **q) 

{ 

(*q)->Front=NULL; 
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(*q)->Rear=NULL; 

} 

int isempty(que *q) 

{ 

if(q->Front==NULL) 

return True; 

else 

return False; 

} 

void qinsert(que **q,int element) 

{ 

Node *nptr; 

nptr=(Node*)malloc(sizeof(Node)); 

if(nptr==NULL) 

{ 

printf(“\nOverflow: Memory not allocated!”); 

return; 

} 

nptr->info=element; 

nptr->next=NULL; 

if((*q)->Front==NULL) 

(*q)->Rear=(*q)->Front=nptr; 

else 

{ 

((*q)->Rear)->next=nptr; 

(*q)->Rear=nptr; 

} 

printf(“\nValue is inserted in the queue... “); 

} 

int qdelete(que **q) 

{ 

int del_val; 

Node *temp; 

if(isempty((*q)->Front)) 

return 0; 

del_val=((*q)->Front)->info; 

temp=(*q)->Front; 
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if((*q)->Front==(*q)->Rear) 

(*q)->Front=(*q)->Rear=NULL; 

else 

(*q)->Front=((*q)->Front)->next; 

free(temp); 

return del_val; 

} 

 

The output of the program is: 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 3 

Value is inserted in the queue… 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 5 

Value is inserted in the queue… 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 2 

Deleted item is: 3 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 2 
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Deleted item is: 5 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 2 

Underflow: Queue is empty! 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 3 

 

5.5 Various Queue Structures 

Apart from representing a queue using an array and a linked list, there are various 

queue structures used as per their requirement. These structures are Circular and 

priority queues. Let’s discuss these structures in detail. 

 

5.5.1 Circular Queue 

As discussed earlier, in the case of a queue represented as an array, once the value 

of the rear reaches the maximum size of the queue, no more elements can be 

inserted. However, there may be the possibility that space on the left of the front 

index is vacant. Hence, in spite of the space on the left of the front is empty, the 

queue is considered to be full. This wastage of space in the array implementation of a 

queue can be avoided by shifting the elements to the beginning of the array if the 

space is available. In order to do this, the values of Rear and Front indices have to be 

changed accordingly. However, this is a complex process and is difficult to be 

implemented. An alternative solution to this problem is to implement a queue as a 

circular queue. 

The array implementation of a circular queue is similar to the array implementation 

of a general queue. The only difference is that in a circular queue, as soon as the rear 

index of the queue reaches the maximum size of the array, the Rear is reset to the 

beginning of the queue provided it is free. The circular queue is full only when all the 
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locations in the array are occupied. The circular queue is shown in Figure 5.4. 

  
Figure 5.4 A circular queue 

 

Note: A circular queue is generally implemented as an array, though it can also be 

implemented as a circular linked list. 

To understand the operations on a circular queue, consider a circular queue 

represented in the memory by the array CQueue[MAX]. Rear and Front are used to 

store the indices of the rear and front elements of CQueue, respectively. Initially, 

both Rear and Front are set to –1 to indicate an empty queue.  

Whenever an element is to be inserted in the circular queue, the Rear is incremented 

by one. However, if the value of the Rear index is MAX-1, instead of incrementing 

Rear, it is reset to the first index of the array if space is available in the beginning. 

Hence, if any locations to the left of the Front index are empty, the elements can be 

added to the queue at an index starting from 0.  

 

The queue is considered full in the following cases. 

● When the value of Rear equals the maximum size of the array and Front is at 

the beginning of the array. 

● When the value of the Front is one more than the value of the Rear. 

 

Whenever an element is to be deleted from the queue, the Front is incremented by 

one. However, if the value of Front is MAX-1, it is reset to the 0th position in the 

array. When the value of the Front is equal to the value of the Rear (other than –1), it 
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indicates that there is only one element in the queue. On deleting the last element, 

both Rear and Front are reset to –1 to indicate an empty queue. Figure 5.5 shows 

various states of the queue after some insert and delete operations. 
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Figure 5.5 Various States of a Circular Queue after Insert and Delete Operations 

 

The total number of elements in a circular queue at any point in time can be 

calculated from the current values of the Rear and the Front indices of the queue.  

● In case, Front<Rear, the total number of elements = Rear-Front+1. For 

instance, in Figure 5.6(a), Front=3 and Rear=7. Hence, the total number of 

elements in CQueue at this point in time is 7–3+1=5.  

● In case, Front>Rear, the total number of elements = Max +(Rear-Front)+1. 

For instance, in Figure 5.6(b), Front=3 and Rear=0. Hence, the total number of 

elements in CQueue is 8+(0–3)+1. 
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Figure 5.6 Number of Elements in a Circular Queue 

 

Algorithm 5.5 Insert Operation on Circular Queue 

qinsert(q, val) 

1. If ((q->Rear = MAX-1 AND q->Front = 0) OR (q->Rear + 1 = q->Front)) 

        Print “Overflow: Queue is full!” and go to step 5 

    End If                                                    //check if circular queue is full 

2. If q->Rear = MAX-1                              //check if rear is MAX-1 

        Set q->Rear = 0 

    Else 

        Set q->Rear = q->Rear + 1             //increment rear by one 

End If 

3. Set q->CQueue[q->Rear] = val          //val is the value to be inserted in the queue 

4. If q->Front = -1                                  //check if queue is empty 

        Set q->Front = 0 

    End If 

5. End 
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Algorithm 5.6 Delete Operation on Circular Queue 

qdelete(q) 

1. If q->Front = -1 

        Print “Underflow: Queue is empty!” 

        Return 0 and go to step 5 

    End If 

2. Set del_val = q->CQueue[q->Front]             //del_val is the value to be deleted 

3. If q->Front = q->Rear                                   //check if there is one element in the queue 

        Set q->Front = q->Rear = -1 

    Else 

        If q->Front = MAX-1 

             Set q->Front = 0 

        Else 

             Set q->Front = q->Front +1 

        End If 

    End If 

4. Return del_val 

5. End 

 

Program 5.3: A program to implement a circular queue. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 4 

#define True 1 

#define False 0 

typedef struct queue 

{ 

int CQueue[MAX]; 

int Front; 

int Rear; 

}que; 

/* Function prototypes */ 

void createqueue(que *); 

void qinsert(que *,int); 

int qdelete(que *); 

void qdisplay(que); 
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int isempty(que); 

int isfull(que); 

void main() 

{ 

que q; 

int choice,element,val; 

createqueue(&q); 

do 

{ 

clrscr(); 

printf(“\n\n\tMain Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Delete”); 

printf(“\n3. Exit\n”); 

printf(“\nEnter your choice: “); 

scanf(“%d”, &choice); 

switch(choice) 

{ 

case 1: printf(“\nEnter the value to be inserted: “); 

scanf(“%d”, &element); 

qinsert(&q, element); 

getch(); 

break; 

case 2: val=qdelete(&q); 

if(val==0) 

printf(“\nUnderflow: Queue is empty!”); 

else 

printf(“\nThe value of deleted item is: %d\n”, val); 

getch(); 

break; 

case 3: exit(); 

default: printf(“Invalid choice”); 

} 

} while(1); 

} 

void createqueue(que *q) 

{ 
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q->Front=q->Rear=-1; 

} 

void qinsert(que *q, int val) 

{ 

if(isfull(*q)) 

{ 

printf(“\nOverflow: Queue is full!”); 

return; 

} 

if(q->Rear==MAX-1) 

q->Rear=0; 

else 

(q->Rear)++; 

q->CQueue[q->Rear]=val; 

if(isempty(*q)) 

q->Front=0; 

qdisplay(*q); 

} 

int qdelete(que *q) 

{ 

int del_val; 

if(isempty(*q)) 

return 0; 

del_val=q->CQueue[q->Front]; 

if(q->Front==q->Rear) 

q->Front=q->Rear=-1; 

else 

{ 

if(q->Front==MAX-1) 

q->Front=0; 

else 

(q->Front)++; 

} 

return del_val; 

} 

void qdisplay(que q) 

{ 
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int i; 

printf(“\nFront: %d, Rear: %d”, q.Front, q.Rear); 

printf(“\n\nQueue is: “); 

if(q.Front<=q.Rear) 

for(i=q.Front; i<=q.Rear; i++) 

printf(“%d “, q.CQueue[i]); 

else 

{ 

for(i=0; i<=q.Rear; i++) 

printf(“%d “, q.CQueue[i]); 

for(i=q.Front; i<MAX; i++) 

printf(“%d “, q.CQueue[i]); 

} 

} 

int isempty(que q) 

{ 

if(q.Front==-1) 

return True; 

else 

return False; 

} 

int isfull(que q) 

{ 

if((q.Rear==MAX-1 && q.Front==0)||(q.Rear+1==q.Front)) 

return True; 

else 

return False; 

} 

 

The output of the program is: 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 1 
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Front: 0, Rear: 0 

Queue is: 1 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 2 

Front: 0, Rear: 1 

Queue is: 1 2 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 3 

Front: 0, Rear: 2 

Queue is: 1 2 3 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 2 

Deleted item is: 1 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 7 

Front: 1, Rear: 3 

Queue is: 2 3 7 

Main Menu 
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1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value to be inserted: 4 

Front: 1, Rear: 0 

Queue is: 4 2 3 7 

 

5.5.2 Priority Queue 

A priority queue is a type of queue in which each element is assigned a priority and 

the elements are added or removed according to that priority. While implementing a 

priority queue, the following two rules are applied. 

● The element with higher priority is processed before any element of lower 

priority. 

● The elements with the same priority are processed according to the order in 

which they were added to the queue. 

A priority queue can be represented in many ways. Here, we are discussing the 

implementation of the priority queue using multiple queues. 

 

Multiple Queue Implementation 

In multiple queue representation of the priority queue, a separate queue for each 

priority is maintained. Each queue is implemented as a circular array and has its 

own two variables, Front and Rear (Figure 5.7). The element with the given priority 

number is inserted in the corresponding queue. Similarly, whenever an element is to 

be deleted from the queue, it must be the element from the highest priority queue. 

Note that the lower priority number indicates higher priority. 
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Figure 5.7 Queue according to Priority 

 

If the size of each queue is the same, then instead of multiple one-dimensional 

arrays, a single two-dimensional array can be used where the row number shows the 

priority and the column number shows the position of the element within the queue. 

In addition, two arrays to keep track of the front and rear positions of each queue 

corresponding to each row are maintained (Figure 5.8). 

 
Figure 5.8 Priority Queue as a Two-Dimensional Array 
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Algorithm 5.7 Insert Operation in the Priority Queue 

qinsert(q, val, prno)                                       //prno is the priority of val 

1. If (q->Rear[prno] = MAX-1 AND q->Front[prno] = 0) OR (q->Rear[prno]+1 = q->Front[prno])             Print 

“Overflow: Queue full!” and go to step 5 

    End If 

2. If q->Rear[prno-1] = MAX-1 

        Set q->Rear[prno-1] = 0 

    Else 

       Set q->Rear[prno-1] = q->Rear[prno-1] + 1 

   End If 

3. Set q->CQueue[prno-1][q->Rear[prno-1]] = val 

4. If q->Front[prno-1] = -1 

        Set q->Front[prno-1] = 0 

    End If 

5. End 

 
Algorithm 5.8 Delete Operation in the Priority Queue 

qdelete(q) 

1. Set flag = 0, i = 0 

2. While i <= MAX-1 

              If NOT (q->Front[prno]) = -1                      //check if not empty 

                 Set flag = 1 

                 Set del_val = q->CQueue[i][q->Front[i]] 

              If q->Front[i] = q->Rear[i] 

                  Set q->Front[i] = q->Rear[i] = -1 

              Else If q->Front[i] = MAX-1 

                  Set q->Front[i] = 0 

              Else 

                  Set q->Front[i] = q->Front[i] + 1 

             End If 

            End If 

            break 

        End If 

        Set i = i +1 

    End While 

3. If flag = 0 
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       Return 0 and go to step 4 

    Else 

       Return del_val 

    End If 

4. End 

 

Program 5.4: A program to implement priority queue using multiple queues. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 5 

#define True 1 

#define False 0 

typedef struct queue 

{ 

int CQueue[MAX][MAX]; 

int Front[MAX]; 

int Rear[MAX]; 

}que; 

void createqueue(que *); 

void qinsert(que *, int, int); 

int qdelete(que *); 

void qdisplay(que, int); 

int isempty(que, int); 

int isfull(que, int); 

void main() 

{ 

que q; 

int choice,element,pno,val; 

createqueue(&q); 

do 

{ 

clrscr(); 

printf(“\n\n\tMain Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Delete”); 

printf(“\n3. Exit\n”); 

printf(“\nEnter your choice: “); 
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scanf(“%d”, &choice); 

switch(choice) 

{ 

case 1: printf(“\nEnter the value and its priority: “); 

scanf(“%d%d”, &element, &pno); 

qinsert(&q, element, pno); 

getch(); 

break; 

case 2: val=qdelete(&q); 

if(val==0) 

printf(“\nUnderflow: Queue is empty!”); 

else 

printf(“\nThe Deleted item is: %d\n”,val); 

getch(); 

break; 

case 3: exit(); 

default: printf(“Invalid choice”); 

} 

} while(1); 

} 

void createqueue(que *q) 

{ 

int i; 

for(i=0;i<MAX;i++) 

q->Front[i]=q->Rear[i]=-1; 

} 

int isempty(que q, int prno) 

{ 

if(q.Front[prno]==-1) 

return True; 

else 

return False; 

} 

int isfull(que q, int prno) 

{ 

if((q.Rear[prno]==MAX-1 && 

q.Front[prno]==0) || (q.Rear[prno]+1==q.Front[prno])) 
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return True; 

else 

return False; 

} 

void qinsert(que *q,int val,int prno) 

{ 

int j; 

if(isfull(*q, prno)) 

{ 

printf(“\nOverflow: Queue is full!”); 

return; 

} 

if(q->Rear[prno-1]==MAX-1) 

q->Rear[prno-1]=0; 

else 

(q->Rear[prno-1])++; 

q->CQueue[prno-1][q->Rear[prno-1]]=val; 

if(isempty(*q, prno)) 

q->Front[prno-1]=0; 

qdisplay(*q, prno); 

} 

int qdelete(que *q) 

{ 

int del_val, i, prno,flag=0; 

for(i=0;i<= MAX-1;i++) 

{ 

if(!isempty(*q,i)) 

{ 

flag=1; 

del_val=q->CQueue[i][q->Front[i]]; 

if(q->Front[i]==q->Rear[i]) 

q->Front[i]=q->Rear[i]=-1; 

else if(q->Front[i]==MAX-1) 

q->Front[i]=0; 

else 

q->Front[i]++; 

prno =i+1; 
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break; 

} 

} 

if(flag==0) 

return 0; 

else 

{ 

printf(“\nPriority of deleted item is: %d\n”,prno); 

return del_val; 

} 

} 

void qdisplay(que q, int prno) 

{ 

int i; 

printf(“\nFront: %d, Rear: %d”, q.Front[prno-1], q.Rear[prno-1]); 

printf(“\n\nQueue for prno %d is: “, prno); 

if(q.Front[prno-1]<=q.Rear[prno-1]) 

{ 

for(i=q.Front[prno-1]; 

i<=q.Rear[prno-1]; i++) 

printf(“%d “,q.CQueue[prno-1][i]); 

} 

else 

{ 

for(i=0; i<=q.Rear[prno-1]; i++) 

printf(“%d “, q.CQueue[prno-1][i]); 

for(i=q.Front[prno-1]; i<MAX; i++) 

printf(“%d “, q.CQueue[prno-1][i]); 

} 

} 

 

The output of the program is: 

Main Menu 

1. Insert 

2. Delete 

3. Exit 
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Enter your choice: 2 

Underflow: Queue is empty! 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value and its priority: 8 3 

Front: 0, Rear: 0 

Queue for prno 3 is: 8 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 1 

Enter the value and its priority: 9 4 

Front: 0, Rear: 0 

Queue for prno 4 is: 9 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 2 

The priority of deleted item is: 3 

The Deleted item is: 8 

Main Menu 

1. Insert 

2. Delete 

3. Exit 

Enter your choice: 3 

 

5.6 Summary 

● A queue refers to a linear data structure in which a new element is inserted at 



Other Data Structures 
 

158  
 

one end and the other element is deleted from the other end. It works on the 

principle of ‘first-in-first-out’ (FIFO). 

● Like stacks, queues can also be represented in memory by using an array or a 

singly-linked list. 

● Before we insert a new element in the queue, it is necessary to test the 

condition of overflow. Similarly, before we remove an item from the queue, it is 

necessary to test the condition of the underflow. 

● There are two types of queue structures: Circular queue and priority queue. 

● In a circular queue, as we go on adding elements to the queue and reach the 

end of the array, the next element is stored in the first position of the array (if 

it is free). 

● A priority queue is a data structure in which each element is assigned a 

priority and the elements are added or removed according to that priority. 

 

5.7 Key Terms 

● Queue: A linear data structure in which a new element is inserted at one end 

and the other element is deleted from the other end. 

● Circular queue: A data structure in which on adding elements to the queue 

and reaching the end of the array, the next element is stored in the first 

position of the array, if it is free. 

● Priority queue: A data structure in which each element is assigned a priority 

and the elements are added or removed according to that priority. 

● Dequeue: Process of deleting elements from the queue. 

● Enqueue: Process of inserting elements into a queue. 

 

5.8 Check Your Progress 

Short- Answer type 

Q1) A queue can be represented as an array as well as a linked list. (True/False?) 

Q2) For a queue implemented as an array, the initial values of the front and rear set 

to _______. 

Q3) A queue is a: 

(a) linear data structure (b) non-linear data structure  (c) Both (a) and (b) 

(d) None of the above 
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Q4) Which two rules are followed while implementing a priority queue? 

Q5) A ______ is a data structure in which each element is assigned a priority and the 

elements are added or removed according to that priority. 

 

Long- Answer type 

Q1) Write a short note on multiple queues implementation. 

Q2) Write an algorithm to insert an element in a circular queue. 

Q3) Differentiate between a circular queue and a priority queue. 

Q4) How can a queue be implemented using an array and a linked list? Explain. 

Q5) Write an algorithm to delete an element from a priority queue. 
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6.0 Introduction 

A tree is a widely used non-linear data structure. It resembles a hierarchical tree 

structure possessing a set of nodes that are linked to one another. Each node of a tree 

store a data value and has zero or more pointers pointing to the other nodes of the tree 

which are also known as its child nodes. A binary tree refers to a special type of tree 

that can be either empty or has a finite set of nodes. Binary trees are primarily of two 

types: complete binary tree and extended binary tree. This unit explains the various 

modes of binary tree representation, such as array representation and linked 

representation. 

This unit will also introduce you to the binary search tree and threaded binary tree. A 

binary search tree, also known as a binary sorted tree, is a kind of a binary tree in 

which the data value in each node is a key (unique) value, i.e., no two nodes can have 

identical values. The structure of the node of a threaded binary tree is similar to the 

node of a binary tree, with some additional variables indicating whether the left or 

right pointers are normal pointers or threads. 
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6.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Understand the definition and basic concepts of trees. 

● Explain a binary tree and the various terminologies associated with it. 

● Discuss the various forms and representations of binary trees. 

● Discuss the various operations on a binary tree. 

 

6.2 Basic Terminology of Trees 

A tree is a non-linear data structure representing a hierarchical structure of one or 

more elements known as nodes. Each node of a tree store a data value and has zero 

or more pointers pointing to the other nodes of the tree, which are also known as its 

child nodes. Each node in a tree can have zero or more child nodes located at one 

level below it. However, each child node can have only one parent node which is at one 

level above it. The node at the top of the tree is known as the root of the tree and the 

nodes at the lowest level are known as the leaf nodes. The root node is a special node 

having no parent node and leaf nodes are nodes having no child nodes. Any node 

having a child node as well as parent node is known as an internal node. 

 

 
Figure 6.1 Structure of a Tree 

 

Trees have the advantage of handling a lot of data together. The operations of 

insertion, deletion, sorting, etc. are more efficient in trees than in linear data 

structures like stacks, queues, and linked lists.  

Some of the important terms regarding trees are discussed below.  

● Node: A node is the main component of a tree. It stores actual data and links it 

to the other node. 

● Parent: The parent of a node is the immediate predecessor of that node. Here in 
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figure 6.1, 1 is the parent of 2, 3, 4, and 5. 

● Child: All the immediate successors of the parent node are known as Child. The 

child on the left side is called the left child and that on the right side is known 

as the right child. 

● Link: A pointer to a node in a tree is called a link. There may be more than two 

links of a node. 

● Root: The first node of a tree is called the root. A root does not have any parent. 

● Leaf: The end node which does not have any child is known as a leaf. It is also 

termed a terminal node. 

● Level: The ranking of the hierarchy of the tree is known as level. The root level 

is marked as 0. If a node is at level l, then its child is at level l+1 and its parent 

is at level l-1.  

● Height: The maximum number of nodes possible from the root node to a leaf 

node is termed as the height of a tree.  

● Degree: The maximum number of children that is possible for a node is known 

as the degree of a node.  

● Sibling: The nodes with the same parent nodes are called siblings.  

 

6.3 Binary Tree and its properties 

A binary tree is a special type of tree, which can be either empty or has a finite set of 

nodes, such that one of the nodes is designated as the root node and the remaining 

nodes are partitioned into two subtrees of root node known as left subtree and right 

subtree. The non-empty left subtree and the right subtree are also binary trees. Unlike 

a general tree, each node in a binary tree is restricted to have at most two child nodes. 

Consider a sample binary tree T shown in Figure 6.2. 

 
Figure 6.2 A Binary Tree 
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In this figure, the topmost node A is the root node of the tree T. Each node in this tree 

has zero or utmost two child nodes. The nodes A, B, and D have two child nodes, node 

C has only one child node, and nodes G, H, E and F are leaf nodes having no child 

nodes. The nodes B, C, D are internal nodes having the child as well as parent nodes. 

Before discussing binary trees in detail, let us discuss some basic terminologies that 

are used in association with binary trees (refer to Figure 6.2). 

● Ancestor and descendant: A node N1 is said to be an ancestor of node N2 if 

N1 is the parent node of N2 or parent of the parent node of N1, and so on, 

whereas node N2 is said to be a descendant of node N1. The node N2 is said to 

be the left descendant of node N1 if it belongs to the left subtree of N1 and is 

said to be the right descendant of N1 if it belongs to the right subtree of N1. In 

the binary tree, as shown in Figure 6.2, node A is the ancestor of node H, and 

node H is the left descendent of node A. 

● Degree of a node: The degree of a node is equal to the number of its child 

nodes. In the binary tree shown in Figure 6.2, the nodes A, B, and D have 

degree 2; node C has degree 1; and nodes G, H, E, and F have degree 0. 

● Level: Since the binary tree is a multilevel data structure, each node belongs to 

a particular level number. In the binary tree shown in Figure 6.2, the root node 

A belongs to level 0, its child nodes belong to level 1, child nodes of nodes B and 

C belong to level 2, and so on. 

● Depth (or height): Depth of the binary tree is the highest level number of any 

node in a binary tree. In the binary tree shown in Figure 6.2, the nodes G and H 

are nodes with the highest level number 3. Hence, the depth of the binary tree 

is 3. 

● Siblings: The nodes belonging to the same parent node are known as sibling 

nodes. In the binary tree shown in Figure 6.2, nodes B and C are sibling nodes 

as they have the same parent node, that is, A. Similarly, nodes D and E are also 

sibling nodes. 

● Edge: Edge is a line connecting any two nodes. In the binary tree shown in 

Figure 6.2, there exists an edge between nodes A and B, whereas there is no 

edge between nodes B and C. 

● Path: Path between the two nodes x and y is a sequence of consecutive edges 

being followed from node x to y. In the binary tree shown in Figure 6.2, the path 
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between the nodes A and H is A->B->D->H. Similarly, the path from A to F is A-

>C->F. 

There are various forms of binary trees that are formed by imposing certain 

restrictions on them. Some of the variations of binary trees are—complete binary tree 

and extended binary tree. 

 

Complete binary tree 

A binary tree is said to be a complete binary tree if all the leaf nodes of the tree are at 

the same level. Thus, the tree has a maximum number of nodes at all levels (see 

Figure 6.3). At any level n of a binary tree, there can be at the most 2 n nodes. That is, 

At n = 0, there can be at most 2 0 = 1 node. 

At n =1, there can be at most 2 1 = 2 nodes. 

At n = 2, there can be at most 2 2 = 4 nodes. 

: 

At level n, there can be at most 2 n nodes. 

 
Figure 6.3 Complete Binary Tree 

Extended binary tree 

A binary tree is said to be an extended binary tree (also known as 2-tree) if all of its 

nodes are of either a zero degree or two degrees. In this type of binary tree, the nodes 

with degree two (also known as internal nodes) are represented as circles, and nodes 

with degree zero (also known as external nodes) are represented as squares (Figure 

6.4). 
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Figure 6.4 Extended Binary Tree 

 

6.4 Representation of a Binary Tree 

Like stacks and queues, binary trees can also be represented in the memory in two 

ways: memory-array (sequential) representation and linked representation. In an array 

representation, memory is allocated at compile-time, while in linked representation, 

memory is allocated dynamically. 

 

6.4.1 Array Representation 

In an array representation, a binary tree is represented sequentially in memory by 

using a single one-dimensional array. A binary tree of height n may comprise utmost 2 

(n+1) -1 nodes, hence an array of maximum size 2 (n+1) -1 is used for representing 

such a tree. All the nodes of the tree are assigned a sequence number [from 0 to (2 

(n+1) -1)-1] level by level. In other words, the root node at level 0 is assigned a 

sequence number 0, then nodes at level 1 are assigned sequence number in ascending 

order from left to right, and so on. For example, the nodes of a binary tree of height 2, 

having 7 (2 (n+1) -1) nodes can be numbered as shown in Figure 6.5 (a). 

The numbers assigned to the nodes indicate the position (index value) of an array at 

which that particular node is stored. The array representation of this tree is shown in 

Figure 6.5 (b). It can be observed that if any node is stored at position p, then its left 

child node is stored at 2*p+1 position, and its right child node is stored at 2*p+2 

position. In Figure 6.5(b), for example, the node G is stored at position 1, its left child 

node D is stored at position 3 (2*1+1) and its right child node is stored at position 4 

(2*1+2). Note that if any of the nodes in the tree have empty subtrees (except the leaf 

nodes), the nodes forming the part of these empty subtrees are also numbered and 
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their values in the corresponding position in the array are NULL. 

 
Figure 6.5 Array Representation of a Binary Tree 

 

Consider an example, a binary tree is shown in Figure 6.6 (a). Its array representation 

is shown in Figure 6.6 (b). In this representation, an array of maximum size is 

declared (to accommodate the maximum number of nodes for a binary tree of a given 

height) before run-time which leads to a wastage of a lot of memory space in the case 

of unbalanced trees. 

 

 
Figure 6.6 Array Representation of Binary Tree with Empty subtrees 
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In unbalanced trees, the number of nodes is very small as compared to the maximum 

number of nodes for a given height. Consider, for example, an unbalanced tree is 

shown in Figure 6.7 (a). Since, this tree is of height 3, an array of size 14 ( 2 (3+1 -1 ) 

will be declared to store nodes of this tree. The array representation of this tree is 

shown in Figure 6.7 (b). 

 

 
Figure 6.7 Array Representation of an Unbalanced Binary Tree 

 

It can be observed from this array representation that most of the array positions are 

NULL, leading to wastage of memory space. Due to this disadvantage of array 

representation of binary trees, the linked representation of binary trees is preferred. 

 

6.4.2 Linked Representation 

Linked representation is one of the most common and important ways of representing 

a binary tree in memory. The linked representation of a binary tree is implemented by 

using a linked list having an info part and two pointers. The info part contains the 

data value and two pointers, left and right, are used to point to the left and right 

subtree of a node, respectively. The structure of such a node is shown in Figure 6.8. 
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Figure 6.8 Structure of a Node of a Binary Tree 

 

To define a node of a binary tree in ‘C’ language, a self-referential structure can be 

used whose definition is as follows. 

typedef struct node 

{ 

int info; 

struct node *left; 

struct node *right; 

}Node; 

 

In linked representation, a pointer variable Root of Node type is used to point to the 

root node of a tree. The root variable is used for accessing the root and the subsequent 

nodes of a binary tree. Since the binary tree is empty in the beginning, the pointer 

variable Root is initialized with NULL. The linked representation of a sample binary 

tree is shown in Figure 6.9. 

 
Figure 6.9 Linked Representation of a Binary Tree 
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6.5 Binary Tree Traversals 

Traversing a binary tree refers to the process of visiting each and every node of the tree 

exactly once. The three different ways in which a tree can be traversed are—in-order, 

pre-order, and post-order traversals. The main difference in these traversal methods is 

based on the order in which the root node is visited. Note that in all the traversals the 

left subtree is always traversed before the traversal of the right subtree. To understand 

these traversal methods, consider a simple binary tree T, shown in Figure 6.10. 

 

 
Figure 6.10 A simple Binary Tree T 

Pre-order 

In pre-order traversal, the root node is visited before traversing its left and right 

subtrees. Steps for traversing a non-empty binary tree in pre-order are: 

1. Visit the root node R. 

2. Traverse the left subtree of root node R in pre-order. 

3. Traverse the right subtree of root node R in pre-order. 

In the binary tree T (shown in Figure 6.10), for example, the root node A is traversed 

before traversing its left subtree and right subtree. In the left subtree T1, the root node 

B (of left subtree T1) is traversed before traversing the nodes D and E. After traversing 

the root node of binary tree T and traversing the left subtree T1, the right subtree T2 is 

also traversed following the same procedure. Hence, the resultant pre-order traversal 

of the binary tree T is A, B, D, E, C, F, G. 

 

In-order 

In in-order traversal, the root node is visited after the traversal of its left subtree and 

before the traversal of its right subtree. Steps for traversing a non-empty binary tree in 

in-order are: 

1. Traverse the left subtree of root node R in in-order. 
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2. Visit the root node R. 

3. Traverse the right subtree of root node R in in-order. 

In the binary tree T (shown in Figure 6.10), for example, the left subtree T1 is traversed 

before traversing the root node A. In the left subtree T1, the node D is traversed before 

traversing its root node B (of left subtree T1). After traversing the node D and B, node 

E is traversed. Once the traversals of left subtree T1 and the root node A of binary tree 

Τ are complete, the right subtree T2 is traversed following the same procedure. Hence, 

the resultant in-order traversal of the binary tree T is D, B, E, A, F, C, G. 

 

Post-order 

In post-order traversal, the root node is visited after traversing its left and right 

subtrees. Steps for traversing a non-empty binary tree in post-order are: 

1. Traverse the left subtree of root node R in post-order. 

2. Traverse the right subtree of root node R in post-order. 

3. Visit the root node R. 

In binary tree T (shown in Figure 6.10), for example, the root node A is traversed after 

traversing its left subtree and right subtree. In the left subtree T1, the root node B (of 

left subtree T1) is traversed after traversing the nodes D and E. Similarly, the nodes of 

right subtree T2 are traversed following the same procedure. After traversing the left 

subtree (T1) and right subtree (T2), the root node A of binary tree T is traversed. Hence, 

the resultant post-order traversal of the binary tree T is D, E, B, F, G, C, A. 

In addition to these traversals, there is another way of traversing a tree known as 

level-order traversal. In this traversal, every node at one level is visited before moving 

onto the next level.  

 

6.6 Binary Search Tree 

A binary search tree, also known as a binary sorted tree, is a kind of a binary tree that 

satisfies the following conditions (Figure 6.11): 

1. The data value in each node is a key (unique) value, that is, no two nodes can 

have identical values. 

2. The data values in the nodes of the left subtree, if exists, are smaller than the 

value in the root node. 

3. The data values in the nodes of the right subtree, if exists, are greater than or 
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equal to the value in the root node. 

4. The left and right subtrees, if exist, are also binary search trees. 

 

In other words, values in the left subtree of a root node are smaller than the value of 

the root node, and values in the right subtree are greater than or equal to the value of 

the root node. This rule is applicable to all the subsequent subtrees in a binary search 

tree. In addition, each and every value in a binary search tree is unique, that is, no 

two nodes in it can have identical values. 

 

 
Figure 6.11 Binary Search Tree 

 

There are various operations that can be performed on the binary search trees. Some 

of these are search of a node, insertion of a new node, deletion of a node, and traversal 

of a tree. 

 

Searching a Node in Binary Search Tree 

Searching an element in a binary search tree is easy since the elements in this tree are 

arranged in sorted order. The element to be searched is compared with the value in 

the root node. If the element is smaller than the value in the root node, then the 

searching will proceed to the left subtree, and if the element is greater than the value 

in the root node, then the searching will proceed to the right subtree. This process is 

repeated until either the element to be searched is found or NULL value is 

encountered. 

Consider, for example, a sample binary search tree given in Figure 6.11. The steps to 

search element 45 are given here. 

1. Compare element 45 with the value in the root node (66). Since 45 is smaller 
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than 66, move to its left subtree. 

2. Compare element 45 with the value (40) appearing in the left subtree. Since 45 

is greater than 40, move to its right subtree. 

3. Now, compare element 45 with the value (50) appearing in the right subtree. 

Since 45 is smaller than 50, move to its left subtree. 

4. In the next step, compare element 45 with the value (45) appearing in the left 

subtree. Since 45 is equal to the value (45) stored in this node, the required 

element is found. Therefore, terminate the procedure. 

 

In case the value 48 is to be searched, the first four steps are the same. After step 4, 

the right subtree of 45 will be accessed. This is NULL indicating the end of the tree. 

Therefore, the element is not found in the tree and the search is unsuccessful. 

 

Algorithm 6.1 Searching in a Binary Search Tree 

search(item, ptr) 

1. If !(ptr) 

         Print "Element not found!" and go to step 3 

    End If 

2. If item < ptr->info 

        Call search(item, ptr->left) 

    Else If item > ptr->info 

        Call search(item, ptr->right) 

    Else 

        Print "Element found." 

    End If 

3. End 

 

Inserting a Node 

Insertion in a binary search tree is similar to the procedure for searching an element 

in a binary search tree. The difference is that in the case of insertion, an appropriate 

null pointer is searched where a new node can be inserted. The process of inserting a 

node in a binary search tree can be divided into two steps-in the first step, the tree is 

searched to determine the appropriate position where the node is to be inserted and 

in the second step, the node is inserted at this searched position. 
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There are two cases of insertion in a tree-first, insertion into an empty tree, and 

second insertion into a non-empty tree. In case the tree is initially empty, the new 

node to be inserted becomes its root node. In case the tree is non-empty, an 

appropriate position is determined for insertion. For this, first of all, the value in the 

new node is compared with the root node of the tree. If the value in the new node is 

less than the value in the root node, the new node is added as the left leaf if the left 

subtree is empty, otherwise, the search continues in the left subtree. On the other 

hand, if the value in the new node is greater than the value in the root node, the new 

node is added as the right leaf if the right subtree is empty, otherwise, the search 

continues in the right subtree. 

 

 
Figure 6.12 (a) A sample Binary Search Tree 

 
Figure 6.12 (b) Insertion of a node with value 20 
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Figure 6.12 (c) Insertion of a node with value 80 

 

Consider, for example, a sample binary search tree is shown in Figure 6.12 (a). For 

inserting elements 20 and 80, follow the steps given here. 

 

Steps for inserting element 20 are as follows: 

1. Compare 20 with the value in the root node, that is, 66. Since 20 is smaller 

than 66, move to the left subtree. 

2. Finding that the left pointer of the root node is non-null, compare 20 with the 

value (40) in this node. Since 20 is smaller than 40, move to the left subtree. 

3. Again, as the left pointer of the current node is non-null, compare 20 with the 

value (30) in this node. Since 20 is smaller than 30, move to the left subtree. 

4. Now, the left pointer is null, thus 20 will be inserted at this position. After 

insertion, the tree will appear as shown in Figure 6.12 (b). 

 

Steps for inserting element 80 are as follows: 

1. Compare 80 with the value in root node 66. Since 80 is greater than 66, move 

to the right subtree. 

2. Finding that the right pointer of the root node is non-null, compare 80 with 

the value (90) in this node. Since 80 is smaller than 90, move to the left 

subtree. 

3. Again, as the left pointer of the current node is non-null, compare 80 with the 

value (75) in this node. Since 80 is greater than 75, move to the right subtree. 

4. Now, the right pointer is null, thus 80 will be inserted at this position. After 

insertion, the tree will appear as shown in Figure 6.12 (c). 
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Algorithm 6.2 Insertion into a Binary Search Tree 
insert_node(item, ptr) 

1. If !(ptr) 

        Allocate memory for ptr 

        Set ptr->info = item 

        Set ptr->left = NULL 

        Set ptr->right = NULL 

    Else 

         If item < ptr->info 

                  Call insert_node(item, ptr->left) 

         Else 

                  Call insert_node(item, ptr->right) 

         End If 

    End If 

2. End 

 

Deleting a Node in Binary Search Tree 

Deletion of a node from a binary search tree involves two steps—first, searching the 

desired node, and second, deleting the node. Whenever a node is deleted from a tree, 

it must be ensured that the tree remains a binary search tree, that is, the sorted 

order of the tree must not be disturbed. The node being deleted may have zero, one, 

or two child nodes. On the basis of the number of child nodes of the node to be 

deleted, there are three cases of deletion which are discussed here. 

 

Case 1: If the node to be deleted has no child node, it is deleted by making its 

parent’s pointer pointing to NULL and de-allocating memory allocated to it. The node 

with value 75, for example, is to be deleted from the tree shown in Figure 6.13 (a). 

Since this node has no child node, its parent’s (90) left pointer will be made to point 

to NULL and the memory space of the node (75) is de-allocated. 

 

Case 2: If the node to be deleted has only one child node, it is deleted by adjusting its 

parent’s pointer pointing to its only child and deallocating memory allocated to it. 

The node, for example, with value 110 is to be deleted from the tree shown in Figure 

6.13 (b). Since this node has one child node, its parent’s (90) right pointer will be 

made to point to its child node (120) and the memory space of the node (110) is 

deallocated. 
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Case 3: If the node to be deleted has two child nodes, it is deleted by replacing its 

value by the largest value in the left subtree (in-order predecessor) or by the smallest 

value in the right subtree (in-order successor). The node whose value is used for 

replacement is then deleted using case 1 or case 2. 

 
Figure 6.13 (a) Deletion of a Node with No Child Node 

 
Figure 6.13 (b) Deletion of a Node with Only One Child 

 
Figure 6.13 (c) Deletion of a Node with Two Child Nodes 

 

The node, for example, with the value 40 is to be deleted from the tree shown in 

Figure 6.13 (c). Since this node has two subtrees or child nodes, a value has to be 

searched from its subtrees which can be used for its replacement. The value that will 
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be used for replacement can either be the largest value from its left subtree (35) or 

the smallest value from its right subtree (45). Suppose the value 35 is selected for 

this purpose, then the value 35 is copied in the node with the value 40. After this, 

the right pointer of the parent node (30) of the node used for replacement (35) is 

made to point to NULL, and memory allocated to the node with value 35 is de-

allocated. As a result of the deletion of this node, the order of the tree is maintained. 

The final structure of the tree after the deletion of node 40 will be as shown in Figure 

6.14. 

 
Figure 6.14 Binary Search Tree after Deletion 

 
Algorithm 6.3 Deletion from Binary Search Tree 

del_node(item, ptr) 

1. If !(ptr) 

         Print "Item does not exist." and go to step 3 

2. If item < ptr->info 

        Call del_node(item,&(ptr->left)) 

    Else 

        If item > ptr->info 

               Call del_node(item,&(ptr->right)) 

        Else 

               If item = ptr->info 

                      Set save = ptr 

               If save->right = NULL 

                      Set ptr = save->left 

                      Deallocate save 

               Else 

                      If save->left = NULL 

                      Set ptr = save->right 
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                      Deallocate save 

               Else 

                     Call del(&(save->left),save) 

               End If 

           End If 

       End If 

    End If 

    End If 

3. End 

del(p, q)                              //q is the node to be deleted, p is the node whose value is used                    for 

replacing the value in q and p is de-allocated 

1. If p->right != NULL 

            Call del(&(p->right),q) 

    Else 

            Set delnode = p 

            Set q->info = p->info 

            Set p = p->left 

            Deallocate delnode 

    End If 

2. End 

 

Traversals in Binary Search Tree 

Traversing a binary search tree is the same as traversing a binary tree. In other words, 

binary search trees can also be traversed in three different ways—pre-order, in-order, 

and post-order. It can be observed that when a binary search tree is traversed in-

order, it results in the sequence of elements in ascending order. The algorithms for 

traversing trees in pre-order, in-order, and post-order are recursive in nature, which 

are given below. 

 
Algorithm 6.4 Pre-order Traversal in Binary Search Tree 

preorder(ptr) 

1. If ptr != NULL 

            Print ptr->info                 //ptr is temporary pointer initialised with Root 

            Call preorder(ptr->left) 

            Call preorder(ptr->right) 

    End If 

2. End 
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Algorithm 6.5 In-order Traversal in Binary Search Tree 

inorder(ptr) 

1. If ptr != NULL 

            Call inorder(ptr->left)     //ptr is temporary pointer initialised with Root 

            Print ptr->info 

            Call inorder(ptr->right) 

    End If 

2. End 

 

Algorithm 6.6 Post-order Traversal in Binary Search Tree 

postorder(ptr) 

1. If ptr != NULL 

            Call postorder(ptr->left)       //ptr is temporary pointer initialised with Root 

            Call postorder(ptr->right) 

            Print ptr->info 

    End If 

2. End 

 

Program 6.1: A program to illustrate various operations performed on binary search 

tree [In case of deletion of a node with two child nodes, the largest value from left 

subtree (in-order predecessor) is used for replacement]. 

#include<stdio.h> 

#include<conio.h> 

typedef struct node { 

int info; 

struct node *left; 

struct node *right; 

}Node; 

int nodes, leaves; 

/*Function prototypes*/ 

void insert_node(int, Node **); 

void search(int, Node *); 
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void print_treeform(Node *, int); 

void preorder(Node *); 

void inorder(Node *); 

void postorder(Node *); 

void count_nodes(Node *); 

void count_leaves(Node *); 

void del(Node **, Node *); 

void del_node(int, Node **); 

void main() 

{ 

int choice, n; 

Node *root=NULL; 

do 

{ 

clrscr(); 

printf(“\nMain Menu”); 

printf(“\n1. Insert”); 

printf(“\n2. Display in tree form”); 

printf(“\n3. Pre-order traversal of tree”); 

printf(“\n4. In-order traversal of tree”); 

printf(“\n5. Post-order traversal of tree”); 

printf(“\n6. Number of nodes”); 

printf(“\n7. Number of leaves”); 

printf(“\n8. Searching”); 

printf(“\n9. Delete”); 

printf(“\n10.Exit”); 

printf(“\nEnter your choice . . . “); 

scanf(“%d”, &choice); 

switch(choice) 

{ 

case 1 : printf(“\nEnter data for new node:“); 

scanf(“%d”, &n); 

insert_node(n, &root); 

Break; 

case 2 : printf(“\nTree in tree form —>\n”); 

if(!root) 

print_treeform(root, 1); 
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else 

printf(“Tree is empty!!”); 

break; 

case 3 : printf(“\nPre-order traversal of tree —>\n\n”); 

if(!root) 

preorder(root); 

else 

printf(“Tree is empty!!”); 

break; 

case 4 : printf(“\nIn-order traversal of tree —>\n\n”); 

if(!root) 

inorder(root); 

else 

printf(“Tree is empty!!”); 

break; 

case 5 : printf(“\nPost-order traversal of tree —>\n\n”); 

if(!root) 

postorder(root); 

else 

printf(“Tree is empty!!”); 

break; 

case 6 : if(root==NULL) 

nodes=0; 

else 

nodes=1; 

count_nodes(root); 

printf(“\nNumber of nodes are : %d”, nodes); 

break; 

case 7 : leaves=0; 

count_leaves(root); 

printf(“\nNumber of leaves are : %d”, leaves); 

break; 

case 8 : printf(“\nEnter value of node to be searched : “); 

scanf(“%d”, &n); 

search(n, root); 

break; 

case 9 : printf(“\nEnter value of node to be deleted : “); 
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scanf(“%d”, &n); 

del_node(n, &root); 

break; 

case 10 : printf(“\nNormal termination of program.”); 

break; 

default : printf(“\nWrong Choice !!”); 

} 

getch(); 

}while(choice!=10); 

} 

/*Function to insert node in a tree*/ 

void insert_node(int item, Node **ptr) 

{ 

if(!(*ptr)) 

{ 

(*ptr)=(Node*) malloc(sizeof(Node)); 

(*ptr)->info=item; 

(*ptr)->left=NULL; 

(*ptr)->right=NULL; 

} 

if(item<(*ptr)->info) 

insert_node(item,&((*ptr)->left)); 

else if(item>(*ptr)->info) 

insert_node(item,&((*ptr)->right)); 

} 

/*Function to print tree in tree format*/ 

void print_treeform(Node *ptr, int level) 

{ 

int i; 

if(ptr) 

{ 

print_treeform(ptr->right, level+1); 

printf(“\n”); 

for(i=0;i<level;i++) 

printf(“ “); 

printf(“%d”, ptr->info); 

print_treeform(ptr->left, level+1); 
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} 

} 

/*Function to print tree in pre-order*/ 

void preorder(Node *ptr) 

{ 

if(ptr) 

{ 

printf(“%d “, ptr->info); 

preorder(ptr->left); 

preorder(ptr->right); 

} 

} 

/*Function to print tree in in-order*/ 

void inorder(Node *ptr) 

{ 

if(ptr) 

{ 

inorder(ptr->left); 

printf(“%d “, ptr->info); 

inorder(ptr->right); 

} 

} 

/*Function to print tree in post-order*/ 

void postorder(Node *ptr) 

{ 

if(ptr) 

{ 

postorder(ptr->left); 

postorder(ptr->right); 

printf(“%d “, ptr->info); 

} 

} 

/*Function to count number of nodes in a tree*/ 

void count_nodes(Node *ptr) 

{ 

if(ptr != NULL) 

{ 
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if(ptr->left != NULL) 

{ 

nodes++; 

count_nodes(ptr->left); 

} 

if(ptr->right != NULL) 

{ 

nodes++; 

count_nodes(ptr->right); 

} 

} 

} 

/*Function to count number of leaves in a tree*/ 

void count_leaves(Node *ptr) 

{ 

if(ptr != NULL) 

{ 

if((ptr->left==NULL) && (ptr->right==NULL)) 

leaves++; 

else 

count_leaves(ptr->left); 

count_leaves(ptr->right); 

} 

} 

/*Function to search a node in a tree*/ 

void search(int item, Node *ptr) 

{ 

if(!ptr) 

{ 

printf(“Element not found.”); 

return; 

} 

else if(item<ptr->info) 

search(item, ptr->left); 

else if(item>ptr->info) 

search(item, ptr->right); 

else 
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{ 

printf(“Element found.”); 

} 

} 

/*Function to delete a node from tree*/ 

void del_node(int item, Node **ptr) 

{ 

Node *save; 

if(!(*ptr)) 

{ 

printf(“\nItem does not exist.”); 

return; 

} 

else 

{ 

if(item<(*ptr)->info) 

del_node(item, &((*ptr)->left)); 

else 

if(item>(*ptr)->info) 

del_node(item, &((*ptr)->right)); 

else if(item==(*ptr)->info) 

{ 

save=*ptr; 

if(save->right==NULL) 

{ 

*ptr=save->left; 

free(save); 

} 

else 

if(save->left==NULL) 

{ 

*ptr=save->right; 

free(save); 

} 

else 

del(&(save->left), save); 

} 
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} 

return; 

} 

/*Called from Del_node() function to delete nodes with child nodes*/ 

void del(Node **p, Node *q) 

{ 

Node *delnode; 

if((*p)->right != NULL) 

del(&((*p)->right), q); 

else 

{ 

delnode=*p; 

q->info=(*p)->info; 

*p=(*p)->left; 

free(delnode); 

} 

return; 

} 

 

The output of the program is: 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 1 

Enter data for new node: 66 

: /* Similarly insert values 40 90 30 50 75 110 20 35 45 55 70 80 100 120 in this: order*/ 

Main Menu 
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1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 2 

Tree in tree form —> 

120 

110 

100 

90 

80 

75 

70 

66 

55 

50 

45 

40 

35 

30 

20 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 
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6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 3 

Pre-order traversal of tree —> 

66 40 30 20 35 50 45 55 90 75 70 80 110 100 120 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 4 

In-order traversal of tree —> 

20 30 35 40 45 50 55 66 70 75 80 90 100 110 120 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 
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Enter your choice . . . 5 

Post-order traversal of tree —> 

20 35 30 45 55 50 40 70 80 75 100 120 110 90 66 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 6 

Number of nodes are: 15 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 7 

Number of leaves are: 8 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 
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4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 8 

Enter value of node to be searched: 120 

Element found. 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 9 

Enter value of node to be deleted: 70 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 



Other Data Structures 
 

191  
 

10. Exit 

Enter your choice . . . 9 

Enter value of node to be deleted: 75 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 2 

Tree in tree form —> 

120 

110 

100 

90 

80 

66 

55 

50 

45 

40 

35 

30 

20 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 
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4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 9 

Enter value of node to be deleted: 40 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 2 

Tree in tree form —> 

120 

110 

100 

90 

80 

66 

55 

50 

45 

35 

30 
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20 

 

 

Main Menu 

1. Insert 

2. Display in tree form 

3. Pre-order traversal of tree 

4. In-order traversal of tree 

5. Post-order traversal of tree 

6. Number of nodes 

7. Number of leaves 

8. Searching 

9. Delete 

10. Exit 

Enter your choice . . . 10 

Normal termination of program. 

 

6.7 Threaded Binary Tree 

One of the most common operations that are performed on the trees is the traversal of 

nodes. Hence, it is required to make this operation more efficient. This can be 

achieved by utilizing space occupied by the NULL pointers in the leaf nodes and 

internal nodes having only one child node. These pointers can be modified to point to 

their corresponding in-order successor, in-order predecessor, or both. These modified 

pointers are known as threads and binary trees having such types of pointers are 

known as threaded binary trees. 

The different types of threaded binary trees are as follows (see Figure 6.15, threads 

denoted by dotted lines): 

● Right-threaded binary tree: In this tree, the right NULL pointer of each node 

(not having the right child node) points to its in-order successor. Such a right 

NULL pointer is known as the right thread. In this tree, only the right pointer of 

the rightmost node [F, see Figure 6.15 (a)] will be a NULL pointer and all the left 

NULL pointers will remain NULL. 

● Left-threaded binary tree: In this tree, the left NULL pointer of each node (not 
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having a left child node) points to its in-order predecessor. Such a left NULL 

pointer is known as a left thread. In this tree, only the left pointer of the 

leftmost node [G, see Figure 6.15(b)] will be a NULL pointer, and all right NULL 

pointers will remain NULL. 

● Full-threaded binary tree: In this tree, both right and left NULL pointers, point 

to their in-order successor and in-order predecessor, respectively. In this tree, 

both the right pointer of the rightmost node (F) and the left pointer of the 

leftmost node (G) will be a NULL pointer. 

 
Figure 6.15 Types of Threaded Binary Tree 

 

This way of threading the binary trees corresponds to the in-order traversal of the tree. 

Similarly, there can be threaded binary trees corresponding to the pre-order traversal 

of trees. However, there is no threaded binary tree corresponding to the post-order 

traversal of the tree. Threaded binary trees can also be categorized on the basis of the 

number of threads being used. A threaded binary tree in which only one thread is 

used is known as a one-way threaded binary tree, whereas a threaded binary tree in 

which two threads are used is known as a two-way threaded binary tree. 

The structure of the node of a threaded binary tree is similar to the node of a binary 
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tree, with some additional variables, indicating whether the left or right pointers are 

normal pointers or threads. To define a node of a full-threaded binary tree in ‘C’ 

language, a self-referential structure can be used whose definition is given here. 

typedef struct node 

{ 

int info; 

struct node *left; 

char lthread; 

struct node *right; 

char rthread; 

}; 

 

The variables lthread and rthread are used to indicate whether the left and right 

pointers are normal pointers or threads. The value ‘1’ is stored in these variables to 

indicate that the corresponding left and right pointers are normal pointers and the 

value ‘0’ indicates that the corresponding variables will be used as threads. In the case 

of the right-threaded binary tree and left-threaded binary tree, only corresponding 

variables are included in the structure of the node. The linked representation of a full-

threaded binary tree is shown in Figure 6.16. 

 
Figure 6.16 Storage Representation of Full-threaded Binary Tree 

 

6.8 Summary 

● A tree is a non-linear data structure representing a hierarchical structure of 

one or more elements known as nodes. 

● The node at the top of the tree is known as the root of the tree and the nodes at 
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the lowest level are known as the leaf nodes. 

● The binary tree is a special type of tree that can be either empty or has a finite 

set of nodes, such that one of the nodes is designated as the root node and the 

remaining nodes are partitioned into two subtrees of the root node, known as 

left subtree and right subtree. 

● A binary tree is said to be an extended binary tree (also known as 2-tree) if all of 

its nodes are of either zero or two degrees. 

● Trees can be represented using an array or a linked list. An array 

representation binary trees are represented sequentially in memory, by using a 

single one-dimensional array. The linked representation of a binary tree is 

implemented by using a linked list having an info part and two pointers. The 

info part contains the data value and two pointers, left and right, are used to 

point to the left and right subtree of a node, respectively. 

● A binary search tree, also known as a binary sorted tree, is a kind of a binary 

tree in which values in the left subtree of a root node are smaller than the value 

of the root node, and values in the right subtree are greater than the value of 

the root node. 

● In a threaded binary tree, the NULL pointers are modified to point to their in-

order successor or in-order predecessor or both. It can be of three types, right-

threaded binary tree, left-threaded binary tree, and full-threaded binary tree. 

 

6.9 Key Terms 

● Complete binary tree: A binary tree in which all the leaf nodes of the tree are 

at the same level. 

● Traversing in a binary tree: The process of visiting each and every node of the 

tree exactly once. 

● Depth (or height): Depth of the binary tree is the highest level number of any 

node in a binary tree. 

● Degree of a node: The degree of a node is equal to the number of its child 

nodes.  

● One-way threaded binary tree: Threaded binary tree in which only one thread 

is used. 
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6.10 Check Your Progress 

Short- Answer type 

Q1) A binary tree could either have only a root node or have two disjoint binary trees 

called the left subtree or the right subtree. (True/ False? ) 

Q2) The nodes which have the same parent node are known as .................. 

(i) Root  (ii) Siblings  (iii) Left nodes  (iv) Right nodes 

Q3) Differentiate between a one- way threaded binary tree and a two-way threaded 

binary tree. 

Q4) When a binary search tree is traversed in _________, it results in a sequence of the 

elements in ascending order. 

Q5) The node at the top of the tree is known as the _________ of the tree and the nodes 

at the lowest level are known as the ________. 

Long- Answer type 

Q1) Differentiate between an extended binary tree and a complete binary tree. 

Q2) Write an algorithm for inserting an element into a binary search tree. 

Q3) What are the different types of threaded binary trees? Explain in detail. 

Q4) Define the following: 

(i) Root node  (ii) Leaf node  (iii) Internal node  (iv) Edge 

Q5) Write short notes on the array and linked representations of a binary tree. 
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 7.6.3 Kruskal’s Algorithm 

 7.6.4 Dijkstra’s Algorithm 

7.7 Summary 

7.8 Key Terms 

7.9 Check Your Progress 

 

7.0 Introduction 

Another important non-linear data structure is Graphs. Graph structures can be 

easily related to the real world. For example, the airlines or railways network of the 

different cities can be represented using graph structures. The relation between the 

two variables can be depicted using different types of graph structures. Even the 

maps are also special kinds of graph structures that are very commonly used in day 

to day life. 
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A graph is a non-linear abstract data structure that is used to implement any 

relational or mathematical concepts of the entities. Simply, a graph is defined as a 

collection of vertices or nodes and edges. It is interesting to note that Trees are also a 

special kind of graph data structure. The relationship between the two nodes in a 

graph is less restricted than in trees. The nodes in trees follow one parent to many 

children relationship while in the case of graphs, the relationship of nodes is from 

many parents to many children.  

This unit explains the fundamentals of graph data structures, different graph 

terminologies, representations, operations, and applications of graphs. 

 

7.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Explain the fundamentals of Graphs. 

● Understand its terminologies and different representations. 

● Learn about the distinct operations of graph structures. 

● Discuss the various applications of graphs. 

 

7.2 Graph Terminologies 

To learn about various terminologies of a graph structure, let us consider a graph G 

with an ordered set (V, E), where V(G) depicts the set of vertices and E(G) depicts the 

edges that connect the vertices. Figure 7.1 represents graph G with V(G) =  {A, B, C, 

D and E} and E(G) = {(A, B), (B, C), (A, D), (B, D), (D, E), (C, E)}. It should be noted 

that there are five vertices or nodes and six edges in the graph.  

 
Figure 7.1 An example of a graph 

 

Some of the important terms regarding trees are discussed below.  

● Adjacent nodes or neighbors:  For every edge, E = (p, q) that connects nodes 

p and q, the nodes p and q are said to be the adjacent nodes or neighbors. 

● Degree of a node: Degree of a node p, deg(p), is the total number of edges 
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containing the node p. If deg(p) = 0, it means that p does not belong to any 

edge and such a node is known as an isolated node. 

● Regular graph: A graph where each vertex has the same number of neighbors 

i.e., every node has the same degree. A regular graph with vertices of degree k 

is called a k–regular graph or a regular graph of degree k. Figure 7.2 shows the 

regular graphs. 

 
Figure 7.2 Regular Graphs 

● Path: A path P = {v0 , v1 , v2 , ..., vn), of length n from a node u to v is defined 

as a sequence of (n+1) nodes. Here, u = v0, v = vn and vi+1 is adjacent to vi for i 

= 1, 2, 3,..,n. 

● Closed path: A path P is termed as a closed path if the edge has the same 

end-points, i.e. if v0 = vn. 

● Simple path: A path P is termed as a simple path if all the nodes in the path 

are distinct with the exception that v0 may be equal to vn. If v0 = vn, then the 

path is called a closed simple path. 

● Cycle: A path in which the first and the last vertices are the same, forms a 

cycle. There are no repeated edges or other vertices (except the first and last 

vertices) in a simple cycle. 

● Connected graph: If any two vertices (u, v) in V are connected through a path 

from u to v, it is known as a connected graph. There are no isolated nodes in a 

connected graph. A connected graph with no cycle is called a tree.  

● Complete graph: If all the vertices or nodes of a graph are fully connected, 

then it is said to be complete. It should be noted that in a complete graph, 

there is a path from one node to every other node. A complete graph has n(n–

1)/2 edges, where n is the number of nodes in G. 

● Size of a graph: The size of a graph is the total number of edges in it. 

● Multiple edges: Distinct edges that connect the same end-points are called 



Other Data Structures 
 

201  
 

multiple edges.  

 

7.3 Types of Graphs 

Graphs provide an advantage to represent complex data in the simplest forms. 

Accordingly, there are distinct graphs and their components in graph theory. There 

are different criteria to classify graphs.  

7.3.1 Classification on the basis of Edge Connectivity 

On the basis of edge connectivity, there are four types of graphs. 

1. Simple Graphs: A simple graph connects only a pair of vertices or nodes in a 

graph containing vertices and edges. A simple graph is specified by its set of 

vertices and a set of edges. The set of edges is treated as a set of unordered 

pairs of vertices, like e=(u,v) (or e=(v,u)). Here, u & v are the endpoints of an 

edge, also known as adjacent nodes or neighbors. 

Simple graphs are most widely used in graph theory. Most of the algorithms 

and applications are developed using simple graphs only.  

2. Multi- Graphs: A graph that contains multiple edges between a pair of vertices 

is called a multi- graph. It can be represented in figure 7.3. 

 
Figure 7.3 An example of Multigraph 

3. Graph with Loops: A graph that permits loops that starts and ends at the 

same vertex is called a graph with loops. It can even contain self-loop, then it 

is known as a graph with self-loop. Figure 7.4 shows a graph with a self-loop 

at vertex v. 

 
Figure 7.4 A graph with self-loop 

4. Hypergraph: In a hypergraph, an edge can connect one or more vertices (even 

more than two). This edge is called hyperedge. Figure 7.4 shows a hypergraph 

with 5 vertices and 4 hyperedges.  
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Figure 7.5 A hypergraph with 4 hyperedges 

 

7.3.2 Classification on the basis of Direction 

The graphs can be classified on the basis of the direction of the edges. The origin of 

an edge is from one vertex and ends at another vertex. An arrow indicates the 

direction of an edge. According to the direction, graphs can be directed or undirected. 

1. Directed Graphs: In a directed graph, an arrow at the end vertex of an edge 

indicates its direction. The edge is considered as in-degree of the vertex where 

the arrow of the edge ends and the edge is considered as out-degree where the 

edge starts. Figure 7.6 shows a directed graph. 

    
Figure 7.6 A directed graph 

2. Undirected Graphs: In an undirected graph, there is no direction of the edge. 

The edge is considered in the degree of both the vertices. When not specified, 

the graph is considered to be an undirected graph. Figure 7.3 is an undirected 

graph where the direction of the edge is not specified.  

 

7.3.3 Classification on the basis of Weight or Label 

According to the requirement of any problem, the edges of the graphs are assigned a 

certain value or number that is termed as the weight or label of that edge. The total 

weight of the graph can also be calculated when required. On the basis of weight, 

graphs can be classified into four types. 

1. Unlabelled Graphs: In an unlabelled graph, the vertices are not assigned any 

names rather each vertex is treated equal. 

2. Labelled Graphs: In a labelled graph, a unique name is assigned to every 
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vertex of the graph.  

3. Unweighted Graphs: In an unweighted graph, the edges are connected to the 

adjacent vertices only. The edges or vertices are not assigned any number. 

4. Weighted Graphs: In a weighted graph, each vertex or edge is assigned a 

number. This number represents a parameter of interest. Depending on the 

problem, this number could be distance, cost, capacity, etc. The weighted 

graphs can be further classified into six types, as discussed below: 

● Edge weighted graph: When the weight is associated with the edges of the 

graph, then it is an edge-weighted graph. It is shown in figure 7.7(a). 

● Vertex weighted graph: When the weight is associated with the vertices of 

the graph, then it is a vertex weighted graph. It is shown in figure 7.7(b). 

● Positive weights: The weights associated with edges or vertices are positive 

integers then they are positive weights. In figure 7.7(a), all edges except 

edge(w,z) represent positive weights. 

● Negative weights: The weights associated with edges or vertices are 

negative integers then they are negative weights. In figure 7.7(a), edge(w,z) 

represents negative weights. 

● Additive weights: There is a need to compute the total weight of the graph 

while traversing the edges or vertices of the graph. For additive 

computation, the weights associated with the edges or vertices are added. 

For example, in figure 7.7(a), traversing u to v to w costs 12 if the weights 

are additive. 

● Multiplicative weights: The weights of the edges or vertices of a graph can 

be multiplicative too. In other words, the total cost of traversal can be 

computed by multiplying weights of edges or vertices. For example, in 

figure 7.7(a), traversing u to v to w costs 20 if the weights are 

multiplicative. 

 
Figure 7.7 (a) Edge weighted graph (b) Vertex weighted graph 
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7.3.4 Classification on the basis of Connectivity 

On the basis of connectivity, the graphs can be classified as connected and 

disconnected graphs. 

1. Connected Graphs: A graph is said to be a connected graph when every vertex 

is reachable from any other vertex by traversing the edges. A connected graph is 

shown in figure 7.3 in which every vertex is reachable from every other vertex 

through a set of edges. For example, vertex z is reachable from vertex v through 

edges (v,w) and (w,z). 

2. Disconnected Graphs: A graph in which certain vertices are not reachable from 

other vertices through any set of edges, is known as a disconnected graph. 

Figure 7.8 shows a disconnected graph in which vertex b and d are not 

connected through any set of edges of the graph.  

 
Figure 7.8 A disconnected graph 

 

7.4 Representation of Graphs 

The graphs can be represented in various ways in the computer's memory. Some of 

these graph representations are discussed below. 

 

7.4.1 Set Representation 

It is one of the simplest and straightforward methods of representation of graphs. In 

this method, two sets are maintained for edges and vertices. V is the set of vertices 

and E is the set of edges. Both edges and vertices are subsets of V x V. If the graph is 

weighted, the set E will be represented as E = W x V x V, where W is the set of 

weights. Consider an example in figure 7.9  for different types of graphs.  
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Figure 7.8 An example of different types of graphs 

(Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition, Chapter- 8, Page No.- 423) 

 

These graphs in figure 7.8 can be represented using the set representation method, 

as below: 

Graph G1 

V(G1) = {v1, v2, v3, v4,  v5,  v6,  v7 } 

E(G1) = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v3, v6), (v3, v7)} 

Graph G2 

V(G2) = {v1, v2, v3, v4,  v5,  v6,  v7 } 

E(G2) = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v3, v4), (v3, v6), (v4, v7), (v5, v7), (v6, v7)} 

Graph G3 

V(G3) = {A, B, C, D, E} 

E(G3) = {(A, B), (A, C), (C, B), (C, A), (D, A), (D, B), (D, C), (D, E), (E, B)} 

Graph G4 

V(G4) = {A, B, C, D} 

E(G4) = {(3, A, C), (5, B, A), (1, B, C), (7, B, D), (2, C, A), (4, C, D), (6, D, B), (8, D, C)} 

 

Note: The set representation method does not allow to store parallel edges if the 

graph is a multigraph and undirected graph. It is so as in a set two identical 

elements are not allowed. Though it is a straightforward approach, it is not useful for 
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manipulation of the graph. 

 

7.4.2 Linked Representation 

Another space-saving approach to graph representation is Linked representation. In 

this method, two types of node structures are assumed, as shown in figure 7.9 for 

unweighted and weighted graphs. 

 

 
Figure 7.9 Node structures in Linked representation 

Source: Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition 

 

 

This method uses an adjacency list that contains the list of all the vertices/ nodes. 

ADJ_LIST in figure 7.9 represents an adjacency list. Every vertex is in turn linked to 

its own list that includes the names of all the vertices that are adjacent to it. 

 

An adjacency list has the following advantages: 

● It is easy to follow an adjacency list. It clearly displays the adjacent vertices of 

a particular vertex. 

● Adding new vertices in an adjacency list is easier than in an adjacency matrix.  

● An adjacency list is generally preferred for sparse graphs that have a small-to-

moderate number of edges. For a large number of edges, the adjacency matrix 

is preferred. 

 

Consider the types of graphs shown in figure 7.8. The linked representation of these 

graphs is shown in figure 7.10. 
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Figure 7.10 Linked representation of graphs of figure 7.8 

(Source- Classic Data Structures, Debasis Samanta, PHI Learning Pvt. Ltd. 2nd Edition, Chapter- 8, Page No.- 424) 

 

Program 7.1 Write a program to create a graph of n vertices using an adjacency list. 

Also write the code to read and print its information and finally to delete the graph. 

 

#include <stdio.h> 

#include <conio.h> 

#include <alloc.h> 

struct node 

{ 

  

char vertex; 

 struct node *next; 

}; 

struct node *gnode; 

void displayGraph(struct node *adj[], int no_of_nodes); 
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void deleteGraph(struct node *adj[], int no_of_nodes); 

void createGraph(struct node *adj[], int no_of_nodes); 

int main() 

{ 

  

struct node *Adj[10]; 

 int i, no_of_nodes; 

 clrscr(); 

 printf("\n Enter the number of nodes in G: "); 

 scanf("%d", &no_of_nodes); 

 for(i = 0; i < no_of_nodes; i++) 

  Adj[i] = NULL; 

 createGraph(Adj, no_of_nodes); 

 printf("\n The graph is: ");  

displayGraph(Adj, no_of_nodes); 

 deleteGraph(Adj, no_of_nodes); 

 getch(); 

 return 0; 

} 

void createGraph(struct node *Adj[], int no_of_nodes) 

{ 

  

struct node *new_node, *last; 

 int i, j, n, val; 

 for(i = 0; i < no_of_nodes; i++)  

 { 

  last = NULL; 

  printf("\n Enter the number of neighbours of %d: ", i); 

  scanf("%d", &n); 

  for(j = 1; j <= n; j++) 

  { 

   printf("\n Enter the neighbour %d of %d: ", j, i); 

   scanf("%d", &val); 

   new_node = (struct node *) malloc(sizeof(struct node)); 

   new_node –> vertex = val; 

   new_node –> next = NULL; 

   if (Adj[i] == NULL) 
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    Adj[i] = new_node; 

   else 

    last –> next = new_node; 

   last = new_node 

  } 

 } 

} 

void displayGraph (struct node *Adj[], int no_of_nodes) 

{ 

  

struct node *ptr; 

 int i; 

 for(i = 0; i < no_of_nodes; i++) 

 { 

  ptr = Adj[i]; 

   

printf("\n The neighbours of node %d are:", i); 

  while(ptr != NULL) 

  { 

   printf("\t%d", ptr –> vertex); 

   ptr = ptr –> next; 

  } 

 } 

} 

void deleteGraph (struct node *Adj[], int no_of_nodes) 

{ 

  

int i; 

 struct node *temp, *ptr; 

 for(i = 0; i <= no_of_nodes; i++) 

 { 

  ptr = Adj[i]; 

  while(ptr ! = NULL) 

  { 

   temp = ptr; 

   ptr = ptr –> next; 

   free(temp); 
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} 

   

Adj[i] = NULL; 

 } 

} 

  

The Output of the program is: 

Enter the number of nodes in G: 3 

Enter the number of neighbours of 0: 1 

Enter the neighbour 1 of 0: 2 

Enter the number of neighbours of 1: 2 

Enter the neighbour 1 of 1: 0 

Enter the neighbour 2 of 1: 2 

Enter the number of neighbours of 2: 1 

Enter the neighbour 1 of 2: 1 

The neighbours of node 0 are: 1 

The neighbours of node 1 are: 0 2 

The neighbours of node 2 are: 0 

 

Note: If the graph in the above program had been a weighted graph, then the 

structure of the node would have been: 

 

typedef struct node 

{ 

 int vertex; 

 int weight; 

 struct node *next; 

}; 

 

7.4.3 Matrix Representation 

The most useful way of representing any graph is Matrix representation. In this 

method, a square matrix of order n x n is used, where n represents the number of 

vertices in the graph. This matrix is known as an adjacency matrix as an entry in the 

matrix stores the information whether two vertices are adjacent or not. As we know, 
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the adjacent nodes are those that have a common edge connecting them. This matrix 

is also known as a bit matrix or Boolean matrix as the entered values are either 0 or 

1. 

The entries in the matrix can be decided as per the following conditions: 

  aij = 1, if there is an edge from vi to vj 

      = 0, otherwise 

The adjacency matrix is preferred for storing multigraphs and weighted graphs. For 

multigraphs, the entry will be according to the number of edges between two vertices, 

instead of entry 1. For weighted graphs, the entries in the matrix will be according to 

the weights of the edges, instead of 0 or 1.  

   
Figure 7.11 Matrix representation of graph 

Source: Classic Data Structures, Debasis Samanta, PHI 2nd Edition, Chapter- 8, Page No.- 425 

 

Consider the types of graphs shown in figure 7.8. The matrix representation of these 

graphs is shown in figure 7.12. 

 
Figure 7.12 Matrix representation of graphs of figure 7.8 

Source: Classic Data Structures, Debasis Samanta, PHI 2nd Edition, Chapter- 8, Page No.- 425 
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Following conclusions can be drawn from figure 7.12: 

 

● For a simple graph (that has no loops), the adjacency matrix has 0s on the 

diagonal. 

● The adjacency matrix of an undirected graph is symmetric. 

● Number of 1s (or non-zero entries) in an adjacency matrix is equal to the 

number of edges in the graph. 

● The adjacency matrix for a weighted graph contains the weights of the edges 

connecting the nodes. 

 

Power of adjacency matrix: We already know that the adjacency matrix A1 means 

that an entry 1 in the ith row and jth column is due to an edge of length 1 from vi to vj. 

Now consider, A2, A3, and A4. 

(aij)2 = ∑aik akj  

 

Any entry aij = 1 if aik = akj = 1. It may be concluded that if there are two edges (vi , vk) 

and (vk, vj) then the length is 2. Similarly the power of the adjacency matrix will be 

defined according to the number of edges between two adjacent nodes. Generally, 

every entry in the ith row and jth column of An (where n is the number of nodes in the 

graph) gives the number of edges of length n from node vi to vj. Figure 7.13 shows a 

directed graph with its adjacency matrix and computation of adjacent matrices for 

different powers. 

 

 
(a) 
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(b) 

Figure 7.13 (a) Directed graph with its adjacency matrix (b) Adjacency matrices 

for A2, A3, and A4 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 389 

 

If we define matrix B as: 

Br = A1 + A2 + A3 + ... + Ar 

An entry in the ith row and jth column of matrix Br gives the number of edges of length 

r from vertex vi to vj. This matrix B is used to obtain the path matrix (P). The path 

matrix P can be calculated from B by setting an entry Pij = 1 , if Bij is non-zero and Pij 

= 0, otherwise. 

Pij = 1, if Bij is non-zero     

    = 0, otherwise 

The path matrix is used to show whether there is an edge from node vi to vj or not. 

 

7.5 Graph Traversal Algorithms 

The method of visiting each vertex and edge of a graph for at least once is known as 

traversing a graph. Following points should be noted for a graph: 

● There is no first node or root in a graph. So, the graph can be started at any 

node. 

● A particular node can be visited repeatedly. Hence, it becomes essential to note 

the status of the nodes that are traversed or not. 

● Only those nodes can be traversed that are accessible from the current node. 
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The path of the traversing graph can be determined stepwise. 

● In a graph, more than one edge is available, to reach a particular node. 

 

Two standard methods are used for graph traversal: 

1. Breadth-first search 

2. Depth-first search 

 

In breadth-first search method, a queue is used to store the vertices for further 

processing while in depth-first search method, a stack is used for this purpose. Both 

the algorithms use a variable STATUS that is set to 1 or 2 for every node, depending 

on its current state, during the execution. Table 7.1 describes the value and 

significance of the STATUS variable. 

 

Table 7.1 Value and Significance of the STATUS variable 

 
 

7.5.1 Breadth-First Search Algorithm 

The breadth-first search algorithm is accomplished by using a queue. The algorithm 

begins at a particular node that is considered as a root node and all the neighboring 

nodes are explored. Then for each of those nearest nodes, all other unexplored 

neighboring nodes are explored, and so on. For instance, if we start with node P, all 

neighbors of P are explored and then the neighbors of the neighbors of P are 

examined. The algorithm moves on until all the nodes are explored only once and not 

repeated. The queue helps in tracking and holding the waiting nodes for processing. 

The variable STATUS is used to represent the current state of the particular node. 
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Algorithm 7.1 Breadth-first search Algorithm 

Step-1: Set STATUS = 1 (ready state) for every node in G. 

Step-2: Enqueue the starting node A and set its STATUS = 2 (waiting state). 

Step-3: Repeat Steps 4 and 5 until QUEUE is empty. 

Step-4: Dequeue a node N. Process it and set its STATUS = 3 (processed state). 

Step-5: Enqueue all the neighbours of N that are in the ready state (whose STATUS = 1) and       set their 

STATUS = 2 (waiting state) 

     [END OF LOOP] 

Step 6: EXIT 

 

Example 7.1 Consider the graph G given below. Find the minimum path P from A to 

I given that every edge has a length of 1. 

 
 

Solution: In the given figure, the minimum path P can be calculated with the help of 

the breadth-first search algorithm beginning at node A till node I. Here, we are using 

two arrays: QUEUE and ORIG. QUEUE is used to hold the nodes to be processed 

while ORIG is used to track the origin of each edge. Initially, FRONT = REAR = -1. 

The algorithm is as follows: 

 

Step-1: Add A to QUEUE and NULL to ORIG. 

FRONT = 0  QUEUE = A 

REAR = 0  ORIG = \0 

 

Step-2: Set FRONT = FRONT + 1 and remove the FRONT element of QUEUE 

(Dequeue) and add the neighbors of A (Enqueue). Also, add A to ORIG for the origin of 

the path of its neighbors. 

FRONT = 1  QUEUE = A  B  C  D 
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REAR = 3  ORIG =     0  A  A  A 

 

Step-3: Set FRONT = FRONT + 1 and enqueue neighbors of B. Add B to ORIG of its 

neighbors. 

  FRONT = 2  QUEUE = A B C D E 

REAR = 4  ORIG =     0 A A A B 

 

Step-4: Again set FRONT = FRONT + 1 and enqueue the neighbours of C. Add C as 

the ORIG of its neighbours. Please note that B and G are two neighbours of C. Since 

B has already been added to the queue, we will not add B again and only add G. 

FRONT = 3  QUEUE = A B C D E G 

REAR = 5  ORIG =     0 A A A B C 

 

Step-5: Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours 

of D. Add D as the ORIG of its neighbours. Please note that C and G are two 

neighbours of D. Since both of them are already added to the queue, we will not add 

them again. 

FRONT = 4  QUEUE = A B C D E G 

REAR = 5   ORIG =     0 A A A B C 

 

Step-6: Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours 

of E. Add E as the ORIG of its neighbours. Please note that C and F are two 

neighbours of E. Since C has already been added to the queue, we will not add C 

again and only add F. 

FRONT = 5  QUEUE = A B C D E G F 

REAR = 6   ORIG =     0 A A A B C E 

 

Step-7: Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours 

of G. Add G as the ORIG of its neighbours. Please note that F, H and I are three 

neighbours of G. Since F has already been added to the queue, we will only add H 

and I. As our final goal was to reach I, the algorithm will be stopped here.  

FRONT = 6  QUEUE = A B C D E G F H I 

REAR = 9   ORIG =     0 A A A B C E G G 
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Now, to find the minimum path P,  we have to backtrack using ORIG from I. The 

result obtained is A￫ C￫ G￫ I. 

 

Program 7.2: Write a program to implement the breadth-first search algorithm. 

#include <stdio.h> 

#define MAX 10 

void breadth_first_search(int adj[ ][MAX],int visited[ ],int start) 

{ 

int queue[MAX],rear = –1,front =– 1, i; 

queue[++rear] = start; 

 visited[start] = 1; 

 while(rear != front) 

 { 

  start = queue[++front]; 

  if(start == 4) 

   printf("5\t"); 

  else 

   printf("%c \t",start + 65); 

 for(i = 0; i < MAX; i++) 

  { 

   if(adj[start][i] == 1 && visited[i] == 0) 

   { 

    queue[++rear] = i; 

    visited[i] = 1; 

   } 

  } 

 } 

} 

int main() 

{ 

 int visited[MAX] = {0}; 

 int adj[MAX][MAX], i, j; 

 printf("\n Enter the adjacency matrix: "); 

 for(i = 0; i < MAX; i++) 

for(j = 0; j < MAX; j++) 

   scanf("%d", &adj[i][j]); 
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breadth_first_search(adj,visited,0); 

 return 0; 

} 

 

The output of the program is: 

Enter the adjacency matrix: 

0  1  0  1  0 

1  0  1  1  0 

0  1  0  0  1 

1  1  0  0  1 

0  0  1  1  0 

A B  C D E 

 

7.5.2 Depth-First Search Algorithm 

The depth-first search algorithm is similar to the in-order traversal of a binary tree. 

The implementation of this algorithm is similar to that of the breadth-first search 

algorithm but a stack is used in place of a queue. Likewise, the STATUS variable is 

used to represent the current state of the node. In this method, the starting node of 

the graph G is expanded and then the process goes deeper and deeper until the goal 

node is achieved. The goal node can also be found when there are no children nodes 

for that node. On achieving the goal node, the algorithm backtracks and returns to the 

recent node that has not been explored completely. For instance, when the algorithm 

starts at node A, it becomes the current node. Then each node N is examined along a 

path P, beginning at A. That means, first we process node A, then its neighbors, and 

then the neighbors of the neighbors of A, and so on. If we reach a path that is 

associated with an already processed node N, then we backtrack to the current node. 

Otherwise, the unvisited node becomes the current node. 

The algorithm continues to the dead-end, i.e. end of path P and after that we 

backtrack to find another path P’. When the backtracking leads back to the starting 

node A, the algorithm terminates. The edges that lead to new nodes are called 

discovery edges and the edges that lead to an already processed node are known as 

back edges. 
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Algorithm 7.2 Depth-first search Algorithm 

Step-1: SET STATUS = 1 (ready state) for each node in G. 

Step-2: Push the starting node A on the stack and set its STATUS = 2 (waiting state). 

Step-3: Repeat Steps 4 and 5 until STACK is empty. 

Step-4: Pop the top node N. Process it and set its STATUS = 3 (processed state). 

Step-5: Push on the stack all the neighbours of N that are in the ready state (whose STATUS = 

1) and set their STATUS = 2 (waiting state). 

      [END OF LOOP] 

Step-6: EXIT 

 

Example 7.2: Consider the graph G of example 7.1, If we need to print all the nodes 

that can be reached from node H (including H) using the depth-first search algorithm 

starting at node H. The solution will be as follows. 

 
 

Solution: In depth-first search algorithm, we use a STACK. The algorithm is as 

follows: 

Step-1: Push H onto the STACK. 

    STACK: H 

 

Step-2: Pop and print the top element of the STACK, i.e. H. Push all the neighbors of 

H on the STACK. 

PRINT : H  STACK: E, I 

 

Step-3: Pop and print the top element of the STACK, i.e. I. Push all the neighbors of I 

on the STACK. 

PRINT : I  STACK: E, F 
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Step-4: Pop and print the top element of the STACK, i.e. F. Push all the neighbors of 

F on the STACK. It should be noted that C and H are two neighbors of but as H is 

already processed, only C will be added. 

PRINT : F  STACK: E, C 

 

Step-5: Pop and print the top element of the STACK, i.e. C. Push all the neighbors of 

C on the STACK. 

PRINT : C  STACK: E, B, G 

 

Step-6: Pop and print the top element of the STACK, i.e. G. Push all the neighbors of 

G on the STACK. Since none of the neighbors of G are in ready state, so no push 

operation is performed. 

PRINT : G  STACK: E, B 

 

Step-7: Pop and print the top element of the STACK, i.e. B. Push all the neighbors of 

B on the STACK. Since none of the neighbors of B are in ready state, so no push 

operation is performed. 

PRINT : B  STACK: E 

 

Step-8: Pop and print the top element of the STACK, i.e. E. Push all the neighbors of 

E on the STACK. Since none of the neighbors of E are in ready state, so no push 

operation is performed. 

PRINT : E  STACK:  

As the STACK is now empty, the algorithm is terminated here and the nodes that 

were printed are: 

H, I, F, C, G, B, E 

The above printed nodes are reachable for H. 

 

Program 7.3: Write a program to implement the depth-first search algorithm. 

#include <stdio.h> 

#define MAX 5 

void depth_first_search(int adj[][MAX],int visited[],int start) 

{ 

 int stack[MAX]; 
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int top = –1, i; 

 printf("%c–",start + 65); 

 visited[start] = 1; 

 stack[++top] = start; 

 while(top ! = –1) 

 { 

  start = stack[top]; 

  for(i = 0; i < MAX; i++) 

  { 

   if(adj[start][i] && visited[i] == 0) 

   { 

    stack[++top] = i; 

    printf("%c–", i + 65); 

    visited[i] = 1; 

    break; 

   } 

  } 

  if(i == MAX) 

  top--; 

 } 

} 

int main() 

{ 

 int adj[MAX][MAX]; 

 int visited[MAX] = {0}, i, j; 

printf("\n Enter the adjacency matrix: "); 

 for(i = 0; i < MAX; i++) 

  for(j = 0; j < MAX; j++) 

   scanf("%d", &adj[i][j]); 

 printf("DFS Traversal: "); 

 depth_first_search(adj,visited,0); 

 printf("\n"); 

 return 0; 

} 
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The output of the program is: 

Enter the adjacency matrix: 

0 1 0 1 0 

1 0 1 1 0 

0 1 0 0 1 

1 1 0 0 1 

0 0 1 1 0 

DFS Traversal: A￫ C￫ E￫ 

 

7.6 Shortest Path Algorithms 

There are various algorithms that help in computing the shortest path between the 

vertices of a graph. Some of the important algorithms are discussed below are: 

● Minimum Spanning Trees 

● Prim’s Algorithm 

● Kruskal’s Algorithm 

● Dijkstra’s Algorithm 

Let’s discuss each one of them in detail. 

 

7.6.1 Minimum Spanning Trees 

A spanning tree is a subgraph of a connected and undirected graph that connects all 

the vertices together. A single graph can have many spanning trees. We can even 

assign weights to each edge of the graph and ultimately assign weight to the spanning 

tree. It can be done by calculating the sum of the weights of the edges in that 

spanning tree.  

A spanning tree with weight less than or equal to the weight of every other spanning 

tree, is known as a minimum spanning tree (MST). 

Some important properties of spanning trees are: 

● It is possible that there exist multiple minimum spanning trees of the same 

weight in a graph. It should be noted that every spanning tree will be 

considered minimum, if all the weights are the same. 

● To obtain a unique minimum spanning tree, each edge of the graph is assigned 

a different weight. 

● If the weights of the edges are non-negative, then the minimum spanning trees 
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is treated as the minimum-cost subgraph. 

● If there is a cycle C in the graph G that has a larger weight than that of the 

other edges of C, then this edge is not included in the minimum spanning tree. 

● Minimum spanning trees create a sparse subgraph that displays a lot about the 

original graph. It is easy and quick to compute MSTs and provide optimal 

solutions. 

● The minimum spanning tree of a weighted graph consists of n-1 edges of 

minimum total weight of the graph. It should be noted that any spanning tree 

for an unweighted graph is a minimum spanning tree. 

 

For example, figure 7.14 shows the eight spanning trees drawn from a unweighted 

graph G. There can be even more spanning trees. For an unweighted graph, every 

spanning tree is considered as a minimum spanning tree. 

 
Figure 7.14 Unweighted graph and its spanning trees 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 406 

 

Another example can be considered for a weighted graph, as shown in figure 7.15. 

Distinct spanning trees can be drawn from the graph G. But, it should be noted that 

only one minimum spanning tree can be obtained. Here, the spanning tree with total 

cost = 9 is said to be the minimum spanning tree of weighted graph G..  
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Figure 7.15 Weighted graph and its spanning trees 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 407 

 

Applications of Minimum Spanning Trees 

● Minimum spanning trees are widely used for designing networks according to 

the requirement. For example, MSTs can be used to determine the least costly 

paths to deploy cable in a telephone network. 

● MSTs can be used to optimize the cheapest airline routes, connect terminals 

for roads, railways, wires, etc. 

● MSTs can be applied in routing algorithms to find the most effective path. 

 

7.6.2 Prim’s Algorithm 

Prim’s algorithm is used to draw a minimum spanning tree for a weighted- undirected 

graph. This algorithm forms a tree that includes every node and a subset of the edges, 

such that the total weight of all the edges of the tree is minimum. To accomplish this, 

three sets of vertices are maintained: 

● Tree Vertices: The vertices that are a part of the minimum spanning tree. 

● Fringe Vertices: The vertices that are adjacent but currently are not a part of 

tree vertices. 

● Unseen Vertices: The vertices other than tree and fringe vertices are termed as 

unseen vertices. 
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Algorithm 7.3 Prim’s Algorithm 

Step-1: Select a starting vertex 

Step-2: Repeat Steps 3 and 4 until there are fringe vertices 

Step-3: Select an edge e connecting the tree vertex and fringe vertex that has minimum weight 

Step-4: Add the selected edge and the vertex to the minimum spanning tree T 

            [END OF LOOP] 

Step-5: EXIT 

 

The method starts with choosing a starting vertex. The starting vertex is branched 

out and during each iteration, a new vertex and edge is selected. The vertex is 

selected from the fringe vertices such that minimum weight is assigned to the edge 

connecting the tree and new vertex. The running time of this algorithm can be 

computed from O (E log V), where V is the number of vertices and E is the number of 

edges in the graph. 

 

For example, if we have to construct a minimum spanning tree of the graph given in 

figure 7.16 (a) using Prim’s algorithm. Figure 7.16 (b) depicts the step by step process 

of forming a minimum spanning tree for the given graph.  

  
(a) 

   
(b) 

Figure 7.16(a) Graph G (b) Minimum spanning tree of graph G using Prim’s 

algorithm 
Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 408 
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The steps for Prim’s algorithm for given graph G in figure 7.16 (a) are as follows: 

1. Choose a starting vertex A. 

2. Add the fringe vertices that are adjacent to A. The edges connecting the 

starting vertex and fringe vertices are represented in figure 7.16 (b) with dotted 

lines. 

3. Now, the edge connecting tree vertex and fringe vertex with minimum weight is 

selected. This edge and vertex is added to the minimum spanning tree T. Here, 

as shown, the edge connecting A & C has less weight, so C is added to the 

tree. Now, C is treated as a tree vertex not a fringe vertex. 

4. Add the fringe vertices adjacent to C. 

5. Repeat step-3. As the edge connecting C & B has less weight, so B is added to 

the tree and now B becomes a tree vertex and is no longer a fringe vertex. 

6. Add the fringe vertices adjacent to B. 

7. Repeat step-3. As the edge connecting B & D has less weight, so D is added to 

the tree and now D is now a tree vertex and is no longer a fringe vertex. 

8. Note, now node E remains unconnected, so we will add it in the tree as a 

minimum spanning tree is the one in which all the n nodes are connected with 

n–1 edges that have minimum weight. 

 

7.6.3 Kruskal’s Algorithm 

Kruskal’s algorithm was first proposed by Joseph Kruskal in 1956. It is used to form 

a minimum spanning tree for a connected- weighted graph. This algorithm finds a 

subset of the edges forming a tree including every vertex, such that the total weight 

of all the edges of the tree is minimum. If the graph is an unconnected- weighted 

graph, then a minimum spanning forest is obtained.  Minimum spanning forest is a 

collection of minimum spanning trees. 

  

Algorithm 7.4 Kruskal’s Algorithm 

Step-1: Create a forest in such a way that each graph is a separate tree. 

Step-2: Create a priority queue Q that contains all the edges of the graph. 

Step-3: Repeat Steps 4 and 5 while Q is NOT EMPTY. 
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Step-4: Remove an edge from Q. 

Step-5: IF the edge obtained in Step 4 connects two different trees, then add it to the forest (for 

combining two trees into one tree). 

             ELSE 

                Discard the edge 

Step-6: END 

 

The algorithm uses a priority queue, Q. In this queue, the edges with minimum 

weight have priority over other edges in the graph. On termination of the algorithm, 

the forest contains only one component that forms a minimum spanning tree of the 

graph.  The running time of this algorithm can be computed from O (E log V), where 

V is the number of vertices and E is the number of edges in the graph. 

 

For example, consider a graph given in figure 7.17 and apply Kruskal’s algorithm on 

the graph.  

Initially, we have F = {{A}, {B}, {C}, {D}, {E}, {F}} 

      MST = {} 

       Q = {(A, D), (E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)} 

 
Figure 7.17 Graph G for Kruskal’s algorithm application 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 410 

 

The steps for Kruskal’s Algorithm for given graph G are: 

1. Remove the edge (A, D) from Q and make the following changes: 

F = {{A, D}, {B}, {C}, {E}, {F}} 

MST = {A, D} 

Q = {(E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)} 

2. Remove the edge (E, F) from Q and make the following changes: 

F = {{A, D}, {B}, {C}, {E, F}} 

MST = {(A, D), (E, F)} 

Q = {(C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)} 
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3. Remove the edge (C, E) from Q and make the following changes: 

F = {{A, D}, {B}, {C, E, F}} 

MST = {(A, D), (C, E), (E, F)} 

Q = {(E, D), (C, D), (D, F), (A, C), (A, B), (B, C)} 

4. Remove the edge (E, D) from Q and make the following changes: 

F = {{A, C, D, E, F}, {B}} 

MST = {(A, D), (C, E), (E, F), (E, D)} 

Q = {(C, D), (D, F), (A, C), (A, B), (B, C)} 

5. Remove the edge (C, D) from Q. It should be noted that this edge does not 

connect different trees, so it is simply discarded. Only an edge connecting (A, 

D, C, E, F) to B will be added to the MST. Therefore, 

F = {{A, C, D, E, F}, {B}} 

 MST = {(A, D), (C, E), (E, F), (E, D)} 

 Q = {(D, F), (A, C), (A, B), (B, C)} 

6. Remove the edge (D, F) from Q. It should be noted that this edge does not 

connect different trees, so it is simply discarded. Only an edge connecting (A, 

D, C, E, F) to B will be added to the MST. 

F = {{A, C, D, E, F}, {B}} 

 MST = {(A, D), (C, E), (E, F), (E, D)} 

 Q = {(A, C), (A, B), (B, C)} 

7. Remove the edge (A, C) from Q . Note that this edge does not connect different 

trees, so simply discard this edge. Only an edge connecting (A, D, C, E, F) to B 

will be added to the MST. 

  F = {{A, C, D, E, F}, {B}} 

MST = {(A, D), (C, E), (E, F), (E, D)} 

Q = {(A, B), (B, C)} 

8. Remove the edge (A, B) from Q and make the following changes: 

F = {A, B, C, D, E, F} 

MST = {(A, D), (C, E), (E, F), (E, D), (A, B)} 

Q = {(B, C)} 
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9. The algorithm continues until Q is empty. Since the entire forest has become 

one tree, all the remaining edges will simply be discarded. 

F = {A, B, C, D, E, F} 

MST = {(A, D), (C, E), (E, F), (E, D), (A, B)} 

Q = {} 

 
Program 7.5: Write a program which finds the cost of a minimum spanning tree. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

int adj[MAX][MAX], tree[MAX][MAX], n; 

void readmatrix() 

{ 

 int i, j; 

 printf(“\n Enter the number of nodes in the Graph : “); 

 scanf(“%d”, &n); 

 printf(“\n Enter the adjacency matrix of the Graph”); 

 for (i = 1; i <= n; i++) 

  for (j = 1; j <= n; j++) 

   scanf(“%d”, &adj[i][j]); 

} 

int spanningtree(int src) 

{ 

 int visited[MAX], d[MAX], parent[MAX]; 

 int i, j, k, min, u, v, cost; 

 for (i = 1; i <= n; i++) 

 { 
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  d[i] = adj[src][i]; 

  visited[i] = 0; 

  parent[i] = src; 

 } 

 visited[src] = 1; 

 cost = 0; 

 k = 1; 

 for (i = 1; i < n; i++) 

 { 

  min = 9999; 

  for (j = 1; j <= n; j++) 

  { 

   if (visited[j]==0 && d[j] < min) 

   { 

    min = d[j]; 

    u = j; 

    cost += d[u]; 

   } 

  } 

  visited[u] = 1; 

  //cost = cost + d[u]; 

  tree[k][1] = parent[u]; 

  tree[k++][2] = u; 

  for (v = 1; v <= n; v++) 

if (visited[v]==0 && (adj[u][v] < d[v])) 

   { 

    d[v] = adj[u][v]; 

    parent[v] = u; 

   } 

 } 

 return cost; 

} 

void display(int cost) 

{ 

 int i; 

 printf(“\n The Edges of the Minimum Spanning Tree are”); 

 for (i = 1; i < n; i++) 
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  printf(“ %d %d \n”, tree[i][1], tree[i][2]); 

 printf(“\n The Total cost of the Minimum Spanning Tree is : %d”, cost); 

} 

main() 

{ 

 int source, treecost; 

 readmatrix(); 

 printf(“\n Enter the Source : “); 

 scanf(“%d”, &source); 

 treecost = spanningtree(source); 

display(treecost); 

 return 0; 

} 

 

The output of the program is: 

Enter the number of nodes in the Graph : 4 

Enter the adjacency matrix : 0 1 1 0  

          0 0 0 1 

          0 1 0 0 

             1 0 1 0 

Enter the source: 1 

 

The edges of the Minimum Spanning Tree are: 1 4 

       4 2  

       2 3 

The total cost of the Minimum Spanning Tree is: 1 

 

7.6.4 Dijkstra’s Algorithm 

A Dutch scientist Edsger Dijkstra in 1959 introduced Dijkstra’s algorithm to find the 

shortest path tree. It is widely used in network routing protocols. This algorithm can 

be used to find the shortest path having the lowest cost between source node and 

destination node of graph G.  

In Dijkstra’s algorithm, the length of an optimal path between two nodes of a graph is 

computed. The term optimal here can refer to shortest, fastest or cheapest. The 
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algorithm starts with an initial/ source node and accordingly distance from initial 

node to any other node is calculated. 

 

Algorithm 7.5 Dijkstra’s Algorithm 

Step-1: Select the source node also called the initial node. 

Step-2: Define an empty set N that will be used to hold nodes to which a shortest path has been found. 

Step-3: Label the initial node with , and insert it into N. 

Step-4: Repeat Steps 5 to 7 until the destination node is in N or there are no more labelled nodes in N. 

Step-5: Consider each node that is not in N and is connected by an edge from the newly inserted node. 

Step-6: (a) If the node that is not in N has no label then SET the label of the node = the label of the newly 

inserted node + the length of the edge. 

(b) Else if the node that is not in N was already labelled, then SET its new label = minimum (label of 

newly inserted vertex + length of edge, old label) 

Step-7: Pick a node not in N that has the smallest label assigned to it and add it to N. 

 

In this algorithm, every node in the graph is labelled as the distance (cost) from the 

source node to that node. Labels can be of two types: Temporary and Permanent. The 

nodes that have not been reached, are assigned as Temporary labels, while 

permanent labels are for those nodes that have been reached and their distance to 

the source node is also known. A node can be labelled either temporary or permanent 

but not both. 

 

Executing this algorithm can produce either of the following two results: 

1. A labelled destination node will in turn represent the distance from the source 

node to the destination node. 

2. A non- labelled destination node specifies that there is no path from the 

source to the destination node. 

For example, consider a graph G in figure 7.18. The initial node is taken as D and 

Dijkstra’s algorithm is applied to graph G. The steps for the same are given below: 
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Figure 7.18 Graph G for Dijkstra’s algorithm 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 13, Page No.- 414 

 

 

1. Set the label of D = 0 and N = {D}. 

2. Label of D = 0, B = 15, G = 23 , and F = 5 . Therefore, N = {D, F}. 

3. Label of D = 0, B = 15, G has been re-labelled 18 because minimum (5 + 13, 

23) = 18, C has been re-labelled 14 (5 + 9). Therefore, N = {D, F, C}. 

4. Label of D = 0, B = 15, G = 18 . Therefore, N = {D, F, C, B}. 

5. Label of D = 0 , B = 15, G = 18 and A = 19 (15 + 4) . Therefore, N = {D, F, C, B, 

G}. 

6. Label of D = 0 and A = 19 . Therefore, N = {D, F, C, B, G, A}. 

Note that we have no labels for node E; this means that E is not reachable from D. 

Only the nodes that are in N are reachable from D. The running time of Dijkstra’s 

algorithm can be given as O(|V|2+|E|)=O(|V|2) where V is the set of vertices and E is 

the number of edges in the graph. 

 

7.7 Summary 

● A graph is a collection of vertices (or nodes) and edges that connect these 

vertices. Degree of a node p, deg(p), is the total number of edges containing the 

node p.  

● Graphs can be classified on the basis of edge connectivity, direction, weight or 

label, and connectivity. The graphs can be represented using three methods; 

set representation, Linked representation using an adjacency list, and Matrix 

representation using an adjacency matrix. 

● Two standard methods for graph traversal are Breadth-first search algorithm 

(BFS) and Depth-first search algorithm (DFS). The BFS algorithm is 

accomplished by using a queue while the DFS algorithm is accomplished 

using a stack. 
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● A spanning tree of a connected, undirected graph G is a sub-graph of G which 

is a tree that connects all the vertices together. 

● Kruskal’s algorithm is an example of a greedy algorithm, as it makes the 

locally optimal choice at each stage with the hope of finding the global 

optimum. 

● Dijkstra’s algorithm is used to find the length of an optimal path between two 

nodes in a graph. 

 

7.8 Key Terms 

● Isolated Node: A node with degree zero is known as an isolated node. 

● Graph with Loops: A graph that permits loops that starts and ends at the 

same vertex is called a graph with loops. 

● Discovery edges: In a DFS algorithm, the edges that lead to new nodes are 

called discovery edges. 

● Minimum Spanning Tree: A spanning tree with weight less than or equal to 

the weight of every other spanning tree. 

● Minimum Spanning Forest: It is a collection of minimum spanning trees. 

 

7.9 Check Your Progress 

Short- Answer type 

Q1) Adjacency matrix is also known as a ______. 

Q2) Graph is a linear data structure. (True/ False?) 

Q3) The term optimal can mean- 

(a) Shortest  (b) Cheapest  (c) Fastest  (d) All of these 

Q4) What is an adjacency matrix? 

Q5) Define Minimum Spanning Tree. 

Long- Answer type 

Q1) Explain the graph traversal algorithms in detail with example. 

Q2) Describe Prim’s algorithm. 

Q3) Write a brief note on: 

(a) Kruskal’s algorithm  (b) Dijkstra’s algorithm 

Q4) Discuss the types of graphs in detail. 

Q5) Given the adjacency matrix of a graph, write a program to calculate the degree of 
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a node N in the graph. 
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8.0 Introduction 

In the previous units, we have already discussed the binary trees and their 

terminologies in detail. A binary tree is a special type of tree, which can be either 

empty or has a finite set of nodes, such that one of the nodes is designated as the root 

node and the remaining nodes are partitioned into two subtrees of root node known as 

left subtree and right subtree. These left and right subtrees should not be empty and 

should be binary trees. Binary trees can be represented in the computer’s memory 

using an array or a linked list.  

Binary search trees are a kind of binary tree having values in the left subtree of a root 

node smaller than the value of the root node, and values in the right subtree greater 

than or equal to the value of the root node. Now, let’s learn about balanced binary 

trees. 

Balanced trees are a versatile set of data structures in which every leaf is “at a certain 

distance” from the root than any other leaf. As we already know that the maximum 

number of nodes possible from the root node to a leaf node is termed as the height of a 

tree. So, a binary tree is said to be balanced if the height of the tree is O(log n), where 

n is the number of nodes of the tree. This unit describes the basic terminology of 

balanced trees and also discusses different types of balanced trees in detail. 

 

8.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Understand the fundamentals of Balanced binary search trees. 
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● Explain the basic terminology of Height balanced trees specifically AVL Trees. 

● Learn about the properties of Weight-balanced Trees. 

 

8.2 Basic Terminology 

Balancing a binary search tree is beneficial as a balanced tree provides O(log n) time 

for all the operations like searching, inserting, and deleting. An unbalanced tree 

consumes more running time i.e. O(n) as the shape becomes distorted. It means that if 

one branch of the tree is much longer than the other, the operations take more 

running time. Figure 8.1 represents balanced and unbalanced binary trees. 

The height of a binary tree is an important parameter in relation to the efficient 

operations on the tree. Searching, inserting, and deleting operations in a binary search 

tree are all O(Height). Generally, the height (H) and the number of nodes (n) are related 

to H = (log n). So, the effective operations become O(H) = O(log n). 

   
       (a)          (b) 

Figure 8.1 (a) Balanced Tree (b) Unbalanced Tree 

 

Balancing of the binary trees can be achieved through different approaches. Either 

height or weight of the tree is balanced such that the average running time of the 

operations is maintained to O(log n). The balancing approach can be partial or 

complete as per requirement. Though it is difficult to attain a perfectly balanced 

binary tree. 

One of the most commonly used balancing approaches is self-balancing trees. Such 

trees maintain balance automatically by keeping the height as small as possible 

during the insertion and deletion operation on the binary tree. The self-balancing 

binary search trees perform rotations to maintain the balance in the tree, even after 

the insert and delete operations. Two types of rotations are possible in a binary search 

tree without violating its in-order traversal property. Consider figure 8.1 (a) and (b) 

representing the left and right rotation of a binary tree. 
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a) Left Rotation: According to figure 8.2 (a), during the left rotation about node X, 

the new root of the subtree is now node Y. Node X becomes the left child of node 

Y while subtree B is now the right child of node X. 

b) Right Rotation: In figure 8.2 (b), during the right rotation about node Y, the 

new root of the subtree is now node X. Node Y becomes the right child of node X 

while subtree B is now the left child of node Y. 

 
(a) 

 
(b) 

Figure 8.2 (a) Left Rotation (b) Right Rotation of a binary search tree 
Source: https://towardsdatascience.com/self-balancing-binary-search-trees-101-fc4f51199e1d 

 

The balanced binary search trees are classified into two groups, i.e. Height balanced 

trees and Weight balanced trees. In height-balanced trees, the height of the siblings of 

a node is “approximately the same”. In weight balanced trees, the number of 

descendants of sibling nodes is “approximately the same”. Different types of height-

balanced binary search trees are there. Some of them like AVL trees, Red-black Trees, 

Splay Trees will be discussed in this course.  

 

8.3 AVL Trees 

AVL Trees are one of the most commonly known self-balancing binary search trees. 

These trees were first introduced by two mathematicians G.M. Adelson-Velsky and 
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E.M. Landis in 1962. AVL tree is named so in honor of its inventors. Being a self-

balanced binary search tree, an AVL tree takes O(log n) time to perform the search, 

insert, and delete operations. That means the height of the AVL tree is limited to O(log 

n). The key property for AVL trees is that the heights of the two subtrees of one node 

may differ by at most one. Due to this, the AVL tree is also termed a height-balanced 

tree. 

There is a little difference between the structure of an AVL tree and a simple binary 

search tree. In an AVL tree, the additional variable “balance factor” is associated 

with each node. The balance factor of a node is the difference between the height of 

the right subtree and the height of the left subtree.  

Balance factor = Height (left subtree) – Height (right subtree) 

 

In a height-balanced tree, every node has a balance factor of -1, 0, or 1. Any other 

value of the balance factor makes the binary search tree unbalanced. Some important 

key points about balance factor are: 

● If a node has a balance factor of 1, it means that the right subtree of the node is 

one level lower than the left subtree. Such a tree is called a lefty-heavy tree as 

shown in figure 8.3 (a). 

● If a node has a balance factor of 0, it means that the height of the left subtree is 

equal to the height of the right subtree. 

● If a node has a balance factor -1, it means that the right subtree of the node is 

one level higher than the left subtree. Such a tree is called a right-heavy tree as 

shown in figure 8.3 (b). 

In figure 8.3, it should be noted that the balance factor of nodes 18, 39, 54, 63, and 

72 is 0; the balance factor for nodes 27, 36, and 45 is 1. 

 
Figure 8.3 (a) Left-heavy AVL Tree (b) Right-heavy AVL Tree (c) Balanced Tree 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 317 
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The insertion and deletion operations on the AVL tree may imbalance the tree, 

resulting in disturbing the balance factor of the nodes. In such cases, the tree is 

rebalanced using rotation operation at the critical node.  

 

Searching for a Node in an AVL Tree 

The search operation is the same for both AVL trees and binary search trees. The 

structure of the tree does not modify, so no special provisions are required. According 

to the property, the running time taken by the search operation to be completed is 

O(log n).  

 

Inserting a New Node in an AVL Tree 

The insert operation in an AVL tree is similar to the one in binary search trees. In an 

AVL tree, the new node is always inserted as the leaf node and the insertion step is 

generally followed by an additional step, i.e. rotation. Rotation is helpful in rebalancing 

the tree. Though, if the balance factor does not get disturbed due to insert operation, 

i.e. it is still -1, 0, or 1, then there is no need for the rotation. In AVL trees, the new 

node is always inserted as a leaf node, so the balance factor will always be 0. Change 

in balance factor can be observed only for those nodes that are in the path of the root 

node and newly inserted node. Some possible changes in the path for any node are 

discussed below: 

● Initially, the node of an AVL tree was either left-heavy or right-heavy. After the 

insertion of a new node, it becomes balanced. 

● The node that was balanced initially, becomes either left-heavy or right-heavy 

after inserting a new node. 

● The node that was either left-heavy or right-heavy initially, becomes unbalanced 

due to a new node insertion. Such a node is termed a critical node. The nearest 

ancestor node on the path between the inserted node and the root with balance 

factor neither -1, 0, nor 1 is the critical node. 

 

Four types of rotations are generally used after insert operation in an AVL tree, they 

are LL rotation, RR rotation, LR rotation, RL rotation.  

1. LL rotation: The new node is inserted in the left subtree of the left subtree of 

the critical node. LL rotation in an AVL tree is shown in figure 8.4. In this 
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figure, node A is considered as a critical node, as it is the nearest ancestor 

whose balance factor is not -1, 0, or 1. After insert operation, the new node has 

now become the part of tree T1. Now, during LL rotation, node B becomes the 

root; T1 and A are its left and right child respectively; T2 and T3 are now left and 

right subtrees of A. 

 
Figure 8.4 (a) Given AVL tree (b) Inserting a new node in the left subtree of left 

subtree of critical node (c) LL rotation for given AVL Tree 

 

2. RR rotation: The new node is inserted in the right subtree of the right subtree 

of the critical node. RR rotation in an AVL tree is shown in figure 8.5. In this 

figure, node A is considered as a critical node, as it is the nearest ancestor 

whose balance factor is not -1, 0, or 1. After insert operation, the new node has 

now become the part of tree T3. Now, during RR rotation, node B becomes the 

root; A and T3 are its left and right child respectively; T1 and T2 are now left and 

right subtrees of A. 

 
Figure 8.5 (a) Given AVL tree (b) Inserting a new node in the right subtree of 

right subtree of critical node (c) RR rotation for given AVL Tree 

 

3. LR rotation: The new node is inserted in the right subtree of the left subtree of 

the critical node. LR rotation in an AVL tree is shown in figure 8.6. In this 
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figure, node A is considered as a critical node, as it is the nearest ancestor 

whose balance factor is not -1, 0, or 1. After insert operation, the new node has 

now become the part of tree T2. Now, during LR rotation, node C becomes the 

root; B and A are its left and right child respectively; T1 and T2 are now left 

subtrees and right subtrees of B and T3 and T4 are now left subtrees and right 

subtrees of A. 

 

 
Figure 8.6 (a) Given AVL tree (b) Inserting a new node in the right subtree of left 

subtree of critical node (c) LR rotation for given AVL Tree 

 

4. RL rotation: The new node is inserted in the left subtree of the right subtree of 

the critical node. RL rotation in an AVL tree is shown in figure 8.7. In this 

figure, node A is considered as a critical node, as it is the nearest ancestor 

whose balance factor is not -1, 0, or 1. After insert operation, the new node has 

now become the part of tree T2. Now, during RL rotation, node C becomes the 

root; A and B are its left and right children, respectively; T1 and T2 are now left 

subtrees and right subtrees of A and T3 and T4 are now left subtrees and right 

subtrees of B. 
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Figure 8.7 (a) Given AVL tree (b) Inserting a new node in the left subtree of right 

subtree of critical node (c) RL rotation for given AVL Tree 

 

Deleting a node from an AVL Tree 

The delete operation in an AVL tree is similar to that of a binary search tree. The only 

difference is in terms of maintaining the balance in the tree. After the delete operation, 

there may be a need to rebalance the AVL tree for which it is required to perform 

rotations. There are two types of rotations that can be performed on an AVL tree after 

deleting a given node. These rotations are R rotation and L rotation. 

If node A becomes the critical node while deleting node X from the AVL tree, then the 

type of rotation depends on whether X is in the left subtree or in the right subtree of 

node A. If the node X is in the left subtree of A, then L rotation is applied. If X is in the 

right subtree, R rotation is performed. 

 

Program 8.1: Write a C program that shows insertion operation in an AVL tree. 

#include <stdio.h> 

typedef enum { FALSE ,TRUE } bool; 

struct node 

{ 

 int val; 

 int balance; 

struct node *left_child; 

 struct node *right_child; 

}; 
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struct node* search(struct node *ptr, int data) 

{ 

 if(ptr!=NULL) 

  if(data < ptr -> val) 

   ptr = search(ptr -> left_child,data); 

   else if( data > ptr -> val) 

   ptr = search(ptr -> right_child, data); 

 return(ptr); 

} 

struct node *insert (int data, struct node *ptr, int *ht_inc) 

{ 

 struct node *aptr; 

struct node *bptr; 

 if(ptr==NULL) 

 { 

  ptr = (struct node *) malloc(sizeof(struct node)); 

  ptr -> val = data; 

  ptr -> left_child = NULL; 

  ptr -> right_child = NULL; 

  ptr -> balance = 0; 

  *ht_inc = TRUE; 

  return (ptr); 

 } 

 if(data < ptr -> val) 

 { 

  ptr -> left_child = insert(data, ptr -> left_child, ht_inc); 

  if(*ht_inc==TRUE) 

  { 

    switch(ptr -> balance) 

    { 

    case -1: /* Right heavy */ 

    ptr -> balance = 0; 

    *ht_inc = FALSE; 

    break; 

    case 0: /* Balanced */ 

     ptr -> balance = 1; 
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     break; 

    case 1: /* Left heavy */ 

     aptr = ptr -> left_child; 

     if(aptr -> balance == 1) 

     { 

      printf(“Left to Left Rotation\n”); 

      ptr -> left_child= aptr -> right_child; 

      aptr -> right_child = ptr; 

      ptr -> balance = 0; 

      aptr -> balance=0; 

      ptr = aptr; 

     } 

     else 

     { 

      printf(“Left to right rotation\n”); 

      bptr = aptr -> right_child; 

      aptr -> right_child = bptr -> left_child; 

      bptr -> left_child = aptr; 

      ptr -> left_child = bptr -> right_child; 

      bptr -> right_child = ptr; 

      if(bptr -> balance == 1 ) 

       ptr -> balance = -1; 

      else 

       ptr -> balance = 0; 

      if(bptr -> balance == -1) 

       aptr -> balance = 1; 

      else 

       aptr -> balance = 0; 

      bptr -> balance=0; 

      ptr = bptr; 

     } 

     *ht_inc = FALSE; 

    } 

  } 

 } 

 if(data > ptr -> val) 
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{ 

  ptr -> right_child = insert(info, ptr -> right_child, ht_inc); 

  if(*ht_inc==TRUE) 

  { 

   switch(ptr -> balance) 

   { 

    case 1: /* Left heavy */ 

     ptr -> balance = 0; 

     *ht_inc = FALSE; 

     break; 

    case 0: /* Balanced */ 

     ptr -> balance = -1; 

     break; 

    case -1: /* Right heavy */ 

     aptr = ptr -> right_child; 

     if(aptr -> balance == -1) 

     { 

      printf(“Right to Right Rotation\n”); 

      ptr -> right_child= aptr -> left_child; 

      aptr -> left_child = ptr; 

      ptr -> balance = 0; 

      aptr -> balance=0; 

      ptr = aptr; 

     } 

     else 

     { 

      printf(“Right to Left Rotation\n”); 

      bptr = aptr -> left_child; 

      aptr -> left_child = bptr -> right_child; 

      bptr -> right_child = aptr; 

      ptr -> right_child = bptr -> left_child; 

      bptr -> left_child = pptr; 

      if(bptr -> balance == -1) 

       ptr -> balance = 1; 

      else 

       ptr -> balance = 0; 
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      if(bptr -> balance == 1) 

       aptr -> balance = -1; 

      else 

       aptr -> balance = 0; 

      bptr -> balance=0; 

      ptr = bptr; 

     }/*End of else*/ 

     *ht_inc = FALSE; 

   } 

  } 

 } 

 return(ptr); 

} 

void display(struct node *ptr, int level) 

{ 

 int i; 

 if ( ptr!=NULL ) 

 { 

  display(ptr -> right_child, level+1); 

  printf(“\n”); 

  for (i = 0; i < level; i++) 

   printf(“ “); 

  printf(“%d”, ptr -> val); 

  display(ptr -> left_child, level+1); 

} 

} 

void inorder(struct node *ptr) 

{ if(ptr!=NULL) 

 { 

  inorder(ptr -> left_child); 

  printf(“%d “,ptr -> val); 

  inorder(ptr -> right_child); 

 } 

} 

main() 

{ 
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 bool ht_inc; 

 int data ; 

 int option; 

 struct node *root = (struct node *)malloc(sizeof(struct node)); 

 root = NULL; 

 while(1) 

 { 

  printf(“1.Insert\n”); 

  printf(“2.Display\n”); 

 printf(“3.Quit\n”); 

  printf(“Enter your option : “); 

  scanf(“%d”,&option); 

  switch(choice) 

   { 

    case 1: 

    printf(“Enter the value to be inserted : “); 

    scanf(“%d”, &data); 

     if( search(root,data) == NULL ) 

      root = insert(data, root, &ht_inc); 

      else 

      printf(“Duplicate value ignored\n”); 

     break; 

    case 2: 

    if(root==NULL) 

    { 

     printf(“Tree is empty\n”); 

     continue; 

    } 

    printf(“Tree is :\n”); 

    display(root, 1); 

    printf(“\n\n”); 

    printf(“Inorder Traversal is: “); 

    inorder(root); 

    printf(“\n”); 

    break; 

   case 3:     
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exit(1); 

    default: 

     printf(“Wrong option\n”); 

    } 

  } 

} 

 

8.4 Weight Balanced Trees 

As we already know that the weight balanced trees are the type of self-balancing trees 

that are dependent on the number of leaves in the subtrees of a node. A binary search 

tree is said to be weight-balanced if the weight of the left and right subtree in each 

node differ by at most one. Weight balanced binary search trees were introduced by 

Nievergelt and Reingold in the 1970s, in the name “trees of bounded balance”. Later, 

they were modified as weight balanced trees by Kruth. These trees are generally used 

to implement dynamic sets, maps, and sequences.  

 
Figure 8.8 An example of Weight Balanced Tree 

Source- https://www.wisdomjobs.com/e-university/data-structures-tutorial-290/weight-balanced-tree-7211.html 

 

Like other self-balancing trees, weight-balanced trees also perform rotations to restore 

the balance between the nodes, when it becomes unbalanced by search, insert, and 

delete operations. The size of the subtree rooted at the node is stored by each node of 

the tree. The sizes of left and right subtrees are kept approximately the same by some 

factor. Let this factor be α. The types of rotations used to rebalance the binary trees 

are the same as those used to rebalance AVL trees. 

According to the definition, the size of a leaf is zero and the size of an internal node is 
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calculated as adding one to the sum of sizes of its two children. The weight can be 

defined as adding one to the size of that internal node. 

size[n] = size[n.left] + size[n.right] + 1 

weight[n] = size[n] + 1 

 

A node is said to be an α-weight balanced tree if it satisfies the following condition, 

weight[n.left] ≥ α·weight[n] and weight[n.right] ≥ α·weight[n] 

 

Program 8.2: Write a C program to check whether the given tree is balanced or not. 

#include <stdio.h> 

#include <stdlib.h> 

struct node 

{ 

int data; 

struct node *left; 

  struct node *right; 

}; 

bool isBalanced(struct node *root); 

int findheight(struct node *root) 

{ 

     int lefth=0,righth=0; 

     if(root==NULL) 

     { 

         return 0; 

     } 

     lefth=findheight(root->left); 

     righth=findheight(root->right); 

     if(lefth>righth) 

     { 

           return lefth+1; 

     } 

     else 

     { 

           return righth+1; 

     } 

} 
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bool isBalanced(struct node *root) 

{ 

    int left_height,right_height; 

    if(root==NULL) 

    { 

         return true; 

    } 

    left_height=findheight(root->left); 

    right_height=findheight(root->right); 

    if(abs(left_height-right_height)<=1 && isBalanced(root->left) && isBalanced(root->right)) 

    { 

            return true; 

    } 

    return false; 

} 

int main() 

{ 

struct node *root; 

    root=(struct node*)malloc(sizeof(struct node)); 

    root->data=5; 

    root->left=(struct node*)malloc(sizeof(struct node)); 

    root->left->data=8; 

    root->left->left=(struct node*)malloc(sizeof(struct node)); 

    root->left->left->data=10; 

    root->left->left->left=root->left->left->right=NULL; 

    root->left->right=(struct node*)malloc(sizeof(struct node)); 

    root->left->right->data=15; 

    root->left->right->left=root->left->right->right=NULL;   

    root->right=(struct node*)malloc(sizeof(struct node)); 

    root->right->data=34; 

    root->right->left=root->right->right=NULL; 

if(isBalanced(root)) 

    { 

          printf("\n\n\nThe above given tree is a Balanced Tree\n\n\n"); 

    } 

    else 
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    { 

          printf("\n\n\nThe above given tree is not a Balanced Tree\n\n\n"); 

    } 

    return 0; 

} 

 

The output of the program is: 

The above-given tree is a Balanced Tree. 

Or The above-given tree is not a Balanced Tree. 

 

8.5 Summary 

● Balanced trees are a versatile set of data structures in which every leaf is “at a 

certain distance” from the root than any other leaf. 

● A binary tree is said to be balanced if the height of the tree is O(log n), where n 

is the number of nodes of the tree.  

● Self- balancing trees maintain balance automatically by keeping the height as 

small as possible during the insertion and deletion operation on the binary tree. 

● The balance factor of a node is the difference between the height of the right 

subtree and the height of the left subtree. In a height-balanced tree, every node 

has a balance factor of -1, 0, or 1. 

● Rotations are used to retain the balance in a binary search tree. There are four 

types of rotations: LL rotation, RR rotation, LR rotation, and RL rotation. 

● A binary search tree is said to be weight-balanced if the weight of the left and 

right subtree in each node differ by at most one.  

 

8.6 Key Terms 

● Height- balanced Trees:  In height-balanced trees, the height of the siblings of 

a node is “approximately the same”. 

● Weight- balanced Trees: In weight balanced trees, the number of descendants 

of sibling nodes is “approximately the same”. 

● Balance Factor: It is the difference between the height of the right subtree and 

the height of the left subtree. 

● Left- heavy Tree: If a node has a balance factor of 1, it means that the right 

subtree of the node is one level lower than the left subtree. Such a tree is called 
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a lefty-heavy tree. 

● Right- heavy Tree: If a node has a balance factor -1, it means that the right 

subtree of the node is one level higher than the left subtree. Such a tree is 

called a right-heavy tree. 

 

8.7 Check Your Progress 

Short- Answer type 

Q1) Time taken by an AVL tree to perform the search, insert, and delete operations in 

average as well as worst case is: 

(a) O(n)   (b) O(log n)  (c) O(n2)   (d) O(n log n) 

Q2) In an AVL tree, searching operation takes ______ time. 

Q3) When the new node is inserted in the right subtree of the right subtree of the 

critical node, then it is called RL rotation. (True/ False?) 

Q4) When the right subtree of a node is one level lower than the left subtree, then the 

balance factor is  

(a) 0  (b) 1   (c) –1   (d) 2 

Q5) A new node inserted in a binary search tree, will be added as an internal node. 

(True/ False?) 

 

Long- Answer type 

Q1) The height of a binary search tree affects its performance. Explain. 

Q2) State the advantages of AVL trees. 

Q3) Differentiate between Height balanced and Weight balanced Trees. 

Q4) Create an AVL tree using the following sequence of data: 16, 27, 9, 11, 36, 54, 

81, 63, 72. 

Q5) Explain the rotation process in Balanced trees in detail. Also, discuss the types 

of rotations. 
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9.0 Introduction 

We have discussed that in a binary search tree every node has one value and two 

pointers, that point to the left and right subtrees of the node, respectively. B-trees are 

generally used in file systems and databases. A tree data structure that sorts the data 

and then performs the insertion and deletion operations, is referred to as B-Tree. The 

internal nodes of a B-Tree may have a variable number of child nodes in some 

predefined range. The number of child nodes varies with the insertion or deletion of 

any data from the node. To maintain the predefined range, the internal nodes can be 

merged or splitted. As B-trees permit the maintenance of these child nodes, 

rebalancing is not frequently required in B-trees as other self-balancing trees require. 

But, this leads to the wastage of some space in the memory as nodes are not 

completely full.  
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This unit deals with the basics of B-Trees, its operations, and its applications. Apart 

from AVL trees, the fundamentals of other balanced trees like Red-Black Trees, Splay 

Trees, and B+ Trees are also discussed. 

 

9.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Explain the basics of B-Trees. 

● Understand the operations and applications of B-Trees. 

● Learn about the distinct balanced trees like Red-black trees and Splay trees. 

● Discuss the fundamentals of B+ Trees. 

 

9.2 B- Trees 

B-trees were developed by Rudolf Bayer and Ed McCreight in 1970. They are widely 

used for accessing the disk of computer systems. A B-tree having an order of m 

consists of m-1 keys and m pointers to the subtrees. The purpose of using B-trees is to 

store a large number of keys in a single node to keep the height of the tree relatively 

small. The small height of the tree will take less processing time as compared to the 

tree with more height. 

In B- trees the number of child nodes are in a predefined range and can vary with the 

insert or delete operations. There is a need to maintain this predefined range by 

merging or splitting these internal nodes. Unlike other self-balancing trees, B- trees do 

not require rebalancing frequently as they focus on maintaining the predefined range 

of internal nodes. B- trees consist of two limits i.e. upper bound and lower bound. 

These two bounds are fixed for the number of child nodes for a particular 

implementation. 

As we already know that the height of all the leaf nodes has to be maintained to keep 

the tree balanced. Similarly, a B-tree is also balanced by keeping all the leaf nodes at 

the same depth/ height. The height of the B- Tree will increase with the addition of 

elements to the tree, but the overall height of the tree will not increase frequently.  

A B- tree may have a variable number of keys and children, unlike a binary- tree. 

These keys are arranged in non-decreasing order. Each of these keys is associated 

with a child. This child behaves as the root of a subtree having all the nodes with keys 

less than or equal to the key but greater than the preceding key. An additional 
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rightmost child is also associated with the node. This rightmost child behaves as the 

root for a subtree that has all keys greater than any keys in the node.  

A B-tree should possess the following properties: 

● In a B-tree with order m, every node should have a maximum of m children. 

● Every node except the root node and leaf nodes should have minimum m/2 

children. 

● The root node should have at least two child nodes if it is not a leaf node. 

● All leaf nodes should be at the same level. 

 

Figure 9.1 shows a B-tree of order 4. It should be noted that the B-tree shown in the 

figure fulfills all the properties that are mentioned above.  

 

 
Figure 9.1 A B-tree of order 4. 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 345 

 

B-trees are balanced trees that can minimize the number of disk access for the 

computer system. Certain data is stored in secondary storage such as magnetic disks 

and disk access is expensive and time-consuming in such cases. So, B-trees help in 

minimizing the number of disk access attempts.  

 

9.2.1 Operations on a B-Tree 

Like other binary trees, searching, inserting, and deleting operations are also 

supported by B-trees. All these operations follow single-pass algorithms as they do not 

traverse back. As the basic motive of the B-tree is to minimize the disk access, these 

single pass approaches will support this motive. It is assumed that all the nodes are 

stored in secondary storage instead of primary storage. Disk-Read operation is used to 

read all the given nodes. Similarly, the write operation is denoted by Disk- Write. 
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Allocate- Node call is used to create new nodes and assign them storage.    

● Searching in a B-tree: The search operation of a B-tree is similar to that of a 

binary tree. Unlike a binary tree, B-tree marks an n-way search instead of 

choosing between the left and right child of a node. The correct choice is made 

by performing a linear search for the values in the node. After obtaining the 

value greater than or equal to the required value, the search follows the child 

pointer to the immediate left of the value. On the other hand, if all the values 

are less than the required value, it follows the rightmost child pointer. The 

search operation is terminated as soon as the required node is found. The 

running time of the operation is decided by the height of the tree, i.e. O(log n). 

The search algorithm is given below: 

B-Tree-Search(x, k) 

i <- 1 

while i <= n[x] and k > keyi[x] 

do i <- i + 1 

if i <= n[x] and k = keyi[x] 

then return (x, i) 

if leaf[x] 

then return NIL 

else Disk-Read(ci[x]) 

return B-Tree-Search(ci[x], k) 

● Insertion in a B-Tree: Before inserting any element in a B-tree, we must locate 

the appropriate node for the key, using certain algorithms such as B-tree 

search. Next, the key is inserted into the node. If the node is not full, no special 

action is required while if the node is full, then the node should be split and 

then the new key is loaded. The splitting operation moves one key to the parent 

node. Also, this parent node must not be full otherwise another split operation 

will be required. This process may repeat up to the root node.  
B-Tree-Insert(T, k) 

r <- root[T] 

if n[r] = 2t - 1 

then s <- Allocate-Node() 

root[T] <- s 

leaf[s] <- FALSE 
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n[s] <- 0 

c1 <- r 

B-Tree-Split-Child(s, 1, r) 

B-Tree-Insert-Nonfull(s, k) 

else B-Tree-Insert-Nonfull(r, k) 

B-Tree-Insert-Nonfull(x, k) 

i <- n[x] 

if leaf[x] 

then while i >= 1 and k < keyi[x] 

do keyi+1[x] <- keyi[x] 

i <- i - 1 

keyi+1[x] <- k 

n[x] <- n[x] + 1 

Disk-Write(x) 

else while i >= and k < keyi[x] 

do i <- i - 1 

i <- i + 1 

Disk-Read(ci[x]) 

if n[ci[x]] = 2t - 1 

then B-Tree-Split-Child(x, i, ci[x]) 

if k > keyi[x] 

then i <- i + 1 

B-Tree-Insert-Nonfull(ci[x], k) 

● Deletion in a B-Tree: The delete operation for a B-Tree is carried out from the 

leaf node, like in the insert operation. A leaf node and an internal node can be 

deleted from a B-Tree.  

In the case of a leaf node, the following steps are involved: 

a) First, locate the leaf node that has to be deleted. 

b) If the leaf node has more than m/2 elements (more than a minimum 

number of key values), then delete the value. 

c) Else, if the leaf node does not have m/2 elements, then first fill the node 

either from the left or from the right sibling. 

➔ If there are more than m/2 elements in the left sibling, then its 

largest key is pushed into its parent’s node. Also, the intermediate 

element of the parent and leaf node is taken down where the key is 

deleted. 

➔ Else, if there are more than m/2 elements in the right sibling, then 
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its smallest key is pushed into its parent’s node. Also, the 

intermediate element of the parent and leaf node is taken down where 

the key is deleted. 

d) Else, if there are m/2 elements in both left and right siblings, then a new 

leaf node is created by combining the two leaf nodes and the 

intermediate element of the parent node. It should be ensured that the 

number of elements should not exceed the maximum number of 

elements a node can have, i.e. m. If after pulling down the intermediate 

element of the parent node, it has less than m/2 elements, then the 

process is propagated upwards and the height of the B-Tree gets 

reduced. 

In the case of an internal node, the successor or predecessor of the key to be 

deleted is promoted to occupy the position of the deleted key. The predecessor 

or successor keys are always in the leaf node, so the operation is processed 

according to the deletion in a leaf node.  

 

Example 9.1: Consider the B-Tree of order 3 given below and perform the following 

operations: (a) insert 121, 87 and then (b) delete 36, 109. 
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Figure 9.2 A B-tree of order 3 performing insert and delete operation. 
Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 349 

 

An underflow condition may occur during the delete operation in a B-Tree. A leaf node 

underflows if it contains (m/2 - 1) keys after deleting a key from it. On the other hand, 

an internal node (excluding the root node)  underflows if there are (m/2 - 2) keys in 

the deletion process. While deleting any element from the B-Tree, either leaf node or 

internal node, underflow condition is checked every time. 

 

9.3 B+ Trees 

B+ trees are a variant of B-Trees that also store sorted data only in the leaf nodes. In a 

B-Tree both keys and records are stored in its internal nodes. In contrast, the B+ tree 

stores all the records at its leaf node, and internal nodes contain only the keys. An 

added advantage of using a B+ tree is that the leaf nodes are often linked to each other 

in a linked list. This makes the queries simpler and more efficient. B+ trees allow 

efficient insertion, retrieval, and deletion of records. Generally, B+ trees are used to 

store large data. The leaf nodes of the B+ tree are stored in the secondary storage 

while the internal nodes of the tree are stored in the main memory. The internal nodes 

of a B+ tree are called index nodes or i-nodes.  

 

B+ Trees are simple and used to implement many database systems. B+ trees are 

always balanced as all the data appear in the leaf nodes and are sorted. B+ trees also 

make searching for data-efficient. A B+ tree of order is shown in figure 9.3. Also, a 

comparison between B- Tree and B+ Tree is depicted in Table 9.1. 

 

 
Figure 9.3 A B+tree of order 3 

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 351) 
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Table 9.1 Comparison between B-trees and B+ trees

 
 

9.3.1 Operations on a B+ Tree 

Like B- Tree, insert and delete operations can be performed on B+ trees too. Let’s 

discuss these operations in detail. 

● Inserting a new element in a B+ Tree: As we know that B+ trees are relevant 

to leaf nodes, a new element in a leaf node can be simply added if there is space 

for it. But, if there is no space for a new element, then the node splits into two 

nodes. A new index value is added to the parent node so that future queries can 

arbitrate between the two nodes. In fact, when a new element is added to a leaf 

node, it may be possible that all the nodes on the path from a leaf to the root 

may split. If a root node splits, a new leaf node gets created and the level of the 

tree increases by one. B+ trees follow the given algorithm to insert a new node: 

a) Insert the new node as the leaf node. 

b) If the leaf node overflows, split the node and copy the middle element to 

the next index node. 

c) If the index node overflows, split that node and move the middle element 

to the next index page. 
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Example 9.2: Consider the B+ tree of order 4 given and insert 33 in it. 

 
Figure 9.4 A B+tree of order 4 performing an insert operation 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 352 

 

● Deleting an element from a B+ Tree: As already discussed, in a B- Tree, 

deletion is done from a leaf node and an internal node. In B+ trees, deletion is 

always done from a leaf node. If the delete operation leaves that node empty, 

then the adjacent nodes are merged with that empty node. Due to this, an index 

value is deleted from the parent index node that in turn, may become empty. 

The process of merging and deleting may proceed from a leaf node to the root 

node. As a result, the level of the tree may decrease by one. B+ trees follow the 

given algorithm to delete a node from the tree: 

a) Delete the key and data from the leaves. 
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b) If the leaf node underflows, merge that node with the sibling and delete 

the key in between them. 

c) If the index node underflows, merge that node with the sibling and move 

down the key in between them. 

 

Example 9.3: Consider the B+ tree of order 4 given below and delete node 15 from it. 

 
Figure 9.5 A B+tree of order 4 performing an insert operation 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 11, Page No.- 353 

 

9.4 Red-Black Trees 

Another self-balancing tree in the series is Red-black Trees. They were first introduced 

by Rudolf Bayer in 1972 as ‘symmetric binary B-Tree’. Although being complex trees, 

red-black trees are efficient in search, insert, and delete operations. Red-black trees 

have a good worst-case running time and all the operations get completed in O(log n) 

time. The red-black tree maintains the balance by intelligently inserting and deleting 

elements. It is interesting to note that no data is stored in the leaf nodes of a Red-
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black tree. In a red-black tree, every node is labeled with either red or black color. 

Red-black trees follow the below rules: 

a) Every node is labeled as either red or black in color. 

b) The root node is always colored black. 

c) No two adjacent nodes are red in color. That means a red node cannot have a 

red parent or a red child. Every red node should have both the children in 

black. 

d) Every simple path from a given node to any of its leaf nodes has an equal 

number of black nodes. 

Figure 9.6 shows an example of a red-black tree showing the color coding 

according to the above rules. 

 
Figure 9.6 An example of a Red-black tree 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 328 

 

In a red-black tree, the longest path from the root node to any leaf node should not be 

more than twice as long as the shortest path from the root to any other leaf in that 

tree. An almost balanced tree is obtained from this. As the insert, search and delete 

operation require worst-case time proportional to the height of the tree. The red-black 

tree proves to be more efficient than any other ordinary binary search tree as it allows 

a certain upper bound on the height of the tree. 

There is no modification in the read-only operations like traversing the nodes in a red-

black tree, they are similar to that of the binary search trees. However, the insertion 

and deletion operation may affect the properties of a red-black tree. These operations 

may require a change in the color code of the tree. Let’s discuss these operations for a 



Types of Trees 

 
 

265  
 

red-black tree. 

 

9.4.1 Inserting a Node in a Red-black Tree 

The insertion operation is the same as that in the binary search tree. Although, in a 

binary search tree, a new node is always added as a leaf, while in a red-black tree, 

there is no data in the leaf node. So, instead of a new leaf node, a red interior node 

having two black leaf nodes is added to the red-black tree. This follows the property of 

a red-black tree, having a red node as a root and black nodes as its children. This 

addition may violate the other properties of a red-black tree. So, to restore its 

properties, certain cases are checked and the related property is restored accordingly.  

Some important terms used in red-black tree insertion are discussed below. 

● Grandparent node (G): It refers to the parent (P) of a node N, just like in a 

human family tree. Code (C) to find a node’s grandparent can be given as 

follows: 

struct node * grand_parent(struct node *n) 

{ 

 // No parent means no grandparent 

 if ((n != NULL) && (n -> parent != NULL)) 

  return n -> parent -> parent; 

 else 

  return NULL; 

} 

● Uncle node (U): It refers to the sibling of a node N’s parents (P), just like in a 

human family tree. The C code to find a node’s uncle can be given as follows: 

struct node *uncle(struct node *n) 

{ 

 struct node *g; 

 g = grand_parent(n); 

 //With no grandparent, there cannot be any uncle 

 if (g == NULL) 

  return NULL; 

 if (n -> parent == g -> left) 

  return g -> right; 

 else 
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  return g -> left; 

} 

While  inserting a new node in a red-black tree, the following points should be noted: 

1. All leaf nodes are always black.  

2. The property of a red-black tree that both children of every red node are black is 

threatened only by adding a red node, repainting a black node-red, or a 

rotation. 

3. The property of a red-black tree that all paths from any given node to its leaf 

nodes has an equal number of black nodes is threatened only by adding a black 

node, repainting a red node black, or a rotation. 

 

Case 1: The New Node N is Added as the Root of the Tree 

In this case, N is repainted black, as the root of the tree is always black. Since N adds 

one black node to every path at once, Property 5 is not violated. The C code for case 1 

can be given as follows: 

void case1(struct node *n) 

{ 

 if (n -> parent == NULL) // Root node 

   n -> colour = BLACK; 

 else 

  case2(n); 

} 

 

Case 2: The New Node’s Parent P is Black 

In this case, both children of every red node are black. The new node N has two black 

leaf children, but because N is red, the paths through each of its children have the 

same number of black nodes. So, no property of a red-black tree is violated. The C 

code to check for case 2 can be given as follows: 

void case2(struct node *n) 

{ 

 if (n -> parent -> colour == BLACK) 

  return; /* Red black tree property is not violated*/ 

 else 
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  case3(n); 

} 

Before proceeding to case 3, it is assumed that N has a grandparent node G, because 

its parent P is red, and if it were the root, it would be black. Thus, N also has an uncle 

node U (irrespective of whether U is a leaf node or an internal node). 

 

Case 3: If Both the Parent (P) and the Uncle (U) are Red 

In this case, the property that all paths from any given node to its leaf nodes have an 

equal number of black nodes is violated. Insertion in the third case is illustrated in 

figure 9.7. 

 
Figure 9.7 Insertion in a red-black tree (Case 3) 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 331 

 

In order to restore the above property, both nodes (P and U) are repainted black and 

the grandparent G is repainted red. Now, the new red node N has a black parent. 

Since any path through the parent or uncle must pass through the grandparent, the 

number of black nodes on these paths has not changed. 

However, the grandparent G may now violate the property which states that the root 

node is always black or another property which states that both children of every red 

node are black. The latter property will be violated when G has a red parent. In order 

to fix this problem, this entire procedure is recursively performed on G from Case 1.  

 

The C code to deal with Case 3 insertion is as follows: 

void case3(struct node *n) 

{ 

 struct node *u, *g; 

 u = uncle (n); 
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 g = grand_parent(n); 

 if ((u != NULL) && (u -> colour == RED)) { 

   n -> parent -> colour = BLACK; 

   u -> colour = BLACK; 

   g -> colour = RED; 

case1(g); 

 } 

else { 

  insert_case4(n); 

 } 

} 

 

Please note that in the remaining cases, it is assumed that the parent node P is the 

left child of its parent. If it is the right child, then interchange left and right in cases 4 

and 5. 

Case 4: The Parent P is Red but the Uncle U is Black and N is the Right Child of P and P 

is the Left Child of G 

In order to fix this problem, a left rotation is done to switch the roles of the new node 

N and its parent P. After the rotation, note that in the C code, we have re-labeled N 

and P and then, case 5 is called to deal with the new node’s parent. This is done 

because the property which says both children of every red node should be black is 

still violated. Figure 9.8 illustrates Case 4 insertion. 
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Figure 9.8 Insertion in a red-black tree (Case 4) 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 332 

 

It should be noted that in this case, N is the left child of P  and P is the right child of 

G, we have to perform a right rotation. In the C code that handles Case 4, we check for 

P and N and then, perform either a left or a right rotation. 

void case4(struct node *n) 

{  

struct node *g = grand_ 

parent(n); 

 if ((n == n -> parent -> right)&& (n -> parent == g -> left)) 

 { 

  rotate_left(n -> parent); 

  n = n -> left; 

 } 

 else if ((n == n -> parent -> left) && (n -> parent == g -> right)) 

 { 

  rotate_right(n -> parent); 

  n = n -> right; 

 } 

 case5(n); 
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} 

 

Case 5: The Parent P is Red but the Uncle U is Black and the New Node N is the Left 

Child of P, and P is the Left Child of its Parent G. 

In order to fix this problem, a right rotation on G (the grandparent of N ) is performed. 

After this rotation, the former parent P is now the parent of both the new node N and 

the former grandparent G.  

We know that the color of G is black (because otherwise, its former child P could not 

have been red), so now switch the colors of P and G so that the resulting tree satisfies 

the property stating that both children of a red node are black. Case 5 insertion is 

illustrated in figure 9.9. 

 
Figure 9.9 Insertion in a red-black tree (Case 5) 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition 

 

It should be noted that in case, N is the right child of P and P is the right child of G, 

we perform a left rotation. In the C code that handles Case 5, we check for P and N 

and then, perform either a left or a right rotation. 

void case5(struct node *n) 

{ 

struct node *g; 

 g = grandparent(n); 

 if ((n == n -> parent -> left) && (n -> parent == g -> left)) 

  rotate_right(g); 

 else if ((n == n -> parent -> right) && (n -> parent == g -> right)) 
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  rotate_left(g); 

 n -> parent -> colour = BLACK; 

 g -> colour = RED; 

} 

 

9.4.2 Deleting a Node from a Red-black Tree 

Deleting a node from a red-black tree is the same as that in the binary search tree. In 

a binary search tree, when we delete a node with two non-leaf children, we find either 

the maximum element in its left subtree of the node or the minimum element in its 

right subtree, and move its value into the node being deleted. After that, we delete the 

node from which we had copied the value. It should be noted that this node must have 

less than two non-leaf children. Therefore, merely copying a value does not violate any 

red-black properties, but it just reduces the problem 

of deleting to the problem of deleting a node with at most one non-leaf child. It will be 

assumed that we are deleting a node with at most one non-leaf child, which we will 

call its child. In case this node has both leaf children, then let one of them be its child. 

While deleting a node, if its color is red, then we can simply replace it with its child, 

which must be black. All paths through the deleted node will simply pass through one 

less red node, and both the deleted node’s parent and the child must be black, so 

none of the properties will be violated. 

However, a complex situation arises when both the node to be deleted as well as its 

child is black. In this case, we begin by replacing the node to be deleted with its child. 

In the C code, we label the child node as (in its new position) N, and its sibling (its new 

parent’s other child) as S.  

 

The C code to find the sibling of a node can be given as follows: 

struct node *sibling(struct node *n) 

{ 

 if (n == n -> parent -> left) 

  return n -> parent -> right; 

 else 

return n -> parent -> left; 

} 
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We can start the deletion process by using the following code, where the function 

replace_node substitutes the child into N’s place in the tree. For convenience, we 

assume that null leaves are represented by actual node objects, rather than NULL. 

 

void delete_child(struct node *n) 

{ 

 /* If N has at most one non–null child */ 

 struct node *child; 

 if (is_leaf(n -> right)) 

  child = n -> left; 

 else 

  child = n -> right; 

 replace_node(n, child); 

 if (n -> colour == BLACK) { 

  if (child -> colour == RED) 

   child -> colour = BLACK; 

  else 

   del_case1(child); 

 } 

 free(n); 

} 

 

When both N and its parent P are black, then deleting P will cause paths that precede 

through 

N to have one fewer black nodes than the other paths. This will violate the property 

stating that every simple path from a given node to any of its leaf nodes has an equal 

number of black nodes. Therefore, the tree needs to be rebalanced. There are several 

cases to consider, which are discussed below. 

 

Case 1: N is the New Root 

In this case, we have removed one black node from every path, and the new root is 

black, so none of the properties are violated. 

void del_case1(struct node *n) 

{ 

 if (n -> parent != NULL) 
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  del_case2(n); 

} 

 

In the upcoming cases 2, 5, and 6, we assume N is the left child of its parent P. If it is 

the right child, left and right should be interchanged throughout these three cases. 

 

Case 2: Sibling S is Red 

In this case, interchange the colors of P and S, and then rotate left at P. In the 

resultant tree, S will become N’s grandparent. Figure 9.10 illustrates Case 2 deletion. 

 
Figure 9.10 Deletion in a red-black tree (Case 2) 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 334 

 

The C code that handles case 2 deletions can be given as follows: 

void del_case2(struct node *n) 

{ 

 struct node *s; 

 s = sibling(n); 

 if (s -> colour == RED) 

 { 

  if (n == n -> parent -> left) 

   rotate_left(n -> parent); 

  else 

   rotate_right(n -> parent); 

  n -> parent -> colour = RED; 

  s -> colour = BLACK; 

 } 
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 del_case3(n); 

} 

 

Case 3: P, S, and S’s Children are Black 

In this case, simply repaint S with red. In the resultant tree, all the paths passing 

through S will have one less black node. Therefore, all the paths that pass through P 

now have one fewer black node than the paths that do not pass through P, so one of 

the properties is still violated. To fix this problem, we perform the rebalancing 

procedure on P, starting at Case 1. Case 3 is illustrated in figure 9.11. 

 
Figure 9.11 Deletion in a red-black tree (Case 3) 

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 335) 

 

The C code for Case 3 can be given as follows: 

void del_case3(struct node *n) 

{ 

 struct node *s; 

 s = sibling(n); 

 if ((n -> parent -> colour == BLACK) && (s -> colour == BLACK) && (s -> left -> colour == 

BLACK) && (s -> right -> colour == BLACK)) 

 { 

  s -> colour = RED; 

  del_case1(n -> parent); 

 } else 

  del_case4(n); 

} 

 

Case 4: S and S’s children are Black, but P is Red 

In this case, we interchange the colors of S and P. Although this will not affect the 
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number of black nodes on the paths going through S, it will add one black node to the 

paths going through N, making up for the deleted black node on those paths. The C 

code to handle Case 4 is as follows: 

void del_case4(struct node *n) 

{ 

 struct node *s; 

 s = sibling(n); 

  

if ((n -> parent -> colour == RED) && (s -> colour == BLACK) && (s -> left -> colour == BLACK) && 

(s -> right -> colour == BLACK)) 

{ 

  s -> colour = RED; 

  n -> parent -> colour = BLACK; 

 } else 

  del_case5(n); 

} 

 

Case 5: N is the Left Child of P and S is Black, S’s Left Child is Red, S’s Right 

Child is Black. 

In this case, perform a right rotation at S. After the rotation, S’s left child becomes S’s 

parent and N’s new sibling. Also, interchange the colors of S and its new parent. 

It should be noted that now all paths still have an equal number of black nodes, but N 

has a black sibling whose right child is red, so we fall into Case 6. Deletion in Case 5 

is illustrated in figure 9.12. 

 
Figure 9.12 Deletion in a red-black tree (Case 5) 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 336 

 

The C code to handle case 5 is given as follows: 

void del_case5(struct node *n) 
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{ 

 struct node *s; 

 s = sibling(n); 

 if (s -> colour == BLACK) 

 { 

 /* the following code forces the red to be on the left of the left of the parent, or right of the 

right, to be correctly operated in case 6. */ 

  if ((n == n -> parent -> left) && (s -> right -> colour == BLACK) && (s -> left-> colour 

== RED))            

    rotate_right(s); 

  else if ((n == n -> parent -> right) && (s -> left -> colour == BLACK) && (s -> right-> 

colour == RED)) 

   rotate_left(s); 

s -> colour = RED; 

  s -> right -> colour = BLACK; 

 } 

 del_case6(n); 

} 

 

Case 6: S is Black, S’s Right Child is Red, and N is the Left Child of its Parent P 

In this case, a left rotation is done at P to make S the parent of P and S’s right child. 

After the rotation, the colors of P and S are interchanged and S’s right child is colored 

black. Once these steps are followed, you will observe that property 4 and property 5 

remain valid. Case 6 is illustrated in figure 9.13.  

 
Figure 9.13 Deletion in a red-black tree (Case 6) 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 337 

 

The C code to fix Case 6 can be given as follows: 
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Void del_case6(struct node *n) 

{ 

 struct node *s; 

 s = sibling(n); 

 s -> colour = n -> parent -> colour; 

 n -> parent -> colour = BLACK; 

 if (n == n -> parent -> left)  

{ 

  s -> right -> colour = BLACK; 

  rotate_left(n -> parent); 

 }  

else { 

  s -> left -> colour = BLACK; 

  rotate_right(n -> parent); 

 } 

} 

The red-black trees are efficient variants of binary search trees, as they offer a worst-

case time guarantee for insertion, deletion, and search operations. These trees are 

valuable in time-sensitive applications such as real-time applications. Red-black trees 

are also preferred to be used as a building block in other data structures that provide 

a worst-case guarantee. 

 

9.5 Splay Trees 

Splay trees are self-balancing binary search trees that were invented by Daniel Sleator 

and Robert Tarjan. Splay trees have an additional property of re-accessing the recently 

accessed elements fastly. Splay trees are efficient binary search trees as they can 

perform basic operations like search, insertion, and deletion in O(log n) time. They are 

advantageous for various non-uniform or even unknown series of operations. 

A splay tree is a binary tree with no additional fields. While accessing any node in a 

splay tree, it is rotated or splayed to the root, which ultimately changes the structure 

of the tree. As the most frequently accessed nodes are always closer to the root node, 

we can locate these nodes faster. Thus, it can be interpreted that if any node is 

accessed once, then it can likely be accessed again.  

Unlike other binary search trees, the basic operations in a splay tree are combined 

with a “splaying” operation. This additional operation for a particular node rearranges 
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that node at the root. In the splaying process, a standard binary search operation is 

performed for the desired node and then rotations are used in specific order to bring 

that node on the top.  

 

The advantages of using a splay tree are: 

● A splay tree gives good performance for search, insertion, and deletion 

operations. This advantage centers on the fact that the splay tree is a self-

balancing and self-optimizing data structure in which the frequently accessed 

nodes are moved closer to the root so that they can be accessed quickly. This 

advantage is particularly useful for implementing caches and garbage collection 

algorithms. 

● Splay trees are considerably simpler to implement than the other self-balancing 

binary search trees, such as red-black trees or AVL trees, while their average-

case performance is just as efficient. 

● Splay trees minimize memory requirements as they do not store any book-

keeping data. 

● Unlike other types of self-balancing trees, splay trees provide good performance 

(amortized O(log n) ) with nodes containing identical keys. 

 

However, the demerits of splay trees include: 

● While sequentially accessing all the nodes of a tree in sorted order, the 

resultant tree becomes completely unbalanced. This takes n accesses of the tree 

in which each access takes O(log n) time. For example, re-accessing the first 

node triggers an operation that in turn takes O(n) operations to rebalance the 

tree before returning the first node. Although this creates a significant delay for 

the final operation, the amortized performance over the entire sequence is still 

O(log n). 

● For uniform access, the performance of a splay tree will be considerably worse 

than a somewhat balanced simple binary search tree. For uniform access, 

unlike splay trees, these other data structures provide worst-case time 

guarantees and can be more efficient to use. 

Let’s discuss the basic operations of splay trees in detail. 
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A. Splaying 

When we access a node N, splaying is performed on N to move it to the root. To 

perform a splay operation, certain splay steps are performed where each step 

moves N closer to the root. Splaying a particular node of interest after every 

access ensures that the recently accessed nodes are kept closer to the root and 

the tree remains roughly balanced so that the desired amortized time bounds 

can be achieved. Each splay step depends on three factors: 

● Whether N is the left or right child of its parent P, 

● Whether P is the root or not, and if not, 

● Whether P is the left or right child of its parent, G ( N’s grandparent). 

Depending on these three factors, we have one splay step based on each 

Zig step: The zig operation is performed when P (the parent of N) is the root of 

the splay-tree. In the zig step, the tree is rotated on the edge between N and P. 

Zig step is usually performed as the last step in a splay operation and only 

when N has an odd depth at the beginning of the operation. The zig step is 

shown in figure 9.14 (a). 

Zig-zig step: The zig–zig operation is performed when P is not the root. In 

addition to this, N and P are either both right or left children of their parents. 

Figure 9.14 (b) shows the case where N and P are the left children. During the 

zig–zig step, first the tree is rotated on the edge joining P and its parent G, and 

then again rotated on the edge joining N and P. 

Zig-zag step: The zig-zag operation is performed when P is not the root. In 

addition to this, N is the right child of P and P is the left child of G or vice versa. 

In the zig-zag step, the tree is first rotated on the edge between N and P and 

then rotated on the edge between N and G. The zig-zag step is shown in figure 

9.14 (c). 
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(a) The zig step 

 
(b) The zig-zig step 

 
(c) The zig-zag step 

Figure 9.14 Splaying operation in splay trees 
Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 10, Page No.- 338 

 

B. Inserting a Node in a Splay Tree 

Although the process of inserting a new node N into a splay tree begins in the 

same way as we insert a node in a binary search tree, after the insertion, N is 

made the new root of the splay-tree. The steps performed to insert a new node N 

in a splay tree can be given as follows: 

1. Search N in the splay-tree. If the search is successful, splay at the node 

N. 
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2. If the search is unsuccessful, add the new node N in such a way that it 

replaces the NULL pointer reached during the search by a pointer to a 

new node N. Splay the tree at N. 

 

C. Searching for a Node in a Splay Tree 

If a particular node N is present in the splay tree, then a pointer to N is 

returned; otherwise, a pointer to the null node is returned. The steps performed 

to search a node N in a splay tree include: 

1. Search down the root of the splay tree looking for N. 

2. If the search is successful, and we reach N, then splay the tree at N and return 

a pointer to N. 

3. If the search is unsuccessful, i.e., the splay tree does not contain N, then we 

reach a null node. Splay the tree at the last non-null node reached during the 

search and return a pointer to null. 

 

D. Deleting a Node from a Splay Tree 

To delete a node N from a splay tree, we perform the following steps: 

1. Search for N that has to be deleted. If the search is unsuccessful, splay 

the tree at the last non-null node encountered during the search. 

2. If the search is successful and N is not the root node, then let P be the 

parent of N. Replace N by an appropriate descendent of P (as we do in 

binary search tree). Finally, splay the tree at P. 

 

9.6 Summary 

● A B-tree having an order of m consists of m-1 keys and m pointers to the 

subtrees. The purpose of using B-trees is to store a large number of keys in a 

single node to keep the height of the tree relatively small. 

● B+ trees are a variant of B-Trees that also store sorted data only in the leaf 

nodes. 

● In a B-Tree both keys and records are stored in its internal nodes. In contrast, 

the B+ tree stores all the records at its leaf node, and internal nodes contain 

only the keys.  

● A red-black tree is a self-balancing binary search tree which is also known as a 
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‘symmetric binary B-tree’. Although a red-black tree is complex, it has a good 

worst-case running time for its operations and is efficient to use, as searching, 

insertion, and deletion can all be done in O(log n) time. 

● A splay tree is a self-balancing binary search tree with an additional property 

that recently accessed elements can be re-accessed fast. 

 

9.7 Key Terms 

● Amortized Analysis: The time complexity of maintaining a splay tree is 

analyzed using an Amortized Analysis. 

● B-trees: B-trees are balanced trees that are optimized for situations when part 

or the entire tree must be maintained in secondary storage such as a magnetic 

disk. 

● Minimization factor: A b-tree has a minimum number of allowable children for 

each node known as the Minimization factor. 

● Splaying: Splaying a particular node of interest after every access ensures that 

the recently accessed nodes are kept closer to the root and the tree remains 

roughly balanced. 

 

9.8 Check Your Progress 

Short- Answer type 

Q1) Every node in a B tree has at most ______ children. 

(a) M   (b) M–1   (c)2   (d)M+1 

Q2) In _______ data is stored in internal or leaf nodes. 

Q3) A B+ tree stores data only in the i-nodes. True/ False? 

Q4) Splay Trees were invented by 

(a) Sleator  (b) Tarjan  (c) Newton  (d) Both (a) and (b) 

Q5) The lower and upper bounds on the number of child nodes are typically fixed for 

a particular implementation. 

Long- Answer type 

Q1) Explain splay operation in splay trees. 

Q2) Differentiate between B-Trees and B+ Trees. 

Q3) Consider the B-tree given below: 

(a) Insert 1, 5, 7, 11, 13, 15, 17, and 19 in the tree. 
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(b) Delete 30, 59, and 67 from the tree. 

Q4) List the merits and demerits of a splay-tree. 

Q5) Discuss the properties of a red-black tree. Explain the insertion cases. 
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Unit 10  Advanced Trees 
Structure 

10.0 Introduction 

10.1 Unit Objectives 

10.2 Interval Trees 

10.3 Segment Trees 

10.4 KD-Trees 

10.5 Quad Trees 

10.6 Summary 

10.7 Key Terms 

10.8 Check Your Progress 

 

10.0 Introduction 

We are now already aware of the fundamentals of Balanced trees. The importance of 

balanced search trees does not come primarily from the importance of dictionary 

structures; they are just the most basic applications. Balanced search trees provide a 

frame on which many other useful structures can be built. These other structures 

can then take advantage of the logarithmic depth and the mechanisms that preserve 

it, without going into the details of studying the underlying search-tree balancing 

methods. In this chapter, we describe several structures that are built on top of a 

balanced search tree and that implement different queries or even an entirely 

different abstract structure. 

 

10.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Explain the different abstract tree structures. 

● Describe the interval trees and segment trees. 

● Define KD- trees and Quadtrees. 

 

10.2 Interval Trees 

Interval trees were invented by Edelsbrunner and McCreight. The interval tree 

structure stores a set of intervals and returns for any query key all the intervals that 

contain this query value. The structure is in a way dual to the one-dimensional range 
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queries such as they keep track of a set of values and return for a given query 

interval all key values in that interval, whereas we now have a set of intervals as data 

and a key-value as a query. In both cases the answer can be potentially large, so we 

have to aim for an output-sensitive complexity bound.  

The idea of the interval tree structure is simple. Suppose the underlying set of 

intervals is the set {[a1, b1], [a2, b2], . . . , [an, bn]}. Let T be any balanced search tree 

for the set of interval endpoints {a1, a2, . . . , an, b1, . . . , bn}. With each interior node 

of this search tree, we associate the interval of possible key values that can reach 

this node.  

 

Each interval [ai, bi] of our set is now stored in a node that satisfies the following 

conditions: 

1. The key of the node is contained in  [ai, bi], and 

2. The interval  [ai, bi] is contained in the interval associated with the node. 

 

Such a node is easy to find: given [ai, bi] and T, we start with the root as the current 

node. The interval associated with the root is ] − ∞, ∞[, so property 2 is initially 

satisfied by the current node. If the key in the current node is contained in [ai, bi], 

then this node satisfies both properties and we choose it; otherwise, [ai, bi] is either 

entirely to the left or entirely to the right of the key of the current node, so it is 

contained in the interval associated with the left or right lower neighbor, which we 

choose as the new current node. Thus, each interval moves down in the search tree 

till we find a node for which properties 1 and 2 are satisfied. This node might not be 

unique; if during this descent the key of the current node occurs as an endpoint of 

the interval, then some node below the current node will also satisfy both properties. 

For the interval tree structure, it makes no difference which node we choose. 

Within the node, there might be multiple intervals that should be stored in that node. 

We keep the intervals in two lists– one list of the left endpoints in increasing order 

and one list of the right endpoints in decreasing order. Each interval stored in that 

node appears on both lists. All left endpoints are smaller than or equal to the key in 

the node, and all right endpoints are larger than or equal to the key in the node. 

 

Implementation of Interval Trees 
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By this, we have specified the abstract structure of an interval tree. To implement it, 

we need two different types of nodes: the search-tree nodes augmented by the left 

and right list pointers, and the list nodes. The list nodes contain, in addition to the 

interval endpoint, a pointer to the object associated with the interval. The nodes have 

the following structure: 

typedef struct ls_n_t { key_t key; 

struct ls_n_t *next; 

object_t *object; 

} list_node_t; 

 

typedef struct tr_n_t { key_t key; 

struct tr_n_t *left; 

struct tr_n_t *right; 

list_node_t *left_list; 

list_node_t *right_list; 

/* balancing information */ 

} tree_node_t; 

 

Given the interval tree, we can now describe the query algorithm. For a given value 

query key, we follow the underlying search-tree structure with its usual find 

algorithm. In each tree node *n we visit, we output intervals as follows: 

1. If query key < n->key 

we setlist to n->left list, 

while list = NULL and list->key ≤ query key. 

1.1 We output list->object and setlist to list->next. 

2. Else query key ≥ n->key 

we setlist to n->right list, 

while list = NULL and list->key ≥ query key. 

2.1 We output list->object and setlist to list->next. 

 

In each tree node, we perform O(1) work for each object we list, so the total time is 

O(h + k), where h is the height of the tree and k is the number of objects listed, so 

using any balanced search tree as the underlying structure, we get an output-

sensitive complexity of O(log n + k). 
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We still have to show that the output given by this method is correct. For this, we 

observe that if an interval [ai, bi] contains the query key, then it will be stored in one 

of the tree nodes along the path followed by the query key. On each level, there is at 

most one node whose associated interval contains [ai, bi], and if the query key is in 

that interval, this path will pass through that node. But for each node, we need to 

consider only those intervals for which the query key is between the interval endpoint 

and the node key. Because the node key is contained in all intervals stored in that 

node, we do not need to check the other interval endpoint.  

Thus, 

1. If the query key is less than the node key, and the list item key is less than the 

query key, we have left endpoint ≤ query key < node key ≤ right endpoint. 

While if the list item key is larger than the node key, this holds by the 

increasing order of the left list also for all following keys, so none of the 

remaining intervals contains the query key. 

2. If the query key is larger than the node key, and the list item key is larger than 

the query key, we have left endpoint ≤ node key ≤ query key ≤ right endpoint. 

While if the list item key is smaller than the node key, this holds by the 

decreasing order of the right list also for all following keys, so none of the 

remaining intervals contains the query key. 

 

So this algorithm lists exactly the intervals (or associated objects) that contain the 

query key. 

The interval tree is a static data structure, we can build it once, but there is no 

update operation; insertion and deletion of intervals are not possible. To build it from 

a given list of n intervals, we first build the search tree for the interval endpoints in 

O(n log n) time. Next, we construct a list of the intervals sorted in decreasing order of 

their left interval endpoints, in O(n log n), and find for each interval the node where it 

should be stored, and insert it there in front of the left list, in O(log n) per interval. 

Finally, we construct a list of the intervals sorted in increasing order of their right 

interval endpoints, in O(n log n), and find for each interval the node where it should 

be stored, and insert it there in front of the right list, in O(log n) per interval. By this 

initial sorting and inserting in that order, all node lists are in the correct order. The 

total work needed to construct the interval tree structure is O(n log n). The total 
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space needed by the interval tree is O(n) because the search tree needs O(n) space 

and each interval occur only on two lists. This completes the analysis of the interval 

tree structure. 

Theorem: The interval tree structure is a static data structure that can be built in 

time O(n log n) and needs space O(n). It lists all intervals containing a given query 

key in output-sensitive time O(log n + k) if there are k such intervals. 

Before we now give the code for the query function find intervals, we need to decide 

how to return multiple results – a question that occurs whenever our query operation 

has potentially many results. Our preferred solution is to construct a list of all 

results and return that list as an answer. This has the advantage of conceptual 

clarity, but it depends on the list nodes being correctly returned by the program that 

gets this list to avoid a memory leak. The alternative would be to divide the query 

function in two: one to start the query and one to get the next result. 

 

list_node_t *find_intervals(tree_node_t *tree, key_t query_key) 

{ tree_node_t *current_tree_node; 

  list_node_t *current_list, *result_list, *new_result; 

  if( tree->left == NULL ) 

   return(NULL); 

else 

{    current_tree_node = tree; 

result_list = NULL; 

while( current_tree_node->right != NULL ) 

{ if( query_key < current_tree_node->key ) 

{ current_list = current_tree_node->left_list; 

while( current_list != NULL && current_list->key <= query_key ) 

{ new_result = get_list_node(); 

new_result->next = result_list; 

new_result->object = current_list->object; 

result_list = new_result; 

current_list = current_list->next; 

} 

current_tree_node = 

current_tree_node->left; 

} 
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else 

{ 

current_list = current_tree_node->right_list; 

while( current_list != NULL && current_list->key >= query_key ) 

{ new_result = get_list_node(); 

new_result->next = result_list; 

new_result->object = current_list->object; 

result_list = new_result; 

current_list = current_list->next; 

} 

current_tree_node = 

current_tree_node->right; 

} 

} 

return( result_list ); 

} 

} 

 

There are several problems in making this static data structure dynamic. The simpler 

problem is that to insert a new interval at the correct node, we need to insert it in the 

two ordered lists of left and right endpoints. The length of this ordered list can be 

anything up to n and inserting in an ordered list of length l takes up to (l) time. This 

could be reduced to O(log l) if we represent the left and right endpoints in a balanced 

search tree with a doubly connected list of leaves and a pointer to the first and last 

leaf: then we still have O(k) time to list the first k elements of the list and insertion or 

deletion time of O(log l) = O(log n). 

 

The other, essentially unsolved, the problem consists of the restructuring of the 

underlying tree. The interval tree structure depends on each interval containing some 

key of a tree node. So although not every interval endpoint needs to be a key of the 

underlying search tree because many tree nodes will not store any intervals, we can 

be forced to add keys to the underlying search tree. And the tree can become 

unbalanced by this. But if we wish to rebalance the tree, for example, by rotations, 

we have to correct the associated lists and this requires that we join two ordered lists 

that are not separated and that we take apart an ordered list in two, depending on 
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whether the intervals associated with the list items contain some key value. There is 

no known way to do this in sublinear time. 

 

If we know in advance some superset of all the interval endpoints that might occur 

during our use of the structure, we can, of course, build the underlying tree for that 

superset and that tree will never need to be restructured. This can be a quite efficient 

solution if that superset is not too large. For the left and right lists in each node, we 

still need search trees to efficiently insert and delete new intervals. 

 

10.3 Segment Trees 

Segment trees were invented by Bentley. The primary task performed by a segment 

tree is the same as that done by an interval tree: keeping track of a set of n intervals, 

here assumed to be half-open, and listing for a given query key all the intervals that 

contain that key in output-sensitive time O(log n + k) if the output consisted of k 

intervals. It is slightly worse at this task than the interval tree having a space 

requirement of O(n log n) instead of O(n). But the segment tree, or the idea of the 

canonical interval decomposition on which it is based, is really a framework on which 

a number of more general tasks can be performed. Again it is a static data structure. 

Assume a set X = {x1, . . . , xn} of key values and a search tree T for {−∞} ∪ X. As 

usual, with each node of T we associate the interval of all key values for which the 

query path would go through that node. Any interval [xi, xj[ can be expressed in many 

ways as the union of node intervals (Here we need the key −∞ as a leaf of the search 

tree; otherwise there would be no node interval starting at x1) so it can be 

represented by subsets of the tree nodes. In any such representation, a node that is 

in the tree below some other node is redundant because its node interval is 

contained in that higher-up node. Among all such representations there is one that is 

highest: just take all nodes whose intervals are contained in the interval [xi, xj[ we 

want to represent and eliminate the redundant nodes. This representation consists of 

all those nodes whose node interval is contained in [xi, xj[, but the node interval of 

their upper neighbor is not contained in [xi, xj[. This is the canonical interval 

decomposition of the interval [xi, xj[ relative to that search tree T.  

 

Theorem: The canonical interval decomposition is a representation of the interval as 
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the union of disjoint node intervals. Any search path for a value in the interval will go 

through exactly one node that belongs to the canonical interval decomposition. 

The canonical interval decomposition is easy to construct. We start with the interval 

[xi, xj[ at the root: 

1. Each time the node interval of the current node is entirely contained in [xi, xj[, 

we take that node into our representation and stop following that path down 

because all nodes below are redundant. 

2. Each time the node interval of the current node partially overlaps [xi, xj[, we 

follow both paths down. 

3. Each time the node interval of the current node is disjoint from [xi, xj[, we stop 

following that path down. 

 

 
Figure 10.1 Canonical Interval Decomposition for Interval [1, 10] 

Source: Advanced Data Structures, Peter Brass, Cambridge University Press, New York, 2008 

 

It is easy to see that this operation selects exactly the nodes of the canonical interval 

decomposition. It remains to bound the size of the decomposition and the time 

necessary to construct it. For this, we look at case 2 because it is the only case that 

does not immediately terminate. Case 2 happens only for those nodes whose node 

interval contains an endpoint of the interval [xi, xj[ that we wish to represent, so the 

nodes for which case 2 is followed are the nodes along the search paths of xi and xj. 

Each of these nodes causes both its lower neighbors to be visited. Because the only 

way a node that belongs to case 1 or case 3 can be visited is by being a lower 

neighbor of a node of case 2, the total number of visited nodes is less than 4 

height(T) and the total number of selected nodes is less than 2 height(T). 
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Theorem: Let X = {x1, . . . , xn} be a set of key values and T a search tree for {−∞} ∪ X. 

Then for any interval bounded by values from X, the canonical decomposition has 

size at most 2 height(T) and can be constructed in time O (height(T)). If T is of height 

O(log n), the canonical interval decomposition has the size O(log n) and can be found 

in time O(log n). 

Now we have the canonical interval decomposition; the segment tree structure that 

represents a set of intervals {[a1, b1[, [a2, b2[, . . . , [an, bn[ } is easy to describe. It 

consists of some balanced search tree T for the extended set of interval endpoints 

{−∞, a1, a2, . . . , an, b1, . . . ,bn} in which each node carries a list of all those intervals 

[ai, bj[ for which this node is part of the canonical interval decomposition. 

With this structure, the interval containment queries are very easy: given a query 

key, we follow the search-tree structure down and for each node on the search path, 

we output all intervals on its list. All these intervals contain the query key, and each 

interval that contains the query key is met in exactly one node. Thus, the output 

does not contain any duplicates and the query time is O(log n + k) to follow the 

search path down and list k intervals. This would work just the same for any other 

interval decomposition that does not contain redundant elements, but we need the 

canonical interval decomposition because it is small and easy to build. Unlike the 

interval tree, each interval is stored in the segment tree many times, so the required 

space is not only O(n). Each interval generates at most O(log n) parts in its canonical 

interval decomposition, so the total required space is O(n log n). And the segment 

tree structure can be built in O(n log n) time, first building the balanced search tree 

and then inserting the n intervals, constructing the canonical interval decomposition 

of each in O(log n). 

 

Theorem: The segment tree structure is a static data structure that can be built in 

time O(n log n) and needs space O(n log n). It lists all intervals containing a given 

query key in output-sensitive time O(log n + k) if there are k such intervals. 

Implementation of Segment Tree Structure 

To implement the segment tree structure, we again need two types of nodes – the tree 

nodes and the interval lists attached to each tree node. 

typedef struct ls_n_t { key_t key_a, key_b; 

/* interval [a,b[ */ 
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struct ls_n_t *next; 

object_t *object; 

} list_node_t; 

typedef struct tr_n_t { key_t key; 

struct tr_n_t *left; 

struct tr_n_t *right; 

list_node_t *interval_list; 

/* balancing information */ 

} tree_node_t; 

Then the query algorithm is as follows: 

list_item_t *find_intervals(tree_node_t *tree, key_t query_key) 

{ tree_node_t *current_tree_node; 

   list_node_t *current_list, *result_list, 

   *new_result; 

if( tree->left == NULL )  /* tree empty */ 

return(NULL); 

else     /* tree nonempty, follow search path */ 

{ current_tree_node = tree; 

   result_list = NULL; 

   while( current_tree_node->right != NULL ) 

{ if( query_key < current_tree_node->key ) 

current_tree_node = current_tree_node->left; 

else 

current_tree_node = current_tree_node->right; 

current_list = current_tree_node->interval_list; 

   while( current_list != NULL ) 

    { /* copy entry from node list to result list */ 

new_result = get_list_node(); 

new_result->next = result_list; 

new_result->key_a = current_list->key_a; 

new_result->key_b = current_list->key_b; 

new_result->object = current_list->object; 

result_list = new_result; 

current_list = current_list->next; 

} 

} 
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return( result_list ); 

} 

} 

 

Notice that neither the root nor any node on the left or right boundary path of the 

tree can have any intervals of the canonical interval decomposition attached to it 

because their node intervals are unbounded and we are representing only finite 

intervals. Typically, nodes near the leaf level will have non-empty lists, whereas, in 

the interval tree, the intervals tend to be stored in higher-up nodes. 

The construction of the segment tree structure has two phases. First, the underlying 

balanced search tree is built using any method. We assume that initially, all the 

interval list fields of the tree nodes are NULL. Then the intervals are inserted one 

after another. Next is the code for the insertion of an interval [a, b[ in the tree; the 

insertion of an interval into the interval list of a node is written as a separate 

function. 

void attach_intv_node(tree_node_t *tree_node, key_t a, key_t b, object_t *object) 

{ list_node_t *new_node; 

new_node = get_list_node(); 

new_node->next = tree_node->interval_list; 

new_node->key_a = a; new_node->key_b = b; 

new_node->object = object; 

tree_node->interval_list = new_node; 

} 

void insert_interval(tree_node_t *tree, key_t a, key_t b, object_t *object) 

{ tree_node_t *current_node, *right_path, *left_path; 

list_node_t *current_list, *new_node; 

if( tree->left == NULL ) 

exit(-1);    /* tree incorrect */ 

else 

{ current_node = tree; 

right_path = left_path = NULL; 

while( current_node->right != NULL ) 

/* not at leaf */ 

{ 

if( b < current_node->key ) 
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/* go left: a < b < key */ 

current_node = current_node->left; 

else if( current_node->key < a) 

/* go right: key < b < a */ 

current_node = current_node->right; 

else if( a < current_node->key && current_node->key < b ) 

/* split: a < key < b */ 

{ 

right_path = current_node->right; 

/* both right */ 

left_path = current_node->left; 

/* and left */ 

break; 

} 

else if( a == current_node->key ) 

/* a = key < b */ 

{ 

right_path = current_node->right; 

/* no left */ 

break; 

} 

else    /*current_node->key == b, so a< key = b */ 

{ 

left_path = current_node->left; 

/* no right */ 

break; 

} 

} 

if( left_path != NULL ) 

{      /* now follow the path of the left endpoint a*/ 

while( left_path->right != NULL ) 

{ 

if( a < left_path->key ) 

{ 

/* right node must be selected */ 

attach_intv_node(left_path-> right, a,b,object); 
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left_path = left_path->left; 

} 

else if ( a == left_path->key ) 

{ 

attach_intv_node(left_path ->right, a,b,object); 

break;    /* no further descent necessary */ 

} 

else 

/* go right, no node selected */ 

left_path = left_path->right; 

} 

/* left leaf of a needs to be selected if reached */ 

if( left_path->right == NULL && left_path->key == a ) 

attach_intv_node(left_path, a,b,object); 

}      /* end left path */ 

if( right_path != NULL ) 

{    /* and now follow the path of the right endpoint b */ 

while( right_path->right != NULL ) 

{ 

if( right_path->key < b ) 

{ 

/* left node must be selected */ 

attach_intv_node(right_path->left, a,b, object); 

right_path = right_path->right; 

} 

else if ( right_path->key == b) 

{ 

attach_intv_node(right_path-> left, a,b, object); 

break;   /* no further descent necessary */ 

} 

else     /* go left, no node selected */ 

right_path = right_path->left; 

} 

/* on the right side, the leaf of b is never attached */ 

}    /* end right path */ 

} 
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} 

 

Again, like the interval tree, the segment tree is a static structure, and we face the 

same problems in making it dynamic: we have to allow insertion and deletion in each 

node, and we have to support the restructuring of the underlying tree. For the 

insertion and deletion in the nodes, we can again use a search tree. But we have to 

insert or delete the O(log n) fragments of the canonical interval decomposition for a 

single insert or delete; so it would be efficient to use a search tree only for the first 

fragment and then have the remaining fragments on a linked list from the first 

fragment. Then each tree node would need two structures: a search tree for all those 

intervals whose canonical interval decomposition has its first fragment in that node 

and a doubly-linked list, allowing O(1) insertion and deletion, for those intervals that 

started somewhere else. This shows that we can perform O(log n) insertion and 

deletion of intervals as long as the underlying tree does not change. A rebalancing of 

the underlying tree by rotations again causes changes in the lists attached to the tree 

nodes that can be resolved only by looking at the entire list and so this is no efficient 

solution. The situation here is better than that for interval trees because the 

sequence of the intervals attached to a tree node does not matter.  

 

10.4 KD- Trees 

The kd-tree was invented by Jon Bentley (1975) as a direct analog of the normal 

balanced search tree, which is viewed as a one-dimensional tree. The name kd-tree 

was originally meant as a k-dimensional tree, where k represented the number of 

dimensional structures like 3- dimensional or 4- dimensional, etc. The kd-tree is the 

structure that supports orthogonal range searching. It is quite popular in practical 

applications and conceptually easy to understand and implement, but it is 

unsatisfactory because its worst-case performance is much worse than orthogonal 

range trees. In the two-dimensional version, the worst-case query time is O(√n + k) 

instead of  O((log n)2 + k), and the d-dimensional analog is even worse, with O(n(1− 1/d ) 

+ k) instead of O((log n)d + k). The empirical performance in database examples seems 

better than this worst-case complexity, so in database literature, this and related 

structures have been widely studied and used. 
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The lower bound for the query time was given by Lee and Wong (1977), and a first 

comparative analysis of several range-searching structures, among them the kd-tree, 

the orthogonal range tree, and the Bentley–Maurer structures appear in Bentley and 

Friedman (1979). The bad worst-case query time places the kd-tree in any 

comparison far behind these structures, only under strong assumptions like 

uniformly distributed data points and small, “relatively square” query rectangles; its 

performance becomes comparable to them. Square query rectangles occur when we 

really aim at a nearest-neighbor query or at least some filter for the neighborhood of 

the query point. Variants of the kd-tree structure are analyzed in numerous papers 

under input and query distribution assumptions. Much work went into making kd-

trees a dynamic structure, allowing insertions and deletions of points starting with 

kd-trees, semi-dynamic kd-trees, and divided kd trees.  

 

External memory efficiency has also been a major consideration in these structures; 

further related structures supporting various types of range-restricted queries have 

been developed in the database community. 

 

The idea of the kd-tree is that we have a search tree, wherein each node we make a 

comparison and enter the left or right subtree, but unlike the normal search trees, 

we can compare in different nodes against different coordinates. The simplest choice 

is to cycle through the coordinates; in the root, we compare against the first 

coordinate, in the nodes below, we compare against the second coordinate, and so 

on. In each node, we choose as a comparison key a value that divides the set of 

points below that node in a balanced way. As in the normal search trees, this defines 

a node interval for each node, which is now a d-dimensional half-open box the set of 

all possible query points whose search path would go through that node.  

 

The comparison with the node key then divides the box by a hyperplane in the 

direction of that coordinate which we used in the comparison. So we get a hierarchy 

of possibly unbounded orthogonal boxes. In the two-dimensional version, these are 

rectangles alternatingly divided in the horizontal and vertical directions. 
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Figure 10.2 Set of Nine Points with kd-Tree Structure: All Rectangles Are Half-

Open to the Right and the Top 
Source: Advanced Data Structures, Peter Brass, Cambridge University Press, New York, 2008 

 

If we have this structure, a range query can be answered just as in the one-

dimensional case: starting in the root, we descend into each node whose node 

interval has a non-empty intersection with the query region and stop following any 

branch when that intersection becomes empty. This is a very natural and generic 

query algorithm that can be applied for any type of query range, not only for 

rectangles. This is a great strength of this type of structure, but it is not very 

efficient, for the number of leaves we visit without actually finding a point that 

should belong to the answer can be as large as ᘯ(√n). And this is not only for specific 

bad point sets, or bad subdivision structures; it is a problem that always occurs: 

there is always a query rectangle that intersects ᘯ(√n) of the cells without containing 

any point of the underlying set. 

 

Theorem: kd-trees are a static structure that supports d-dimensional orthogonal 

range queries in a set of d-dimensional points in output-sensitive time O (n1− 1/d + k) 

if the output consists of k points. They can be built in O(n(log n)) time using O(n) 

space. 

 

10.5 Quad Trees 

Quadtrees were introduced by Raphael Finkel and J.L. Bentley in 1974. Quadtrees 

are hierarchical spatial tree data structures that are based on the principle of 

recursive decomposition of space. The term quadtree originated from the 

representation of two-dimensional data by recursive decomposition of space using 
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separators parallel to the co-ordinate axis. The resulting split of a region into four 

regions corresponding to southwest, northwest, southeast, and northeast quadrants 

is represented as four children of the node corresponding to the region, hence the 

term“quad” tree. In a three dimensional analog, a region is split into eight regions 

using planes parallel to the coordinate planes. As each internal node can have eight 

children corresponding to the 8-way split of the region associated with it, the term 

octree is used to describe the resulting tree structure. Analogous data structures for 

representing spatial data in higher than three dimensions are called hyper octrees. It 

is also common practice to use the term quadtrees in a generic way irrespective of 

the dimensionality of the spatial data. This is especially useful when describing 

algorithms that are applicable regardless of the specific dimensionality of the 

underlying data. 

In constructing a quadtree, one starts with a square, cubic, or hypercubic region 

(depending on the dimensionality) that encloses the spatial data under consideration. 

The different variants of the quadtree data structure are differentiated by the 

principle used in the recursive decomposition process. One important aspect of the 

decomposition process is if the decomposition is guided by input data or is based on 

the principle of equal subdivision of the space itself. The former results in a tree size 

proportional to the size of the input. If all the input data is available as prior, it is 

possible to make the data structure height-balanced.  

These attractive properties come at the expense of difficulty in making the data 

structure dynamic, typically in accommodating deletion of data. If the decomposition 

is based on an equal subdivision of space, the resulting tree depends on the 

distribution of spatial data. As a result, the tree is height-balanced and is linear in 

the size of input only when the distribution of the spatial data is uniform, and the 

height and size properties deteriorate with an increase in non-uniformity of the 

distribution. The beneficial aspect is that the tree structure facilitates easy update 

operations and the regularity in the hierarchical representation of the regions 

facilitates geometric arguments helpful in designing algorithms. 

Quadtrees have been used as fixed resolution data structures, where the 

decomposition stops when a preset resolution is reached, or as variable resolution 

data structures, where the decomposition stops when a property based on input data 

present in the region is satisfied. They are also used in a hybrid manner, where the 



Types of Trees 

 
 

301  
 

decomposition is stopped when either a resolution level is reached or when a 

property is satisfied. 

Quadtrees are used to represent many types of spatial data including points, line 

segments, rectangles, polygons, curvilinear objects, surfaces, volumes, and 

cartographic data. Their use is pervasive spanning many application areas including 

computational geometry, computer-aided design, computer graphics, databases, 

geographic information systems, image processing, pattern recognition, robotics, and 

scientific computing. 

We first explore quadtrees in the context of the simplest type of spatial data − 

multidimensional points. Consider a set of n points in d dimensional space. The 

principal reason a spatial data structure is used to organize multidimensional data is 

to facilitate queries requiring spatial information. A number of such queries can be 

identified for point data.  

 

For example: 

1. Range query: Given a range of values for each dimension, find all the points 

that lie within the range. This is equivalent to retrieving the input points that 

lie within a specified hyper rectangular region. Such a query is often useful in 

database information retrieval. 

2. Spherical region query: Given a query point p and a radius r, find all the points 

that lie within a distance of r from p. In a typical molecular dynamics 

application, spherical region queries centered around each of the input points 

is required. 

3. All nearest neighbor query: Given n points, find the nearest neighbor of each 

point within the input set. 
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Figure 10.3 A two dimensional set of points and a corresponding point quadtree 

Source: Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005 

 

Point Quadtrees 

The point quadtree is a natural generalization of the binary search tree data 

structure to multiple dimensions. For convenience, first, consider the two-

dimensional case. Start with a square region that contains all of the input points. 

Each node in the point quadtree corresponds to an input point. To construct the tree, 

pick an arbitrary point and make it the root of the tree. Using lines parallel to the 

coordinate axis that intersect at the selected point (see figure 10.3), divide the region 

into four subregions corresponding to the southwest, northwest, southeast, and 

northeast quadrants, respectively. Each of the subregions is recursively decomposed 

in a similar manner to yield the point quadtree. For points that lie at the boundary of 

two adjacent regions, a convention can be adopted to treat the points as belonging to 

one of the regions. For instance, points lying on the left and bottom edges of a region 

may be considered included in the region, while points lying on the top and right 

edges are not. When a region corresponding to a node in the tree contains a single 

point, it is considered a leaf node. Note that point quadtrees are not unique and their 

structure depends on the selection of points used in region subdivisions. Irrespective 

of the choices made, the resulting tree will have n nodes, one corresponding to each 

input point. 
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Region Quadtrees 

The region quadtree for n points in d dimensions is defined as follows: Consider a 

hypercube large enough to enclose all the points. This region is represented by the 

root of the d-dimensional quadtree. The region is subdivided into 2 d subregions of 

equal size by bisecting along each dimension. Each of these regions containing at 

least one point is represented as a child of the root node. The same procedure is 

recursively applied to each child of the root node. The process is terminated when a 

region contains only a single point. This data structure is also known as the point 

region quadtree. At times, we will simply use the term quadtree when the tree implied 

is clear from the context. The region quadtree corresponding to a two dimensional set 

of points is shown in figure 10.4. Once the enclosing cube is specified, the region 

quadtree is unique. The manner in which a region is subdivided is independent of 

the specific location of the points within the region.  

 

This makes the size of the quadtree sensitive to the spatial distribution of the points. 

 
Figure 10.4 A two dimensional set of points and a corresponding region 

quadtree 
Source: Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005 

 

Compressed Quadtrees and Octrees 

In an n-leaf tree where each internal node has at least two children, the number of 

nodes is bounded by 2n − 1. The size of quadtrees is distribution dependent because 

there can be internal nodes with only one child. In terms of the cell hierarchy, a cell 
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may contain all its points in a small volume so that, recursively subdividing it may 

result in just one of the immediate subcells containing the points for an arbitrarily 

large number of steps. Note that the cells represented by nodes along such a path 

have different sizes but they all enclose the same points. In many applications, all 

these nodes essentially contain the same information as the information depends 

only on the points the cell contains. This prompted the development of compressed 

quadtrees, which are obtained by compressing each such path into a single node. 

Therefore, each node in a compressed quadtree is either a leaf or has at least two 

children.  

The compressed quadtree corresponding to the quadtree is depicted in figure 10.5.  

 
Figure 10.5 A two-dimensional set of points and the corresponding compressed 

quadtree 
Source: Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005 

 

Fast algorithms for operations on quadtrees can be designed by simultaneously 

keeping track of spatial ordering and one-dimensional ordering of cells in the 

compressed quadtree. The spatial ordering is given by the compressed quadtree 

itself. In addition, a balanced binary search tree (BBST) is maintained on the large 

cells of the nodes to enable fast cell searches. Both the trees consist of the same 

nodes and this can be achieved by allowing each node to have pointers corresponding 

to compressed quadtree structure and pointers corresponding to BBST structure. 
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Point and Cell Queries 

Point and cell queries are similar since a point can be considered to be a zero-length 

cell. A node v is considered to represent cell C if S(v) ⊆ C ⊆ L(v). The node in the 

compressed quadtree representing the given cell is located using the BBST. Traverse 

the path in the BBST from the root to the node that is being searched in the following 

manner: To decide which child to visit next on the path, compare the query cell with 

the large and small cells at the node. If the query cell precedes the small cell in cell 

ordering, continue the search with the left child. If it succeeds the large cell in cell 

ordering, continue with the right child. If it lies between the small cell and large cell 

in cell ordering, the node represents the query cell. As the height of a BBST is O(log 

n), the time is taken for a point or cell query is O(d log n). 

Insertions and Deletions 

As points can be treated as cells of zero length, insertion and deletion algorithms will 

be discussed in the context of cells. These operations are meaningful only if a cell is 

inserted as a leaf node or deleted if it is a leaf node. Note that a cell cannot be deleted 

unless all its subcells are previously deleted from the compressed quadtree. 

Cell Insertion 

To insert a given cell C, first check whether it is represented in the compressed 

quadtree. If not, it should be inserted as a leaf node. Create a node v with S(v) = C 

and first insert v in the BBST using a standard binary search tree insertion 

algorithm. To insert v in the compressed quadtree, first find the BBST successor of v, 

say u. Find the smallest cell D containing C and the S(u). Search for cell D in the 

BBST and identify the corresponding node w. If w is not a leaf, insert v as a child of w 

in a compressed quadtree. If w is a leaf, create a new node w’ such that S(w’) = D. 

Nodes w and v become the children of w in the compressed quadtree. The new node 

w’ should be inserted in the BBST. The overall algorithm requires a constant number 

of insertions and searches in the BBST and takes O(d log n) time. 

Cell Deletion 

As in insertion, the cell should be deleted from the BBST and the compressed 

quadtree. To delete the cell from BBST, the standard deletion algorithm is used. 

During the execution of this algorithm, the node representing the cell is found. The 

node is deleted from the BBST only if it is present as a leaf node in the compressed 

quadtree. If the removal of this node from the compressed quadtree leaves its parent 
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with only one child, the parent is deleted as well. Since each internal node has at 

least two children, the delete operation cannot propagate to higher levels in the 

compressed quadtree. 

 

10.6 Summary 

● The interval tree structure stores a set of intervals and returns for any query 

key all the intervals that contain this query value.  

● The canonical interval decomposition is a representation of the interval as a 

union of disjoint node intervals. Any search path for a value in the interval will 

go through exactly one node that belongs to the canonical interval 

decomposition. 

●  The kd-tree is the structure that supports orthogonal range searching. 

● Quadtrees are hierarchical spatial tree data structures that are based on the 

principle of recursive decomposition of space.  

● Quadtrees are used to represent many types of spatial data including points, 

line segments, rectangles, polygons, curvilinear objects, surfaces, volumes, 

and cartographic data. 

 

10.7 Key Terms 

● Octree: When each internal node can have eight children corresponding to the 

8-way split of the region associated with it, it is termed as an octree. 

● Hyper Octrees: Analogous data structures for representing spatial data in 

higher than three dimensions are called hyper octrees. 

● Spherical Region Query: The problem of finding all points in a data set that 

lie within a given distance from a query point, commonly known as the 

spherical region query. 

● Supercell: A cell containing the subcell is called a supercell. 

 

10.8 Check Your Progress 

Short- Answer type 

Q1) Insertion into a 2-d tree is a trivial extension of insertion into a binary search 

tree. True/ False? 

Q2) In what time can a kd tree be constructed? 
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(a) O(N)  (b) O(N log N)   (c) O(N2)  (d) O(M log N) 

Q3) __________ is the simplest data structure that supports range searching. 

Q4) In which of the following data structures does every internal node have at most 

four children? 

(a) Point quadtree (b) Edge quadtree  (c) Quadtree  (d) None of these 

Q5) Point quadtree defines a partition of space in two dimensions by dividing the 

region into four equal quadrants. True/ False? 

Long- Answer type 

Q1) Write a short note on interval trees. 

Q2) Discuss the types of Quadtrees and their relevant applications. 

Q3) What is the basic terminology of KD trees? 

Q4) Differentiate between balanced binary trees and Quadtrees. 

Q5) The segment tree structure is a static data structure. Explain. 
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11.0 Introduction 

In computer terminology, a file is a block of useful data that is available to a computer 

program and is usually stored on a persistent storage medium. Storing a file on a 

persistent storage medium like a hard disk ensures the availability of the file for future 

use. Every file contains data that can be organized in a hierarchy to present a 

systematic organization. The data hierarchy includes data items such as fields, 

records, files, and databases. These terms are defined below. 

● A data field is an elementary unit that stores a single fact. A data field is 

usually characterized by its type and size.  

● A record is a collection of related data fields that is seen as a single unit from 

the application point of view.  

● A file is a collection of related records. For example, if there are 60 students in a 

class, then there are 60 records. All these related records are stored in a file. 

Similarly, we can have a file of all the employees working in an organization, a 

file of all the customers of a company, a file of all the suppliers, so on and so 
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forth. 

● A directory stores information about related files. A directory organizes 

information so that users can find it easily. 

 

Every file in a computer system is stored in a directory. Each file has a list of 

attributes associated with it that gives the operating system and the application 

software information about the file and how it is intended to be used. A software 

program that needs to access a file looks up the directory entry to discern the 

attributes of that file. For example, if a user attempts to write to a file that has been 

marked as a read-only file, then the program prints an appropriate message to notify 

the user that he is trying to write to a file that is meant only for reading. 

Similarly, there is an attribute called hidden. When you execute the DIR command in 

DOS, then the files whose hidden attribute is set will not be displayed. These 

attributes are explained here. 

● Filename: It is a string of characters that stores the name of a file. File naming 

conventions vary from one operating system to the other. 

● File position: It is a pointer that points to the position at which the next 

read/write operation will be performed. 

● File structure: It indicates whether the file is a text file or a binary file. In the 

text file, the numbers (integer or floating-point) are stored as a string of 

characters. A binary file, on the other hand, stores numbers in the same way as 

they are represented in the main memory. 

● File Access Method: It indicates whether the records in a file can be accessed 

sequentially or randomly. In sequential access mode, records are read one by 

one. That is, if 60 records of students are stored in the STUDENT file, then to 

read the record of the 39th student, you have to go through the record of the 

first 38 students. However, in random access, records can be accessed in any 

order. 

● Attributes Flag: A file can have six additional attributes attached to it. These 

attributes are usually stored in a single byte, with each bit representing a 

specific attribute. If a particular bit is set to ‘1’ then this means that the 

corresponding attribute is turned on. These attributes are Read-only, Hidden, 
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System, Volume Label, Directory, Archive. 

 

11.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Discuss the basics of file organization and its different methods. 

● Learn about various indexing strategies for faster access to data. 

 

11.2 File Organization 

The main issue in file management is the way in which the records are organized 

inside the file because it has a significant effect on the system performance. 

Organization of records means the logical arrangement of records in the file and not 

the physical layout of the file as stored on a storage media. Since choosing an 

appropriate file organization is a design decision, it must be done keeping the priority 

of achieving good performance with respect to the most likely usage of the file. 

Therefore, the following considerations should be kept in mind before selecting an 

appropriate file organization method: 

➔ Rapid access to one or more records. 

➔ Ease of inserting/updating/deleting one or more records without disrupting the 

speed of accessing record(s). 

➔ Efficient storage of records. 

➔ Using redundancy to ensure data integrity. 

Different file organization methods are available like sequential organization, relative 

file organization, and indexed sequential file organization.  

 

Sequential Organization 

A sequentially organized file stores the records in the order in which they were 

entered. That is, the first record that was entered is written as the first record in the 

file, the second record entered is written as the second record in the file, and so on. As 

a result, new records are added only at the end of the file. Figure 11.1 shows the 

features, advantages, and disadvantages of sequential organization. 

Sequential files can be read-only sequentially, starting with the first record in the file. 

Sequential file organization is the most basic way to organize a large collection of 
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records in a file. Once we store the records in a file, we cannot make any changes to 

the records. We cannot even delete the records from a sequential file. In case we need 

to delete or update one or more records, we have to replace the records by creating a 

new file. 

In sequential file organization, all the records have the same size and the same field 

format, and every field has a fixed size. The records are sorted based on the value of 

one field or a combination of two or more fields. This field is known as the key. Each 

key uniquely identifies a record in a file. Thus, every record has a different value for 

the key field. Records can be sorted in either ascending or descending order.  

Sequential files are generally used to generate reports or to perform a sequential 

reading of large amounts of data which some programs need to do such as payroll 

processing of all the employees of an organization. Sequential files can be easily stored 

on both disks and tapes. 

 
Figure 11.1 Sequential Organization 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition 

 

Relative File Organization 

Relative file organization provides an effective way to access individual records 

directly. In a relative file organization, records are ordered by their relative key. It 

means the record number represents the location of the record relative to the 

beginning of the file. The record numbers range from 0 to n–1, where n is the number 

of records in the file. For example, the record with record number 0 is the first record 
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in the file. The records in a relative file are of fixed length. Figure 11.2 shows the 

features, advantages, and disadvantages of Relative file organization. 

Therefore, in relative files, records are organized in ascending relative record numbers. 

A relative file can be thought of as a single dimension table stored on a disk, in which 

the relative record number is the index into the table. Relative files can be used for 

both random as well as sequential access. For sequential access, records are simply 

read one after another. 

Relative files provide support for only one key, that is, the relative record number. This 

key must be numeric and must take a value between 0 and the current highest 

relative record number –1. This means that enough space must be allocated for the file 

to contain the records with relative record numbers between 0 and the highest record 

number –1. 

Relative file organization provides random access by directly jumping to the record 

which has to be accessed. If the records are of fixed length and we know the base 

address of the file and the length of the record, then any record i can be accessed 

using the following formula: 

Address of ith record = base_address + (i–1) * record_length 

 

Note that the base address of the file refers to the starting address of the file.  

 

We took i–1 in the formula because record numbers start from 0 rather than 1. 

 
Figure 11.2 Relative File Organization 

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 16, Page No.- 495) 
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Indexed Sequential File Organization 

Indexed sequential file organization stores data for fast retrieval. The records in an 

indexed sequential file are of fixed length and every record is uniquely identified by a 

key field. We maintain a table known as the index table which stores the record 

number and the address of all the records. That is for every file, we have an index 

table. This type of file organization is called an indexed sequential file organization 

because physically the records may be stored anywhere, but the index table stores the 

address of those records. The ith entry in the index table points to the ith record of the 

file. Initially, when the file is created, each entry in the index table contains NULL. 

When the ith record of the file is written, free space is obtained from the free space 

manager and its address is stored in the ith location of the index table. Figure 11.3 

shows the features, advantages, and disadvantages of Indexed sequential file 

organization. 

An indexed sequential file uses the concept of both sequential as well as relative files. 

While the index table is read sequentially to find the address of the desired record, 

direct access is made to the address of the specified record in order to access it 

randomly. 

 
Figure 11.3 Indexed Sequential File Organization 

(Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition, Chapter- 16, Page No.- 496) 

 

11.3 Indexing  

An index for a file can be compared with a catalog in a library. Like a library has card 

catalogs based on authors, subjects, or titles, a file can also have one or more indices. 
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Indexed sequential files are very efficient to use, but in real-world applications, these 

files are very large and a single file may contain millions of records. Therefore, in such 

situations, we require a more sophisticated indexing technique. There are several 

indexing techniques and each technique works well for a particular application. For a 

particular situation at hand, we analyze the indexing technique based on factors such 

as access type, access time, insertion time, deletion time, and space overhead 

involved. Let’s discuss the different types of indices. 

 

11.3.1 Ordered Indices 

Indices are used to provide fast random access to records. As stated above, a file may 

have multiple indices based on different key fields. An index of a file may be a primary 

index or a secondary index. 

Primary Index 

In a sequentially ordered file, the index whose search key specifies the sequential 

order of the file is defined as the primary index. For example, suppose records of 

students are stored in a STUDENT file in a sequential order starting from roll number 

1 to roll number 60. Now, if we want to search a record for, say, roll number 10, then 

the student’s roll number is the primary index. Indexed sequential files are a common 

example where a primary index is associated with the file. 

Secondary Index 

An index whose search key specifies an order different from the sequential order of the 

file is called the secondary index. For example, if the record of a student is searched 

by his name, then the name is a secondary index. Secondary indices are used to 

improve the performance of queries on non-primary keys. 

 

11.3.2 Dense and Sparse Indices 

In a dense index, the index table stores the address of every record in the file. 

However, in a sparse index, the index table stores the address of only some of the 

records in the file. Although sparse indices are easy to fit in the main memory, a dense 

index would be more efficient to use than a sparse index if it fits in the memory. 

Figure 11.4 shows a dense index and a sparse index for an indexed sequential file. 
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Figure 11.4 Dense and Sparse index 

Source: Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition 

 

Note that the records need not be stored in consecutive memory locations. The pointer 

to the next record stores the address of the next record.  

By looking at the dense index, it can be concluded directly whether the record exists in 

the file or not. This is not the case in a sparse index. In a sparse index, to locate a 

record, we first find an entry in the index table with the largest search key value that 

is either less than or equal to the search key value of the desired record. Then, we 

start at that record pointed to by that entry in the index table and then proceed to 

search the record using the sequential pointers in the file, until the desired record is 

obtained. For example, if we need to access record number 40, then record number 30 

is the largest key value that is less than 40. So jump to the record pointed by record 

number 30 and move along the sequential pointer to reach record number 40.   

Thus we see that sparse index takes more time to find a record with the given key. 

Dense indices are faster to use, while sparse indices require less space and impose 

less maintenance for insertions and deletions. 

 

11.3.3 Cylinder Surface Indexing 

Cylinder surface indexing is a very simple technique used only for the primary key 

index of a sequentially ordered file. In a sequentially ordered file, the records are 

stored sequentially in the increasing order of the primary key. The index file will 

contain two fields- cylinder index and several surface indices. Generally, there are 

multiple cylinders, and each cylinder has multiple surfaces. If the file needs m 

cylinders for storage then the cylinder index will contain m entries. 

Each cylinder will have an entry corresponding to the largest key value into that 
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cylinder. If the disk has n usable surfaces, then each of the surface indices will have n 

entries. Therefore, the ith entry in the surface index for cylinder j is the largest key 

value on the jth track of the ith surface. Hence, the total number of surface index 

entries is m.n. The physical and logical organization of the disk is shown in figure 

11.5. It should be noted that the number of cylinders in a disk is only a few hundred 

and the cylinder index occupies only one track. 

When a record with a particular key value has to be searched, then the following steps 

are performed: 

● First, the cylinder index of the file is read into memory. 

● Second, the cylinder index is searched to determine which cylinder holds the 

desired record. For this, either the binary search technique can be used or the 

cylinder index can be made to store an array of pointers to the starting of 

individual key values. In either case, the search will take O (log m) time. 

● After the cylinder index is searched, the appropriate cylinder is determined. 

● Depending on the cylinder, the surface index corresponding to the cylinder is 

then retrieved from the disk. 

● Since the number of surfaces on a disk is very small, the linear search can be 

used to determine the surface index of the record. 

● Once the cylinder and the surface are determined, the corresponding track is 

read and searched for the record with the desired key. 

 

Hence, the total number of disk accesses is three—first, for accessing the cylinder 

index, second for accessing the surface index, and third for getting the track address. 

However, if track sizes are very large then it may not be a good idea to read the whole 

track at once. In such situations, we can also include sector addresses. But this would 

add an extra level of indexing and, therefore, the number of accesses needed to 

retrieve a record will then become four. In addition to this, when the file extends over 

several disks, a disk index will also be added. 

The cylinder surface indexing method of maintaining a file and index is referred to as 

Indexed Sequential Access Method Sectors (ISAM). This technique is the most popular 

and simplest file organization in use for figure 11.5. Physical and logical organization 

of disk single key values. But with files that contain multiple keys, it is not possible to 
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use this index organization for the remaining keys. 

 
Figure 11.5 Physical and logical organization of disk 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition 

 

11.3.4 Multi-level Indices 

In real-world applications, we have very large files that may contain millions of 

records. For such files, a simple indexing technique will not suffice. In such a 

situation, we use multi-level indices. To understand this concept, consider a file that 

has 10,000 records. If we use simple indexing, then we need an index table that can 

contain at least 10,000 entries to point to 10,000 records. If each entry in the index 

table occupies 4 bytes, then we need an index table of 4 x 10000 bytes = 40000 bytes. 

Finding such a big space consecutively is not always easy. So, a better scheme is to 

index the index table. We can continue further by having three-level indexing and so 

on. But practically, we use two-level indexing. Note that two and higher-level indexing 

must always be sparse, otherwise multi-level indexing will lose its effectiveness. 

 

11.3.5 Inverted Indices 

Inverted files are commonly used in document retrieval systems for large textual 

databases. An inverted file reorganizes the structure of an existing data file in order to 

provide fast access to all records having one field falling within the set limits. For 

example, inverted files are widely used by bibliographic databases that may store 

author names, title words, journal names, etc. When a term or keyword specified in 

the inverted file is identified, the record number is given and a set of records 

corresponding to the search criteria are created. Thus, for each keyword, an inverted 

file contains an inverted list that stores a list of pointers to all occurrences of that term 
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in the main text. Therefore, given a keyword, the addresses of all the documents 

containing that keyword can easily be located. There are two main variants of inverted 

indices: 

● A record-level inverted index (also known as inverted file index or inverted file) 

stores a list of references to documents for each word. 

● A word-level inverted index (also known as full inverted index or inverted list) in 

addition to a list of references to documents for each word also contains the 

positions of each word within a document. Although this technique needs more 

time and space, it offers more functionality (like phrase searches). 

 

Therefore, the inverted file system consists of an index file in addition to a document 

file (also known as a text file). It is this index file that contains all the keywords which 

may be used as search terms. For each keyword, an address or reference to each 

location in the document where that word occurs is stored. There is no restriction on 

the number of pointers associated with each word.  

For efficiently retrieving a word from the index file, the keywords are sorted in a 

specific order (usually alphabetically). However, the main drawback of this structure is 

that when new words are added to the documents or text files, the whole file must be 

reorganized. Therefore, a better alternative is to use B-trees. 

 

11.3.6 B-Tree Indices  

A database is defined as a collection of data organized in a fashion that facilitates 

updating, retrieving, and managing the data (that may include any item, such as 

names, addresses, pictures, and numbers). Most organizations maintain databases for 

their business operations. For example, an airline reservation system maintains a 

database of flights, customers, and tickets issued. A university maintains a database 

of all its students. These real-world databases may contain millions of records that 

may occupy gigabytes of storage space. 

For a database to be useful, it must support fast retrieval and storage of data. Since it 

is impractical to maintain the entire database in the memory, B-trees are used to 

index the data in order to provide fast access.  

For example, searching a value in an un-indexed and unsorted database containing n 
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key values may take a running time of O(n) in the worst case, but if the same database 

is indexed with a B-tree, the search operation will run in O(log n) time. The majority of 

the database management systems use the B-tree index technique as the default 

indexing method. This technique supersedes other techniques of creating indices, 

mainly due to its data retrieval speed, ease of maintenance, and simplicity. Figure 

11.6 shows a B-tree index. 

 

 

 
Figure 11.6 B-tree index 

Source- Data Structures using C, Reema Thareja, Oxford University Press, 2nd Edition 

 

It forms a tree structure with the root at the top. The index consists of a B-tree 

(balanced tree) structure based on the values of the indexed column. In this example, 

the indexed column is the name and the B-tree is created using all the existing names 

that are the values of the indexed column. The upper blocks of the tree contain index 

data pointing to the next lower block, thus forming a hierarchical structure. The 

lowest level blocks, also known as leaf blocks, contain pointers to the data rows stored 

in the table. 

If a table has a column that has many unique values, then the selectivity of that 

column is said to be high. B-tree indices are most suitable for highly selective 

columns, but it causes a sharp increase in the size when the indices contain a 

concatenation of multiple columns. The B-tree structure has the following advantages: 
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● Since the leaf nodes of a B-tree are at the same depth, retrieval of any record 

from anywhere in the index takes approximately the same time. 

● B-trees improve the performance of a wide range of queries that either search a 

value having an exact match or for a value within a specified range. 

● B-trees provide fast and efficient algorithms to insert, update, and delete 

records that maintain the key order. 

● B-trees perform well for small as well as large tables. Their performance does 

not degrade as the size of a table grows. 

● B-trees optimize costly disk access. 

11.3.7 Hashed Indices 

Hashing is used to compute the address of a record by using a hash function on the 

search key value. If at any point of time, the hashed values map to the same address, 

then a collision occurs, and schemes to resolve these collisions are applied to generate 

a new address. Choosing a good hash function is critical to the success of this 

technique. By a good hash function, we mean two things. First, a good hash function, 

irrespective of the number of search keys, gives an average-case lookup that is a small 

constant. Second, the function distributes records uniformly and randomly among the 

buckets, where a bucket is defined as a unit of one or more 

records (typically a disk block). Correspondingly, the worst hash function is one that 

maps all the keys to the same bucket. However, the drawback of using hashed indices 

includes: 

● Though the number of buckets is fixed, the number of files may grow with time. 

● If the number of buckets is too large, storage space is wasted. 

● If the number of buckets is too small, there may be too many collisions. 

It is recommended to set the number of buckets to twice the number of the search key 

values in the file. This gives a good space–performance tradeoff. 

A hashed file organization uses hashed indices. Hashing is used to calculate the 

address of the disk block where the desired record is stored. If K is the set of all search 

key values and B is the set of all bucket addresses, then a hash function H maps K to 

B. 

 

11.4 Summary 
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● File organization means the logical arrangement of records in the file. Files can 

be organized as sequential, relative, or index sequential. 

● A sequentially organized file stores record in the order in which they were 

entered. 

● In relative file organization, records in a file are ordered by their relative key. 

Relative files can be used for both random access as well as sequential access of 

data. 

● In an indexed sequential file, every record is uniquely identified by a key field. 

We maintain a table known as the index table that stores the record number 

and the address of the record in the file. 

● In a dense index, the index table stores the address of every record in the file. 

However, in a sparse index, the index table stores the address of only some of 

the records in the file. 

● Cylinder surface indexing is a very simple technique that is used only for the 

primary key index of a sequentially ordered file. 

● The majority of the database management systems use the B-tree indexing 

technique. The index consists of a hierarchical structure with upper blocks 

containing indices pointing to the lower blocks and lowest level blocks 

containing pointers to the data records. 

● Hashed file organization uses hashed indices. Hashing is used to calculate the 

address of the disk block where the desired record is stored. If K is the set of all 

search key values and B is the set of bucket addresses, then a hash function H 

maps K to B. 

 

11.5 Key Terms 

● Primary Index: The index whose search key specifies the sequential order of 

the file is defined as the primary index. 

● Secondary Index: An index whose search key specifies an order different from 

the sequential order of the file is called the secondary index. 

● Record-level inverted index: It stores a list of references to documents for 

each word. 

● Word-level inverted index: In addition to a list of references to documents for 
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each word also contains the positions of each word within a document.  

● Index Table: It stores the record number and the address of all the records.  

 

11.6 Check Your Progress 

Short- Answer type 

Q1) ______ files are frequently used in indexing techniques in document retrieval 

systems for large textual databases. 

Q2) Which of the following indexing techniques is used in document retrieval systems 

for large databases? 

(a) Inverted index (b) Multi-level indices  (c) Hashed indices (d) B-tree 

index 

Q3) B-tree indices are most suitable for highly selective columns. True/ False? 

Q4) Index table stores ______ and ______ of the record in the file. 

Q5) Relative files can be used for both random access of data as well as sequential 

access. True/ False? 

Long- Answer type 

Q1) Explain the terms field, record, file organization, key, and index. 

Q2) Differentiate between the sparse index and dense index. 

Q3) Give the merits and demerits of a B-tree index. 

Q4) Explain the features of Indexed sequential file organization. 

Q5) Briefly explain the different types of indices. 
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12.0 Introduction 

In real life, we generally arrange our things in a particular order so that we can refer to 

them quickly and easily. Words in the dictionary, for example, are arranged in 

alphabetical order to facilitate easy and fast searching. In the same way, the large 

amounts of data stored in computer systems also need to be organized (sorted) in 

some logical manner so that individual records can be searched easily and efficiently. 

If the data is kept in a non-orderly manner, then the searching becomes a tedious 

task. Therefore, sorting and searching are the most basic and commonly performed 

operations in computer systems. This unit will discuss how various structures are 

used for searching the data. 

As mentioned, searching and sorting are the two most useful operations that are to be 

performed on a list, which is maintained either in an array or in the linked list. To 

perform search operations on a given list, various techniques are available, namely 

linear search, binary search, and hashing. 

The linear search algorithm can be applied on an array or on a linked list. It does not 

require any additional data structure to perform the search operation. The other 

search algorithm, i.e, a binary search algorithm can be applied on a list maintained in 

an array only. However, like linear search, it also does not require any additional data 
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structure for performing search operations. Hashing uses a data structure called hash 

table which is merely an array of fixed size and elements in it are inserted and 

searched using a function called a hash function. In general, linear search algorithms 

are slower than binary search, which, in turn, is slower than hashing. A comparison of 

the linear and binary search algorithms is provided in this unit. 

 

12.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Explain the use of various data structures for searching. 

● Describe the basics of linear search and binary search. 

● Discuss the comparison between various search algorithms. 

 

12.2 Searching and its types 

While solving a problem, a programmer may need to search for a value in an array. 

The process of finding the occurrence of a particular data item in a list is known as 

searching. Search is said to be successful or unsuccessful depending on whether the 

data item is found or not. Searching means to find whether a particular value is 

present in an array or not. If the value is present in the array, then searching is said 

to be successful and the searching process gives the location of that value in the 

array. However, if the value is not present in the array, the searching process displays 

an appropriate message and in this case, searching is said to be unsuccessful. The 

two main search techniques are linear search and binary search. The algorithm that 

should be used depends entirely on how the values are organized in the array. For 

example, if the elements of the array are arranged in ascending order, then the binary 

search should be used, as it is more efficient for sorted lists in terms of complexity. 

Let’s discuss all these methods in detail. 

 

12.2.1 Linear Search 

The linear search is one of the simplest searching techniques. In this technique, the 

array is traversed sequentially from the first element until the value is found or the 

end of the array is reached. While traversing, each element of the array is compared 

with the value to be searched, and if the value is found, the search is said to be 
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successful. This technique is suitable for performing a search in a small array or in an 

unsorted array. 

 

Algorithm 12.1 Linear Search 

linear_search(ARR, size, item) 

1. Set i = 0 

2. While i < size 

       If ARR[i] = item                                   //item is the value to be searched 

                Return i and go to step 4 

       End If 

       Set i = i + 1 

    End While 

3. Return -1                                              //search unsuccessful 

4. End 

 

Program 12.1: Write a program to perform linear search. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

/*Function prototype*/ 

int linear_search(int [], int, int); 

void main() 

{ 

int ARR[MAX]; 

int item, size, pos, i; 

do 

{ 

clrscr(); 

printf(“\nEnter the size of the array (max %d): “,MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter elements of the array:\n”); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

printf(“\nEnter the element to be searched: “); 
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scanf(“%d”, &item); 

pos=linear_search(ARR, size, item); 

if (pos==-1) 

printf(“\nElement not found”); 

else 

printf(“\nElement found at location: %d”, pos+1); 

getch(); 

} 

int linear_search(int ARR[], int size, int item) 

{ 

int i; 

for (i=0;i<size;i++) 

{ 

if(ARR[i]==item) 

return i; 

} 

return -1; 

} 

The output of the program is: 

Enter the size of the array (max 10): 5 

Enter elements of the array: 

1 

4 

3 

6 

7 

Enter the element to be searched: 4 

Element found at location: 2 

 

Analysis of linear search 

In the best case, when the element is found at the first position, the search operation 

terminates successfully with only one comparison. Thus, in this case, the complexity 

of the algorithm is O(1). In the worst case, when the element to be searched appears 

at the end of the list or is not present in the list, linear search requires n 
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comparisons. In both cases, the average complexity of the linear search is O(n). 

 

12.2.2 Binary Search 

The binary search technique is used to search a particular element in a sorted (in 

ascending or descending order) array. In this technique, the element to be searched 

(say, item) is compared with the middle element of the array. If an item is equal to the 

middle element, then the search is successful. If an item is smaller than the middle 

element, the item is searched in the segment of the array before the middle element. 

However, if the item is greater than the middle element, the item is searched in the 

array segment after the middle element. This process is repeated until the element is 

found or the array segment is reduced to a single element that is not equal to the item. 

At every stage of the binary search technique, the array is reduced to a smaller 

segment. It searches a particular element in the lowest possible number of 

comparisons. Hence, the binary search technique is used for larger and sorted arrays, 

as it is faster as compared to linear search. Consider, for example, an array ARR 

shown in figure 12.1. 

 
Figure 12.1 The Array ARR 

To search an item (say,7) using binary search in the array ARR with size=7, these 

steps are performed. 

1. Initially, set LOW=0 and HIGH= size–1. The middle of the array is determined 

using the formula MID=(LOW+HIGH)/2, that is, MID=(0+6)/2, which is equal to 

3. Thus, ARR[MID]=4. 

 
2. Since the value stored at ARR[3] is less than the value to be searched, that is, 7, 

the search process is now restricted from ARR[4] to ARR[6]. Now LOW is 4 and 

HIGH is 6. The middle element of this segment of the array is calculated as MID 

= (4+6)/2, that is, 5. Thus, ARR[MID]=6. 
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3. The value stored at ARR[5] is less than the value to be searched, hence the 

search process begins from the subscript 6. As ARR[6] is the last element, the 

item to be searched is compared with this value. Since ARR[6] is the value to be 

searched, the search is successful. 

 

4.  

 

Algorithm 12.2 Binary Search 

binary_search(ARR, size, item) 

1. Set LOW = 0 

2. Set HIGH = size - 1 

3. While LOW <= HIGH 

              Set MID = (LOW + HIGH) / 2 

              If ITEM = ARR [MID] 

                       Return MID and go to step 5 

              Else If item < ARR [MID] 

                       Set HIGH = MID – 1 

              Else 

                     Set LOW = MID + 1 

             End If 

         End While 

4. Return -1 

5. End 

 

Program 12.2: Write a program to perform binary search. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

/*Function prototype*/ 

int binary_search(int [], int, int); 

void main() 

{ 
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int ARR[MAX], size, item, pos, i; 

do 

{ 

clrscr(); 

printf (“\nEnter the size of the array (max %d): “, MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter elements in sorted order: “); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

printf(“\nEnter the element to be searched:”); 

scanf(“%d”, &item); 

pos=binary_search(ARR, size, item); 

if (pos==-1) 

printf(“\nElement not found”); 

else 

printf(“\nElement found at location: %d “, pos+1); 

getch(); 

} 

int binary_search(int ARR[], int size, int item) 

{ 

int LOW = 0; 

int HIGH = size - 1; 

int MID; 

while(LOW<=HIGH) 

{ 

MID=(HIGH+LOW)/2; 

if(ARR[MID]==item) 

return MID; 

else 

if(item<ARR[MID]) 

HIGH=MID-1; 

else 

LOW=MID+1; 

} 

return -1; 
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} 

 

The output of the program is: 

Enter no of elements (max 10): 5 

Enter elements in sorted order: 11 

22 

33 

44 

55 

Enter the element to be searched: 33 

Element found at location: 3 

 

Analysis of binary search 

In each iteration, the binary search algorithm reduces the array to one half. Therefore, 

for an array containing n elements, there will be log2n iterations. Thus, the complexity 

of binary search algorithms is O(log2n). This complexity will be the same irrespective of 

the position of the element, even if the element is not present in the list. 

 

12.3 Interpolation Search 

Interpolation search, also known as extrapolation search, is a searching technique 

that finds a specified value in a sorted array. The concept of interpolation search is 

similar to how we search for names in a telephone book or for keys by which a book’s 

entries are ordered. For example, when looking for the name “James” in a telephone 

directory, we know that it will be near the extreme left, so applying a binary search 

technique by dividing the list into two halves each time is not a good idea. We must 

start scanning the extreme left in the first pass itself. 

In each step of interpolation search, the remaining search space for the value to be 

found is calculated. The calculation is done based on the values at the bounds of the 

search space and the value to be searched. The value found at this estimated position 

is then compared with the value being searched for. If the two values are equal, then 

the search is complete. 

However, in case the values are not equal then depending on the comparison, the 
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remaining search space is reduced to the part before or after the estimated position. 

Thus, we see that the interpolation search is similar to the binary search technique. 

However, the important difference between the two techniques is that binary search 

always selects the middle value of the remaining search space. It discards half of the 

values based on the comparison between the value found at the estimated position 

and the value to be searched. But in interpolation search, interpolation is used to find 

an item near the one being searched for, and then the linear search is used to find the 

exact item. 

 
Figure 12.2 Difference between binary search and interpolation search 

 

Algorithm 12.3 Interpolation Search 

Interpolation_Search (A, lower_bound, upper_bound, VAL) 

1. SET LOW = lower_bound, HIGH = upper_bound, POS = –1 

2. Repeat Steps 3 to 4 while LOW <= HIGH 

3. SET MID = LOW + (HIGH – LOW) × ((VAL – A[LOW]) / (A[HIGH] – A[LOW])) 

4. IF VAL = A[MID] 

    POS = MID 

    PRINT POS 

    Go to Step 6 

    ELSE IF VAL < A[MID] 

           SET HIGH = MID – 1 

      ELSE 

           SET LOW = MID + 1 

      IF POS = –1 

           PRINT "VALUE IS NOT PRESENT IN THE ARRAY" 

5. End 
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Analysis of Interpolation Search 

When n elements of a list to be sorted are uniformly distributed (average case), 

interpolation search makes about log(log n) comparisons. However, in the worst case, 

that is when the elements increase exponentially, the algorithm can make up to O(n) 

comparisons. 

 

Program 12.3: Write a program to search an element in an array using interpolation 

search. 

#include <stdio.h> 

#include <conio.h> 

#define MAX 20 

int interpolation_search(int a[], int low, int high, int val) 

{ 

 int mid; 

 while(low <= high) 

 { 

  mid = low + (high – low)*((val – a[low]) / (a[high] – a[low])); 

  if(val == a[mid]) 

   return mid; 

  if(val < a[mid]) 

   high = mid – 1; 

  else 

   low = mid + 1; 

 } 

 return –1; 

} 

int main() 

{ 

 int arr[MAX], i, n, val, pos; 

 clrscr(); 

 printf("\n Enter the number of elements in the array : "); 

 scanf("%d", &n); 

 printf("\n Enter the elements : "); 

 for(i = 0; i <n; i++) 
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  scanf("%d", &arr[i]); 

 printf("\n Enter the value to be searched : "); 

 scanf("%d", &val);  

pos = interpolation_search(arr, 0, n–1, val); 

 if(pos == –1) 

  printf("\n %d is not found in the array", val); 

 else 

  printf("\n %d is found at position %d", val, pos); 

 getch(); 

 return 0; 

} 

12.4 Jump Search 

When we have an already sorted list, then the other efficient algorithm to search for a 

value is jump search or block search. In jump search, it is not necessary to scan all 

the elements in the list to find the desired value. We just check an element and if it is 

less than the desired value, then some of the elements following it are skipped by 

jumping ahead. After moving a little forward again, the element is checked. If the 

checked element is greater than the desired value, then we have a boundary and we 

are sure that the desired value lies between the previously checked element and the 

currently checked element. However, if the checked element is less than the value 

being searched for, then we again make a small jump and repeat the process. 

 

Once the boundary of the value is determined, a linear search is done to find the value 

and its position in the array. For example, consider an array a[ ] = {1,2,3,4,5,6,7,8,9} . 

The length of the array is 9. If we have to find value 8 then the following steps are 

performed using the jump search technique. 
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Figure 12.3 An example of Jump search 

 

 

 

 

 

 

 

Algorithm 12.4 Jump Search 
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Jump_Search (A, lower_bound, upper_bound, VAL, N) 

1. Set STEP = sqrt(N), I = 0, LOW = lower_bound, HIGH = upper_bound, POS = –1 

2. Repeat Step 3 while I < STEP 

3. If VAL < A 

  Set HIGH = STEP – 1 

    else 

  Set LOW = STEP + 1 

 Set I = I + 1 

4. Set I = LOW 

5. Repeat Step 6 while I <= HIGH 

6. IF A[I] = Val 

 POS = I 

 PRINT POS 

 Go to Step 8 

 Set I = I + 1 

7. IF POS = –1 

 PRINT "VALUE IS NOT PRESENT IN THE ARRAY" 

8. End 

 

Analysis of Jump Search 

Jump search works by jumping through the array with a step size (optimally chosen 

to be √ n ) to find the interval of the value. Once this interval is identified, the value is 

searched using the linear search technique. Therefore, the complexity of the jump 

search algorithm can be given as  O(√n). 

 

Program 12.4: Write a program to search an element in an array using jump search. 

#include <stdio.h> 

#include <math.h> 

#include <conio.h> 

#define MAX 20 

int jump_search(int a[], int low, int high, int val, int n) 

{ 

 int step, i; 

 step = sqrt(n); 

 for(i=0;i<step;i++) 

 { 
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  if(val < a[step]) 

   high = step – 1; 

  else 

   low = step + 1; 

 } 

 for(i=low;i<=high;i++) 

 { 

     if(a[i]==val) 

    return i; 

 } 

  

return –1; 

} 

int main() 

{ 

 int arr[MAX], i, n, val, pos; 

 clrscr(); 

 printf("\n Enter the number of elements in the array : "); 

 scanf("%d", &n); 

 printf("\n Enter the elements : "); 

 for(i = 0; i <n; i++) 

  scanf("%d", &arr[i]); 

 printf("\n Enter the value to be searched : "); 

 scanf("%d", &val); 

 pos = jump_search(arr, 0, n–1, val, n); 

if(pos == –1) 

  printf("\n %d is not found in the array", val); 

 else 

  printf("\n %d is found at position %d", val, pos); 

 getch(); 

 return 0; 

} 

 

12.5 Comparison of Different Search Algorithms 

To compare the linear and binary search algorithms, consider an array ARR of ten 
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elements shown in Figure 12.4, and we have to find element 18 in this array. Using 

linear search, element 18 is compared with each element of ARR sequentially from the 

first element, that is, 11 until either 18 is found or the end of the array is 

encountered. Hence, it makes eight comparisons as 18 is present at 8th position in 

ARR. On the other hand, using binary search, element 18 is compared with the middle 

element of ARR (that is, 15). Since 18 is not equal to 15, the search list is reduced into 

two halves, and the search proceeds in the second half (6th to 10th element). Now, 18 is 

compared with the middle element of the second half, that is, 18. This makes the 

search successful in just two comparisons. 

 
Figure 12.4 An Array ARR of Ten Elements 

It is clear from the above example that the performance of binary search is better than 

the linear search. This is because the binary search reduces the search list to its half 

in each iteration, thus, requiring less number of comparisons. However, it only works 

on the sorted lists which is the main disadvantage of the binary search. Moreover, 

implementing the binary search algorithm is more complex than linear search. 

 

12.6 Summary 

● The process of finding the occurrence of a particular data item in a list is known 

as searching.  

● The two main search techniques are linear search and binary search.  

● In linear search, the array is traversed sequentially from the first element until 

the value is found or the end of the array is reached. This technique is suitable 

for performing a search in a small array or in an unsorted array. 

● The binary search technique is used to search a particular element in a sorted 

(in ascending or descending order) array. In this technique, the element to be 

searched (say, item) is compared with the middle element of the array. 

● Interpolation search, also known as extrapolation search, is a searching 

technique that finds a specified value in a sorted array.  

12.7 Key Terms 
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● Hash Table: It is merely an array of fixed size and elements in it are inserted 

and searched using a function called a hash function. 

● Interpolation Search: The searching technique that finds a specified value in a 

sorted array. 

● Hashing: The type of data structure used to map a given value with a particular 

key for faster access of elements.  

● Jump Search: The searching technique in which we can jump to the desired 

element and there is no need to scan all the elements in the array. 

 

12.8 Check Your Progress 

Short- Answer type 

Q1) Hashing uses a data structure called ________ which is merely an array of fixed 

size. 

Q2) For a binary search, the array should be already sorted. True/False? 

Q3) Which of these searching techniques is suitable for unsorted arrays? 

(a) Binary search (b) Linear search (c) None of these (d) Any of these 

Q4) Interpolation search is also known as _________ search. 

Q5) A linear search is more efficient than a binary search. True/False? 

Long- Answer type 

Q1) What is searching? Name the various searching techniques. 

Q2) Give the comparison for various search algorithms with the help of an example. 

Q3) Write a short note on the linear search algorithm. 

Q4) Write an algorithm for binary search. 

Q5) Write a short note on: 

(a) Interpolation Search  (b) Jump Search 
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Unit- 13 Sorting 
Structure 

13.0 Introduction 

13.1 Unit Objectives 

13.2 Sorting 

13.3 Internal Sorting 

 13.3.1 Insertion Sort 

 13.3.2 Bubble Sort 

 13.3.3 Selection Sort 

 13.3.4 Heap Sort 

 13.3.5 Merge Sort 

 13.3.6 Quick Sort 

 13.3.7 Shell Sort 

13.4 Comparison of different sorting algorithms 

13.5 External Sorting 

13.6 Summary 

13.7 Key Terms 

13.8 Check Your Progress 

 

13.0 Introduction 

Searching and sorting are the two most useful operations that are to be performed on 

a list, which is maintained either in an array or in the linked list. We have already 

studied various searching algorithms. This unit focuses on Sorting techniques and 

algorithms. 

Various algorithms are available to sort a given list. All the sort algorithms take a list 

as input and produce a sorted list as output. Some algorithms can be applied on both 

arrays and linked lists, while some can be applied only on arrays. The simple sort 

algorithms are bubble, selection, and insertion, and none of them requires any 

additional data structure to sort a given list. On the other hand, sort algorithms such 

as merge, quick, and heap use additional data structures. The merge and quicksort 

algorithms use a stack, whereas heap sort makes use of the heap data structure. The 

heap data structure can be viewed as a complete binary tree in which the value in the 
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parent node is greater than the value in each of its child nodes. In general, the bubble, 

selection, and insertion sort algorithms are slower than the merge, quick, and heap 

sort algorithms.  

 

13.1 Unit Objectives 

After going through this unit, the reader will be able to: 

● Explain the basics and need for Sorting. 

● Describe the fundamentals of internal sorting.  

● Discuss the insertion, bubble, selection, merge, quick, and heap sort 

techniques. 

● Analyze the various sorting algorithms in terms of their time complexities. 

 

13.2 Sorting 

The process of arranging data in a particular logical order is known as sorting. The 

order can be ascending or descending for numeric data and alphabetical for character 

data. There are two types of sorting, namely internal sorting, and external sorting. If 

all the data that are to be sorted fit entirely in the main memory, then internal (in-

memory) sorting is used. On the other hand, if all the data that are to be sorted do not 

fit entirely in the main memory, external sorting is required. An external sort requires 

the use of external memory, such as disks or tapes, during sorting. In external sorting, 

some part of the data is loaded into the main memory, sorted using any internal 

sorting technique, and written back to the disk in some intermediate file. This process 

continues until all the data are sorted. This section covers only some of the internal 

sorting algorithms. It also gives a brief comparison of various algorithms in terms of 

their time complexities. 

 

13.3 Internal Sorting 

There are different internal sorting algorithms, such as insertion sort, bubble sort, 

selection sort, heap sort, merge sort, and quicksort. The choice of a particular 

algorithm depends on the properties of the data and the operations to be performed on 

the data. For all these algorithms, we will consider an array ARR containing n 

elements, which are to be sorted in ascending order. 
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13.3.1 Insertion Sort 

The insertion sort algorithm selects each element and inserts it at its proper position 

in the earlier sorted sublist. In the first pass, the element ARR[1] is compared with 

ARR[0], and if ARR[1] and ARR[0]are not sorted, they are swapped. In the second pass, 

the element ARR[2] is compared with ARR[0]and ARR[1], and it is inserted at its proper 

position in the sorted sublist containing the elements ARR[0]and ARR[1]. Similarly, 

during ith iteration, the element ARR[i] is placed at its proper position in the sorted 

sublist containing the elements ARR[0], ARR[1], ARR[1],..., ARR[i–1]. 

In order to determine the actual position of the element (say, ARR[i]) in the sorted 

sublist containing the elements ARR[0], ARR[1], ..., ARR[i-1], the element ARR[i] is 

compared with all other elements to its left, until an element ARR[j] is found such that 

ARR[j]<=ARR[i]. Now, to insert the element at its actual position, all the elements 

ARR[i-1], ARR[i-2], ARR[i-3],..., ARR[j+1] are shifted one position towards the right to 

create space for ARR[i], and then ARR[i] is inserted at (j+1) st position. 

To understand the insertion sort algorithm, consider the following unsorted array. The 

steps to sort the values stored in the array in ascending order using insertion sort are 

given here. 

 
Unsorted Array 

1. The first value, that is 7, is trivially sorted by itself. 

2. Then the second value 33 is compared with the first value 7. Since 33 is greater 

than 7, no changes are made. 

3. Next, the third element 20 is compared with its previous elements (elements 

towards its left). Since 20 is smaller than 33 but greater than 7, it is inserted at 

the second position. For this, element 33 is shifted one position towards the 

right, and 20 is inserted at its appropriate (second) position. 
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4. Then the fourth element 11 is compared with its previous elements. Since 11 is 

greater than 7 and less than 20 and 33, it is placed between 7 and 20. For this, 

elements 20 and 33 need to be shifted one position towards the right. 

 
5. Finally, the last element 6 is compared with all the elements preceding it. Since 

it is smaller than all the other elements, preceding elements are shifted one 

position towards the right and 6 is inserted at the first position in the array. 

After this pass, the array is sorted. 

 
Final Sorted Array 

Algorithm 13.1 Insertion Sort 
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insertion_sort(ARR, size) 

1. Set i = 1 

2. While (i < size) 

          Set temp = ARR[i] 

          j = i - 1 

          While (temp < ARR[j] AND j >= 0) 

                    Set ARR[j+1] = ARR[j] 

                    Set j = j - 1 

    End While 

    Set ARR[j+1] = temp 

    Print ARR after i th pass 

    Set i = i + 1 

End While 

3. Print “No. of passes: ”, i-1 

4. End 

 

Program 13.1: Write a program to show sorting of an array using insertion sort. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

/*Function prototype*/ 

void insertion_sort(int [], int); 

void main() 

{ 

int ARR[MAX], i, size; 

do 

{ 

clrscr(); 

printf(“\nEnter the size of the array (max %d): “,MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter the elements of the array:\n”); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

insertion_sort(ARR, size); 

printf(“\nThe sorted array is: “); 
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for(i=0;i<size;i++) 

{ 

printf(“%d “, ARR[i]); 

} 

getch(); 

} 

void insertion_sort(int ARR[], int size) 

{ 

int i, j, k, temp, count=0;; 

for (i=1;i<size;i++) 

{ 

temp=ARR[i]; 

j=i-1; 

if(temp<ARR[j]) 

{ 

while(temp<ARR[j] && j>=0) 

{ 

ARR[j+1]=ARR[j]; 

j—; 

} 

} 

ARR[j+1]=temp; 

printf(“\nArray after pass %d: “, i); 

for(k=0;k<size;k++) 

{ 

printf(“%d “, ARR[k]); 

} 

} 

printf(“\nNo. of passes: %d”, i-1); 

} 

 

The output of the program is: 

Enter the size of the array (max 10): 5 

Enter the elements of the array: 

35 
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20 

4 

10 

5 

Array after pass 1: 20 35 4 10 5 

Array after pass 2: 4 20 35 10 5 

Array after pass 3: 4 10 20 35 5 

Array after pass 4: 4 5 10 20 35 

No. of passes: 4 

The sorted array is: 4 5 10 20 35 

 

Analysis of insertion sort 

In the worst case, when the input list is in descending order, the first pass of 

insertion sort requires one comparison, second pass requires two comparisons,..., ith 

pass requires i comparisons, and the last pass requires (n-1) comparisons. Therefore, 

complexity of insertion sort algorithm is:  

f(n) = 1 + 2 + 3 + ... + (n-i) + ... + (n-3) + (n-2) + (n-1) 

      = n (n-1)/2 

      = (n2 -n)/2 

Since for all n, (n2 -n)/2 is always less than n2, the time complexity of insertion sort 

algorithm is O (n2). 

 

13.3.2 Bubble Sort 

The bubble sort algorithm requires n-1 passes to sort an array. In the first pass, each 

element (except the last) in the list is compared with the element next to it, and if it is 

greater, then both the elements are swapped. After the first pass, the largest element 

in the list is placed at the last position. Similarly, in the second pass, the second 

largest element is placed at its appropriate position. Thus, in each subsequent pass, 

one more element is placed at its appropriate position. Since this algorithm makes 

the larger values to ‘bubble up’ to the end of the list, it is named bubble sort. 

The bubble sort algorithm possesses an important property that if a particular pass 

is made through the list without swapping any items, then there will be no further 
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swapping of elements in the subsequent passes. This property can be used to 

eliminate the unnecessary passes once the list is sorted in the desired order. For 

this, a flag variable can be used to detect if any interchange has been made during 

the pass. We use flag=0 to indicate that no swaps have occurred in a particular pass, 

therefore, no further passes are required. 

To understand the bubble sort technique, consider the following unsorted array. 

 
Unsorted Array 

The steps to sort the values stored in the array in ascending order using bubble sort 

are given here. 

First pass: 

1. The values 8 and 7 are compared with each other. Since 7 is smaller than 8, 

both the values are swapped with each other. 

 
2. Next, the values 8 and 65 are compared with each other. Since 8 is less than 

65, that means they are in the proper order and hence, no swapping is 

required. The list remains unchanged. 

 
3. Then the values 65 and 5 are compared with each other. Since 5 is less than 

65, both the values are swapped. 

 
4. Next, the values 65 and 43 are compared with each other. Since 43 is less 



Indexing, Searching & Sorting 
 

 
 

349  
 

than 65, both the values are swapped. 

 
After the first pass, the largest value of the array (here, 65) is placed at the last 

position. 

 

Second pass: 

1. The values 7 and 8 are compared with each other. Since 7 is smaller than 8, 

no swapping is required. 

2. Then the values 8 and 5 are compared. Since 8 is greater than 5, both are 

swapped. 

3. Next, the elements 8 and 43, and 43 and 65 are compared. Since they are 

already in ascending order, they need not be swapped. 

 
Third pass: 

1. The values 7 and 5 are compared with each other. Since 7 is greater than 5, 

both are swapped. 

2. Since the remaining elements are already in ascending order, they are not 

swapped. 

 
Fourth pass: 

In the fourth pass, no swapping is required as all the elements are already in 

ascending order. Thus, at the end of this pass, the list is sorted in ascending order. 

Algorithm 13.2 Bubble Sort 
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bubble_sort(ARR, size) 

1. Set i = 0, flag = 1 

2. While (i < size-1 AND flag = 1) 

          Set j = 0 

          Set flag = 0 

          While (j < size-i-1) 

                    If (ARR[j] > ARR[j+1]) 

                           Set flag = 1                    //swap will occur, hence set flag = 1 

                           Set temp = ARR[j]         //temp is temporary variable used to swap two values 

                           Set ARR[j] = ARR[j+1] 

                           Set ARR[j+1] = temp 

                    End If 

                    Set j = j + 1 

          End While 

     Print ARR after (i+1) th pass 

     Set i = i + 1 

     End While 

3. Print “No. of passes: ”, i 

4. End 

 

Program 13.2: Write a program to show sorting of an array using bubble sort. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

/*Function prototype*/ 

void bubble_sort(int [], int); 

void main() 

{ 

int ARR[MAX],i, size; 

do 

{ 

clrscr(); 

printf(“\nEnter the size of the array (max %d): “, MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter the elements of the array:\n”); 

for(i=0;i<size;i++) 
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scanf(“%d”, &ARR[i]); 

bubble_sort(ARR, size); 

printf(“\nThe sorted array is: “); 

for(i=0;i<size;i++) 

printf(“%d “, ARR[i]); 

getch(); 

} 

void bubble_sort(int ARR[], int size) 

{ 

int i, j, k, temp, flag=1; 

i=0; 

while (i<size-1 && flag==1) 

{ 

flag=0; 

for(j=0;j<size-i-1; j++) 

{ 

if (ARR[j]>ARR[j+1]) 

{ 

flag=1; 

temp=ARR[j]; 

ARR[j]=ARR[j+1]; 

ARR[j+1]=temp; 

} 

} 

printf(“\nArray after pass %d: “, i+1); 

for(k=0;k<size;k++) 

{ 

printf(“%d “, ARR[k]); 

} 

i++; 

} 

printf(“\nNo. of passes: %d”, i); 

} 

 

The output of the program is: 
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Enter the size of the array (max 10): 5 

Enter the elements of the array: 

8 

7 

65 

5 

43 

Array after pass 1: 7 8 5 43 65 

Array after pass 2: 7 5 8 43 65 

Array after pass 3: 5 7 8 43 65 

Array after pass 4: 5 7 8 43 65 

No. of passes: 4 

The sorted array is: 5 7 8 43 65 

 

Analysis of bubble sort 

To sort a list containing n elements, at most n-1 passes are required. The first pass 

requires n-1 comparisons, second pass requires n-2 comparisons, ..., ith pass 

requires n-i comparisons. Therefore, average complexity of bubble sort algorithm is: 

f(n) = (n-1) + (n-2) + (n-3) + ... + (n-i) + ... +3 + 2 + 1 

      = n(n-1)/2 

      = (n2 -n)/2 

      = O(n2) 

 

Note that under best-case conditions (when the list is almost or completely sorted), 

the bubble sort can approach the O(n) level of complexity. In other cases, the 

complexity level is O(n2). 

 

13.3.3 Selection Sort 

In selection sort, first, the smallest element in the list is searched and is swapped 

with the first element in the list (that is, it is placed at the first position). Then, the 

second smallest element is searched and swapped with the second element in the list 

(that is, it is placed at the second position), and so on. 
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Like the bubble sort algorithm, the selection sort also requires n-1 passes to sort an 

array containing n elements. However, there is a slight difference between the 

selection sort and bubble sort algorithm. In selection sort, the smallest element is the 

first one to be placed at its correct position, then the second smallest element comes 

at its position, and so on. In bubble 

sort, on the other hand, the largest element is the first one to be placed at its 

appropriate position, then the second-largest element, and so on. 

To understand the selection sort algorithm, consider the following unsorted array. 

 
The steps to sort the values stored in the array in ascending order using selection 

sort are given here. 

1. In the first pass, the entire array is scanned for the smallest element, which is 

4 in this list. It is swapped with the first element, that is, 8. Thus, 4 is placed 

at its correct position and is not used for any further comparisons. 

 
2. In the second pass, the smallest element is searched from the last four 

elements, which is 6. It is swapped with the second element, that is, 33. 

 
3. In the third pass, the smallest element is searched from the last three 

elements, which is 8. This value is swapped with the third element, that is, 33. 

 
4. In the fourth pass, the smallest element is searched from the last two 

elements. Since 21 is smaller than 33, no changes are made in the list 

obtained after the third pass, and the list is sorted in ascending order. The 
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sorted list is shown below. 

 

Algorithm 13.3 Selection Sort 

1. Set i = 0 

2. While (i < size-1) 

          Set small = ARR[i] 

          Set pos = i 

          Set j = i + 1 

          While (j < size)                       //searching the smallest element in unsorted list 

                    If (ARR[j]<small) 

                          Set small = ARR[j] 

                          Set pos = j 

                   End If 

                   Set j = j + 1 

        End While 

        Set ARR[pos] = ARR[i]                   //placing the smallest element at its correct position 

        Set ARR[i] = small 

3.  Print ARR after (i+1)th pass 

     Set i = i + 1 

     End While 

     Print “No. of passes: ”, i selection_sort(ARR, size) 

4. End 

 

Program 13.3: Write a program to show sorting of an array using selection sort. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

/*Function prototype*/ 

void selection_sort(int [], int); 

void main() 

{ 

int ARR[MAX], i, size; 

do 

{ 

clrscr(); 
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printf(“\nEnter the size of the array (max %d): “, MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter the elements of the array:\n”); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

selection_sort(ARR, size); 

printf(“\nThe sorted array is: “); 

for(i=0;i<size;i++) 

printf(“%d “, ARR[i]); 

getch(); 

} 

void selection_sort(int ARR[], int size) 

{ 

int i, j, k, small, pos; 

for (i=0;i<(size-1);i++) 

{ 

small=ARR[i]; 

pos=i; 

for (j=i+1;j<size;j++) 

{ 

if (ARR[j]<small) 

{ 

small=ARR[j]; 

pos=j; 

} 

} 

ARR[pos]=ARR[i]; 

ARR[i]=small; 

printf(“\nArray after pass %d: “, i+1); 

for(k=0;k<size;k++) 

printf(“%d “, ARR[k]); 

} 

printf(“\nNo. of passes: %d”, i); 

} 
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The output of the program is: 

Enter the size of the array (max 10): 5 

Enter the elements of the array: 

8 

6 

33 

21 

5 

Array after pass 1: 5 6 33 21 8 

Array after pass 2: 5 6 33 21 8 

Array after pass 3: 5 6 8 21 33 

Array after pass 4: 5 6 8 21 33 

No. of passes: 4 

The sorted array is: 5 6 8 21 33 

 

Analysis of selection sort 

Selection sort also requires n-1 passes to sort an array of n elements. The first pass 

requires n-1 comparisons, second pass requires n-2 comparisons,..., ith pass requires 

n-i comparisons and the last pass requires only one comparison. Therefore, average 

complexity of selection sort algorithm is: 

f(n) = (n-1) + (n-2) + (n-3) + ... + (n-i) + ... +3 + 2 + 1 

      = n(n-1)/2 

      = (n2 -n)/2 

      = O(n2) 

 

13.3.4 Heap Sort 

Heapsort is a more efficient version of the selection sort. Like selection sort, it also 

first determines the largest (or smallest) element of the list, places it at the end (or 

beginning) of the list, and then continues with the rest of the list. However, it 

accomplishes this task efficiently by using a different data structure called a heap, 

which can be visualized as a complete binary tree. Recall that a complete binary tree 

is completely filled, with the possible exception of the last level which is filled from 

left to right (Figure 13.1). 
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Figure 13.1 A complete binary tree 

 

Heaps can be of two types, namely max-heap and min-heap. A max-heap (or 

descending heap) is a kind of heap in which the value present at any node is greater 

than or equal to the value of each of its child nodes. On the other hand, a min-heap 

(or ascending heap) is a kind of heap in which the value present at any node is 

smaller than or equal to the value of each of its child nodes. The max-heap and min-

heap with 12 nodes are shown in figure 13.2. Note that the values in the child nodes 

of a node may not be in order, that is, sometimes the value in the right child may be 

more than that in the left child and at some other times, it may be less than the 

value in the left child. 

 
(a) Max- Heap 
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(b) Min- Heap 

Figure 13.2 Types of Heap 

 

A complete binary tree can be stored most efficiently as a single-dimensional array in 

which the root node is stored at 0th position and its left and right child nodes are 

stored at 1st and 2nd position respectively. For each ith node, the left and right child 

exist at (2i+1)th and (2i+2)th position respectively. The parent node of ith node is stored 

at [(i-1)/2]th node. For example, in Figure 13.2(a) the left and right child nodes of 4th 

node are stored at 9th (2*4+1) and 10th (2*4+2) positions respectively. The parent node 

of the 4th node is stored at 1st ((4-1)/2) position.  

The array representation of the heap shown in Figure 13.2(a) is shown below. 

 
To sort an array of size n in ascending order using heap sort, the following steps are 

performed: 

1. The initial max-heap is built from the given array. 

2. The root element is swapped with the last element in the array. 

3. The heap of remaining elements is restored. 

4. Steps 2 and 3 are repeated until there are no more elements. 

 

To understand the heap sort, consider an unsorted array ARR. 

 
Let us first discuss the steps to build a heap out of the given array. The elements in 

the given array are considered one by one. If an element ARR[i] is greater than its 
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parent which is stored at location (i-1)/2, then the element is swapped with its 

parent. The element is then compared with its new parent and a swap occurs if it is 

greater than its parent. This process continues until no more swapping is needed, or 

we are at the root node. For example, the steps to construct a heap out of the array  

 

ARR shown above are as follows: 

1. The first element, that is, 9, is stored at position ARR[0]. 

2. The second element 11 is compared with its parent node which is at the 

location (i-1)/2, that is, (1-1)/2=0. Since ARR[0]<ARR[1], they are swapped. 

Now ARR is as follows: 

 
3. The third element 6 is compared with its parent node which is at the location 

(2-1)/2=0. Since ARR[0]>ARR[2], they are not swapped. ARR remains the 

same. 

4. The fourth element 45 is compared with its parent node which is at the 

location (3-1)/2=1. Since ARR[1]<ARR[3], they are swapped. It is again 

compared with its parent node which is at the location (1–1)/2=0. Since 

ARR[0]>ARR[1], they are swapped. Now ARR is as follows: 

 
5. The next element 22 is compared with its parent node which is at the location 

(4-1)/2=1. Since ARR[1]<ARR[4], they are swapped. It is again compared with 

its parent node which is at the location (1-1)/2=0. Since ARR[0]>ARR[1], they 

are not swapped. ARR at this point is as follows: 

 
6. The next element 10 is compared with its parent node which is at the location 

(5-1)/2=2. Since ARR[2]<ARR[5], they are swapped. It is again compared with 

its parent node which is at the location (2-1)/2=0. Since ARR[0]>ARR[1], they 

are not swapped. ARR at this point is as follows: 
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7. The seventh element 12 is compared with its parent node which is at the 

location (6-1)/2=2. Since ARR[2]<ARR[6], they are swapped. It is again 

compared with its parent node which is at the location (2-1)/2=0. Since 

ARR[0]>ARR[1], they are not swapped. ARR at this point is as follows: 

 
8. The next element 90 is compared with its parent node which is at the location 

(7-1)/2=3. Since ARR[3]<ARR[7], they are swapped. It is again compared with 

its parent node which is at the location (3-1)/2=1. Since ARR[1]<ARR[3], they 

are swapped. It is again compared with its parent node which is at the location 

(1-1)/2=0. Since ARR[0]<ARR[1], they are swapped. ARR at this point is as 

follows: 

 
9. The next element 67 is compared with its parent node which is at the location 

(8-1)/2=3. Since ARR[3]<ARR[8], they are swapped. It is again compared with 

its parent node which is at the location (3-1)/2=1. Since ARR[1]<ARR[3], they 

are swapped. It is again compared with its parent node which is at the location 

(1-1)/2=0. Since ARR[0]>ARR[1], they are not swapped. ARR at this point is as 

follows: 

 
10. The last element 17 is compared with its parent node which is at the location 

(9-1)/2=4. Since ARR[4]<ARR[9], they are swapped. It is again compared with 

its parent node which is at the location (4-1)/2=1. Since ARR[1]>ARR[4], they 

are not swapped. ARR at this point is as follows: 

 
The initial max-heap for the array ARR is shown in figure 13.3. 
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Figure 13.3 Initial Max-heap for ARR 

 

Once the max-heap is created, the root node is guaranteed to contain the largest 

element of the list. This element is swapped with the last element in the list. It means 

that the largest element of the list is placed at its proper position. Now, the maximum 

index value of the array is reduced by one. The array at this point may not be 

satisfying the properties of the heap. Therefore, the heap needs to be restored with 

the remaining elements. 

During the restoration, the element at the root node is compared with its child 

node(s), and if it is smaller than its child nodes, then it is swapped with the greatest 

of the two child nodes. Now, this element is compared with its current child nodes, 

and again it is swapped with the greatest of the two-child nodes if it is smaller than 

its child nodes. This process is repeated until this element is placed at its proper 

position. At this time, the second-largest element is placed at the root node. Now, 

this element is swapped with the second-last element in the list. It means that the 

second largest element is placed at its proper position. The maximum index value of 

the array is again reduced by one and the process continues until no more elements 

remain in the heap. 

For example, to sort the given array using the heap sort, first, the root element 

(which is 90) is swapped with the last element (which is 11). This moves the largest 

element to the end of the list. Now the heap is restored with the remaining elements. 

Since the element at the root node, that is, 11 is smaller than its child nodes, it is 

swapped with the greatest of the two child nodes. Here, it is swapped with 67. Since 

element 11 is still smaller than its two child nodes, it is again swapped with the 

largest of the two child nodes, which is 45. Finally, element 11 is swapped with 22. 

The heap after this point is shown in Figure 13.4. 
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Figure 13.4 Heap after Eliminating 90 

 

At this point, the second-largest element (that is, 67) is at the root node. Again 67 is 

swapped with the second-last element in the array (that is, 11). The heap is again 

restored with the remaining elements. This process is repeated until the array is 

sorted. 

 
Algorithm 13.4 Heap Sort 

heap_sort(ARR, size) 

1. Set i = size-1, j = 1 

2. Call make_heap(ARR, size) 

3. Print the initial heap 

4. While (i > 0) 

          Set temp = ARR[i] 

          Set ARR[i] = ARR[0] 

          Set ARR[0] = temp 

      Call restore(ARR, i)   //calling restore function to restore the heap with remaining elements 

      Print Heap after j th pass 

      Set j = j + 1 

      Set i = i - 1 

    End While 

5. Print “No. of passes: ”, j-1 

6. End 

make_heap(ARR, size)             //make_heap builds the initial heap of array ARR 

1. Set i = 1 

2. While (i < size) 

          Set child = ARR[i] 

          Set k = i 
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          Set parent = (k-1) / 2; 

          While (k>0 AND ARR[parent]<child) 

                Set ARR[k] = ARR[parent]; 

                Set k = parent; 

                Set parent = (k-1) / 2; 

         End While 

         Set ARR[k] = child; 

         Set i = i + 1 

    End While 

3. End 

restore(ARR, size)                      //restoring the heap with remaining elements 

1. Set i = 0 

2. Do 

         Set lchild = (2*i+1) 

         Set rchild = (2*i+2) 

         If (rchild >= size) 

                  If (lchild < size AND ARR[i] < ARR[lchild]) 

                      Set temp = ARR[i] 

                      Set ARR[i] = ARR[lchild] 

                      Set ARR[lchild] = temp 

             End If 

             go to step 3 

    Else If (ARR[i] < ARR[lchild] OR ARR[i] < ARR[rchild]) 

             If (ARR[lchild] > ARR[rchild]) 

                      Set temp = ARR[i] 

                      Set ARR[i] = ARR[lchild] 

                      Set ARR[lchild] = temp 

                      Set i = lchild 

             Else 

                      Set temp = ARR[i] 

                      Set ARR[i] = ARR[rchild] 

                      Set ARR[rchild] = temp 

                      Set i = rchild 

             End If 

       Else 

             go to step 3 

       End If 

     While(1) 

3. End 
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Program 13.4: Write a program to show sorting of an array using heap sort. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 20 

/*Function prototypes*/ 

void make_heap(int [], int); 

void heap_sort(int [], int); 

void restore(int [], int); 

void main() 

{ 

int ARR[MAX], i, size; 

do 

{ 

clrscr(); 

printf(“\nEnter the size of the array (max %d): “, MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter the elements of the array:\n”); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

heap_sort(ARR, size); 

printf(“\nThe sorted array is: “); 

for(i=0;i<size;i++) 

printf(“%d “, ARR[i]); 

getch(); 

} 

void make_heap(int ARR[], int size) 

{ 

int i, k, parent, child; 

for(i=1;i<size;i++) 

{ 

child=ARR[i]; 

k=i; 

parent=(k-1)/2; 



Indexing, Searching & Sorting 
 

 
 

365  
 

while(k>0 && ARR[parent]<child) 

{ 

ARR[k]=ARR[parent]; 

k=parent; 

parent=(k-1)/2; 

} 

ARR[k]=child; 

} 

} 

void restore(int ARR[], int size) 

{ 

int i=0, lchild, rchild, temp; 

do 

{ 

lchild=(2*i+1); 

rchild=(2*i+2); 

if(rchild>=size) 

{ 

if(lchild<size && ARR[i]<ARR[lchild]) 

{ 

temp=ARR[i]; 

ARR[i]=ARR[lchild]; 

ARR[lchild]=temp; 

} 

break; 

} 

else if(ARR[i]<ARR[lchild] || ARR[i]<ARR[rchild]) 

{ 

if(ARR[lchild]>ARR[rchild]) 

{ 

temp=ARR[i]; 

ARR[i]=ARR[lchild]; 

ARR[lchild]=temp; 

i=lchild; 

} 

else 
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{ 

temp=ARR[i]; 

ARR[i]=ARR[rchild]; 

ARR[rchild]=temp; 

i=rchild; 

} 

} 

else 

break; 

}while(1); 

} 

void heap_sort(int ARR[], int size) 

{ 

int i, j=1, k, temp; 

make_heap(ARR, size); 

printf(“\nInitial heap: “); 

for(i=0;i<size;i++) 

printf(“%d “, ARR[i]); 

for(i=size-1;i>0;i—) 

{ 

temp=ARR[i]; 

ARR[i]=ARR[0]; 

ARR[0]=temp; 

restore(ARR, i); /*rebuilding heap with remaining elements*/ 

printf(“\nHeap after %d pass: “,j); 

for(k=0;k<size;k++) 

printf(“%d “, ARR[k]); 

j++; 

} 

printf(“\nNo. of passes: %d”, j-1); 

} 

 

The output of the program is: 

Enter the size of the array (max 20): 10 

Enter the elements of the array: 
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9 

11 

6 

45 

22 

10 

12 

90 

67 

17 

Initial heap: 90 67 12 45 17 6 10 9 22 11 

Heap after 1 pass: 67 45 12 22 17 6 10 9 11 90 

Heap after 2 pass: 45 22 12 11 17 6 10 9 67 90 

Heap after 3 pass: 22 17 12 11 9 6 10 45 67 90 

Heap after 4 pass: 17 11 12 10 9 6 22 45 67 90 

Heap after 5 pass: 12 11 6 10 9 17 22 45 67 90 

Heap after 6 pass: 11 10 6 9 12 17 22 45 67 90 

Heap after 7 pass: 10 9 6 11 12 17 22 45 67 90 

Heap after 8 pass: 9 6 10 11 12 17 22 45 67 90 

Heap after 9 pass: 6 9 10 11 12 17 22 45 67 90 

No of passes: 9 

The sorted array is: 6 9 10 11 12 17 22 45 67 90 

 

Analysis of heapsort 

A complete binary tree with n nodes has a depth of log n. Therefore, building the 

initial heap of n elements requires n* log n comparisons, since inserting each 

element requires at most log n comparisons. After the creation of the initial heap, the 

element at the root node is swapped with the last element, and the heap is restored. 

 

13.3.5 Merge Sort 

Merge sort algorithm is based on the fact that it is easier and faster to sort two 

smaller arrays than one larger array. Therefore, it follows the principle of divide-and-
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conquer. In this sorting, the list is first divided into two halves. The left and right 

sublists obtained are recursively divided into two sublists until each sublist contains 

not more than one element. The sublists containing only one element do not require 

any sorting. Therefore, we start merging the sublists of size one to obtain the sorted 

sub-list of size two. Similarly, the sublists of size two are then merged to obtain the 

sorted sub-list of size four. This process is repeated until we get the final sorted 

array. 

To understand the merge sort algorithm, consider the following unsorted array. The 

steps to sort the values stored in the array in ascending order using merge sort are 

given here. 

 
1. Initially, low=0 and high=7, therefore, mid=(0+7)/2=3. Thus, the given list is 

divided into two halves from the 4th element. The sub-lists are as follows: 

 
2. The left sub-list is considered first, and it is again divided into two sublists. 

Now, low=0 and high=3, therefore, mid=(0+3)/2=1. Thus, the left sublist is 

divided into two halves from the 2nd element. The sub-lists are as follows: 

 
3. These two sublists are again divided into sub-lists such that all of them 

contain one element.  

4. Since each sub-list now contains one element, all sub-lists are first merged to 

produce the two arrays of size 2. First, the sublists containing the elements 18 

and 13 are merged to give one sorted sub-array, and then sub-lists containing 

the elements 5 and 20 are merged to give another sorted sub-array. The two 

sorted subarrays are as follows: 

 
5. Now, these two sub-arrays are again merged to give the following sorted 

subarray of size 4. 

 
6. After sorting the left half of the array, we perform the same steps for the right 

half. The sorted right half of the array is given below: 
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7. Finally, the left and right halves of the array are merged to give the sorted 

array. 

 
 

Algorithm 13.5 Merge Sort 

merge_sort(ARR, low, high) 

1. If (low < high) 

        Set mid = (low + high) / 2 

        Call merge_sort(ARR, low, mid)    //calling merge_sort recursively for left sub list 

        Call merge_sort(ARR, mid+1, high)   //calling merge_sort for right sub list 

        Call merging(ARR, low, mid, mid+1, high) 

    End If 

2. End 

merging(ARR, ll, lr, ul, ur) 

//merging() merges the two sub-arrays to produce a sorted array named merged ll and ul are 

the lower bounds of the left and right sub-list respectively. 

//ul and ur the upper bounds of the left and right sub-list respectively. 

1. Set i = ll, j = ul, k = ll 

2. While(i <= lr AND j <= ur) 

          If(ARR[i] <= ARR[j]) 

                 Set merged[k] = ARR[i] 

                 Set i = i + 1 

        Else 

            Set merged[k] = ARR[j] 

            Set j = j + 1 

        End If 

        Set k= k + 1 

     End While 

     If(i <= lr) 

       While(i <= lr) 

            Set merged[k] = ARR[i] 

            Set i = i + 1 

            Set k = k + 1 
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        End While 

    End If 

    If(j <= ur) 

        While(j <= ur) 

            Set merged[k] = ARR[j] 

            Set j = j + 1 

            Set k = k+ 1 

        End While 

    End If 

    Set k = ll 

    While (k <= ur) 

         Set ARR[k] = merged[k] 

         Set k = k + 1 

    End While 

3. End 

 

Program 13.5: Write a program to show sorting of an array using merge sort. 
#include<stdio.h> 

#include<conio.h> 

#define MAX 20 

/*Function prototypes*/ 

void merging(int [], int, int, int, int); 

void merge_sort(int [], int, int); 

void main() 

{ 

int ARR[MAX], i, size; 

do 

{ 

clrscr(); 

printf(“\nEnter the size of the array (max %d): “, MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter the elements of the array:\n”); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

merge_sort(ARR, 0, size-1); 

printf(“\nThe sorted array is: “); 
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for(i=0;i<size;i++) 

printf(“%d “, ARR[i]); 

getch(); 

} 

void merge_sort(int ARR[], int low, int high) 

{ 

int mid; 

if(low<high) 

{ 

mid=(low+high)/2; 

merge_sort(ARR, low, mid);       /*calling merge_sort recursively for left sub list*/ 

merge_sort(ARR, mid+1, high); /*calling merge_sort recursively for right*/ /*sub list*/ 

merging(ARR, low, mid, mid+1, high); 

} 

} 

void merging(int ARR[], int ll, int lr, int ul, int ur) 

{ 

int i, j, k, merged[MAX]; 

i=ll; 

j=ul; 

k=ll; 

while(i<=lr && j<=ur) 

{ 

if(ARR[i]<=ARR[j]) 

{ 

merged[k]=ARR[i]; 

i++; 

} 

else 

{ 

merged[k]=ARR[j]; 

j++; 

} 

k++; 

} 

if(i<=lr) 

while(i<=lr) 

{ 

merged[k]=ARR[i]; 

i++; 
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k++; 

} 

if(j<=ur) 

while(j<=ur) 

{ 

merged[k]=ARR[j]; 

j++; 

k++; 

} 

for(k=ll;k<=ur;k++) 

ARR[k]=merged[k]; 

} 

 

 

The output of the program is: 

Enter the size of the array (max 20): 10 

Enter the elements of the array: 

65 

12 

45 

78 

96 

32 

56 

44 

25 

11 

The sorted array is: 11 12 25 32 44 45 56 65 78 96 

 

Analysis of merge sort 

In the first pass of the merge sort algorithm, the given array is divided into two 

halves and each half is sorted separately. In each of the recursive calls to the 

merge_sort(), one for the left half and one for the right half, the array is further 

divided into two halves, thereby resulting in four segments of the array. Thus, in 

each pass, the number of segments of the array gets doubled until each segment 
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contains not more than one element. Therefore, the total number of divisions is log n. 

Moreover, in any pass, at most n comparisons are required. Hence, the complexity of 

the merge sort algorithm is O(n log n). 

 

13.3.6 Quick Sort 

Quicksort algorithm also follows the principle of divide-and-conquer. However, it does 

not simply divide the list into halves. Rather, it first picks up a partitioning element, 

called the pivot, that divides the list into two sublists such that all the elements in 

the left sub-list are smaller than the pivot, and all the elements in the right sublist 

are greater than the pivot. The same process is applied on the left and right sublists 

separately. This process is repeated recursively until each sublist contains not more 

than one element. 

The main task in quicksort is to find the pivot that partitions the given list into two 

halves so that the pivot is placed at its appropriate location in the array. The choice 

of the pivot has a significant effect on the efficiency of the quick sort algorithm. The 

simplest way is to choose the first element as a pivot. However, the first element is 

not a good choice, especially if the given list is already or nearly ordered. For better 

efficiency, the middle element can be chosen as a pivot. Note that we will take the 

first element as a pivot for simplicity. 

 

The steps involved in the quick sort algorithm are as follows: 

1. Initially, three variables pivot, beg, and end are taken, such that both pivot 

and beg refer to the 0th position, and end refers to (n-1)th position in the list. 

2. Starting with the element referred to by the end, the array is scanned from 

right to left, and each element on the way is compared with the element 

referred to by pivot. If the element referred to by pivot is greater than the 

element referred to by the end, both types of elements are swapped and step 3 

is performed. Otherwise, the end is decremented by 1, and step 2 is continued. 

3. Starting with the element referred to by beg, the array is scanned from left to 

right, and each element on the way is compared with the element referred to 

by pivot. If the element referred to by pivot is smaller than the element referred 

to by the end, both types of elements are swapped and step 2 is performed. 
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Otherwise, beg is incremented by 1, and step 3 is continued. 

 

The first pass terminates when pivot, beg, and end all refer to the same array 

element. This indicates that the pivot element is placed at its final position. The 

elements to the left of this element are smaller than this element, and elements to its 

right are greater. 

To understand the quick sort algorithm, consider the following unsorted array. The 

steps to sort the values stored in the array in ascending order using quick sort are 

given here. 

 
Unsorted Array 

First pass: 

1. Initially, the index 0 in the list is chosen as the pivot, and the index variables 

beg and end are initialized with index 0 and n-1 respectively. 

 
2. The scanning of elements is started from the end of the list. ARR[pivot] (that 

is, 8) is greater than ARR[end] (that is, 4). Therefore, they are swapped. 

 
3. Now, the scanning of elements is started from the beginning of the list. Since 

ARR[pivot] (that is, 8) is greater than ARR[beg] (that is 33), therefore beg is 

incremented by 1, and the list remains unchanged. 

 
4. Next, the element ARR[pivot] is smaller than ARR[beg], they are swapped. 



Indexing, Searching & Sorting 
 

 
 

375  
 

 
5. Again, the list is scanned from right to left. Since ARR[pivot] is smaller than 

ARR[end], therefore the value of end is decremented by 1, and the list remains 

unchanged. 

 
 

6. Next, the element ARR[pivot] is smaller than ARR[end], the value of the end is 

decremented by 1, and the list remains unchanged. 

 
7. Now, ARR[pivot] is greater than ARR[end], they are swapped. 

 
8. Now, the list is scanned from left to right. Since ARR[pivot] is greater than 

ARR[beg], the value of beg is incremented by 1, and the list remains 

unchanged. 

 
At this point, since the variables pivot, beg, and end all refer to the same element, the 

first pass is terminated and the value 8 is placed at its appropriate position. The 

elements to its left are smaller than 8, and elements to its right are greater than 8. 
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The same process is applied to the left and right sublists. 

 

Algorithm 13.6 Quick Sort 

quick_sort(ARR, size, lb, ub) 

1. Set i = 1                      //i is a static integer variable 

2. If lb < ub 

          Call splitarray(ARR, lb, ub)           //returning an integer value pivot 

          Print ARR after ith pass 

          Set i = i + 1 

      Call quick_sort(ARR, size, lb, pivot – 1)    //recursive call to quick_sort() to sort left sub list 

      Call quick_sort(ARR, size, pivot + 1, ub); //recursive call to quick_sort() to sort right sub list 

    Else if (ub=size-1) 

    Print “No. of passes: ”, i 

    End If 

3. End 

splitarray(ARR, lb, ub)  //split array partitions the list into two sublists such that the elements in the left 

sub list are smaller than ARR[pivot], and elements in the right sub-list are greater than ARR[pivot] 

1. Set flag = 0, beg = pivot = lb, end = ub 

2. While (flag != 1) 

             While (ARR[pivot] <= ARR[end] AND pivot != end) 

                       Set end = end – 1 

           End While 

           If pivot = end 

                   Set flag = 1 

           Else 

                   Set temp = ARR[pivot] 

                   Set ARR[pivot] = ARR[end] 

                   Set ARR[end] = temp 

                   Set pivot = end 

           End If 

           If flag != 1 

                   While (ARR[pivot] >= ARR[beg] AND pivot != beg) 

                             Set beg = beg + 1 

                   End While 

                   If pivot = beg 

                              Set flag = 1 

                   Else 

                              Set temp = ARR[pivot] 

                              Set ARR[pivot] = ARR[beg] 
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                              Set ARR[beg] = temp 

                              Set pivot = beg 

                   End If 

          End If 

    End While 

3. Return pivot 

4. End 

 

Program 13.6: Write a program to show sorting of an array using quick sort. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 20 

/*Function prototypes*/ 

void quick_sort(int [], int, int, int); 

int splitarray(int [], int, int); 

void main() 

{ 

int ARR[MAX], i, size; 

do 

{ 

clrscr(); 

printf(“\nEnter the size of the array (max %d): “, MAX); 

scanf(“%d”, &size); 

}while(size>MAX); 

printf(“\nEnter the elements of the array:\n”); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

quick_sort(ARR, size, 0, size-1); 

printf(“\nThe sorted array is: “); 

for(i=0;i<size;i++) 

printf(“%d “, ARR[i]); 

getch(); 

} 

void quick_sort(int ARR[], int size, int lb, int ub) 

{ 

int pivot, k; 
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static int i=0; 

if (lb<ub) 

{ 

pivot=splitarray(ARR, lb, ub); 

printf(“\nArray after pass %d: “, i+1); 

for (k=0;k<size;k++) 

printf(“%d “, ARR[k]); 

i++; 

quick_sort(ARR, size, lb, pivot-1);       //recursive call to function to sort left sub list 

quick_sort(ARR, size, pivot+1, ub);    //recursive call to function to sort right sub list 

} 

else if (ub==(size-1)) 

printf(“No. of passes: %d”, i); 

} 

int splitarray(int ARR[], int lb, int ub) 

{ 

int pivot, beg, end, temp, flag=0; 

beg=pivot=lb; 

end=ub; 

while(!flag) 

{ 

while ((ARR[pivot]<=ARR[end]) && (pivot!=end)) 

end—; 

if (pivot==end) 

flag=1; 

else 

{ 

temp=ARR[pivot]; 

ARR[pivot]=ARR[end]; 

ARR[end]=temp; 

pivot=end; 

} 

if (!flag) 

{ 

while ((ARR[pivot]>=ARR[beg]) && (pivot!=beg)) 

beg++; 
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if (pivot==beg) 

flag=1; 

else 

{ 

temp=ARR[pivot]; 

ARR[pivot]=ARR[beg]; 

ARR[beg]=temp; 

pivot=beg; 

} 

} 

} 

return pivot; 

} 

 

The output of the program is: 

Enter the size of the array (max 20): 5 

Enter the elements of the array: 

6 

5 

4 

3 

2 

Array after pass 1: 2 5 4 3 6 

Array after pass 2: 2 5 4 3 6 

Array after pass 3: 2 3 4 5 6 

Array after pass 4: 2 3 4 5 6 

No. of passes: 4 

The sorted array is: 2 3 4 5 6 

 

 

Analysis of quicksort 

The quicksort algorithm gives the worst-case performance when the list is already 

sorted. In this case, the first element requires n comparisons to determine that it 

remains in the first position; the second element requires n-1 comparisons to 
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determine that it remains in the second position, and so on. Therefore, the total 

number of comparisons in this case is: 

f(n) = n + (n-1) + ... + 3 + 2 +1 

      = n(n+1)/2 

      = O(n2) 

Note that in the worst case, the complexity of the quick sort algorithm is equal to 

that of the bubble sort algorithm. In the best case, when a pivot is chosen in such a 

way that it partitions the list approximately in half, then there will be log n 

partitions. Each pass does at most n comparisons. Therefore, the complexity of the 

quick sort algorithm in this case is: 

f(n) = n * log n 

      = O(n log n) 

 

13.3.7 Shell Sort 

The shell sort algorithm was invented by Donald Shell in 1959. It is the most efficient 

sorting algorithm among all the algorithms with O(n2) complexity. Note that the shell 

sort algorithm does not actually sort the data itself; rather it increases the efficiency 

of other sorting algorithms. Usually, an insertion or bubble sort is used to arrange 

the data at each step, but other algorithms can be used. The algorithm performs 

several passes through the list and in each pass, the elements separated by a specific 

distance, say d, are arranged in order. Once all the elements with the current d are 

in order, the value of d is reduced by some factor and the process continues in the 

next pass. 

Choosing the initial value of d is the most important task of the shell sort algorithm. 

Originally Donald Shell suggested size/2 as the initial value for d, where size is the 

number of elements in the array. However, d can be any number less than half the 

number of elements in the array. Further, in each subsequent pass, the value of d is 

reduced to half until it reaches 1. 

To understand the shell sort algorithm, consider the following unsorted array with 

size=8. 

 
The steps to sort the values stored in the array in ascending order using shell sort 
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are given here. 

 

First pass 

The initial value of d=size/2, that is, 8/2=4. Therefore, the elements that are 

separated with distance 4 are arranged in order. 

 
In this iteration, a swap has occurred. Thus, one more iteration is required with d=4. 

 
This time, no swap occurs throughout the iteration. It means that the elements 

separated with distance 4 are in order. Hence, the first pass is completed. 

 

Second pass 

Now the value of d=d/2, that is, 4/2=2. Therefore, the elements that are separated 

with distance 2 are arranged in order. 
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In this iteration, two swaps have occurred. Thus, one more iteration is required with 

d=2. 

 
This time, no swap occurs throughout the iteration. It means that the elements 

separated with distance 2 are in order. Hence, the second pass is completed. 

 

Third pass 

Now the value of d=d/2, that is, 2/2=1. Therefore, the elements that are separated 

with distance 1 are arranged in order. 

 
 

In this iteration, three swaps have occurred. Thus, one more iteration is required 

with d=1. 
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In this iteration, a swap has occurred. Thus, one more iteration is required with d=1. 

 
 

Since no swap has occurred in this iteration. Therefore, the algorithm terminates 

after this pass. 

Algorithm 13.7 Shell Sort 



Indexing, Searching & Sorting 
 

 
 

384  
 

shell_sort(ARR, size) 

1. Set count = 0 

2. Set d = size / 2 

3. Do 

        Do 

            Set swap = 0, i = 0 

            While (i < size-d) 

            If(ARR[i] >ARR[i+d]) 

            Set temp = ARR[i]; 

            Set ARR[i] = ARR[i+d]; 

            Set ARR[i+d] = temp; 

            Set swap = 1 

       End If 

          Set i = i + 1 

     End While 

     While (swap) 

     Set count = count + 1 

     Print ARR after count th pass 

     While (d = d / 2) 

4. Print “No. of passes: ”, count 

5. End 

 

Program 13.7: Write a program to show sorting of an array using shell sort. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 20 

/*Function prototype*/ 

void shell_sort(int [], int); 

void main() 

{ 

int ARR[MAX],i, size; 

do 

{ 

clrscr(); 

printf(“\nEnter the size of the array: “); 

scanf(“%d”, &size); 

if (size>MAX) 
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{ 

printf(“\nInput size is greater than the maximum size.”); 

getch(); 

} 

}while(size>MAX); 

printf(“\nEnter the elements of the array:\n”); 

for(i=0;i<size;i++) 

scanf(“%d”, &ARR[i]); 

shell_sort(ARR, size); 

printf(“\nThe sorted array is: “); 

for(i=0;i<size;i++) 

printf(“%d “, ARR[i]); 

getch(); 

} 

void shell_sort(int ARR[], int size) 

{ 

int swap, temp, i, count=0, k; 

int d=size/2; 

do 

{ 

do 

{ 

swap=0; 

for(i=0;i<size-d;i++) 

{ 

if(ARR[i]>ARR[i+d]) 

{ 

temp=ARR[i]; 

ARR[i]=ARR[i+d]; 

ARR[i+d]=temp; 

swap=1;/*swap=1 /*indicates that further execution with 

current value of d is required*/ 

} 

} 

}while(swap); 

count++; 
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printf(“\nArray after pass %d: “, count); 

for(k=0;k<size;k++) 

printf(“%d “, ARR[k]); 

}while(d=d/2); 

printf(“\nNo. of passes: %d”, count); 

} 

 

The output of the program is: 

Enter the size of the array: 8 

Enter the elements of the array: 

11 

33 

99 

22 

88 

77 

55 

44 

Array after pass 1: 11 33 55 22 88 77 99 44 

Array after pass 2: 11 22 55 33 88 44 99 77 

Array after pass 3: 11 22 33 44 55 77 88 99 

No. of passes: 3 

The sorted array is: 11 22 33 44 55 77 88 99 

 

Analysis of shell sort 

It is very difficult to analyze the shell sort algorithm. This is because it is almost 

impossible to show the effect of one pass on subsequent passes. However, one thing is 

clear that if distance d is reduced each time to its half, then a total of log d passes are 

required since d=1 will complete the algorithm. In each pass, either bubble or 

insertion sort is used, each with the complexity of O(n2). Since shell sort moves the 

values with giant steps towards their final position in initial passes, it may require less 

number of iterations within each pass. However, the worst-case complexity of shell 

sort is O(n2). 
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13.4 Comparison of Various Sorting Algorithms 

We have discussed several algorithms that can be used to sort a given set of elements. 

However, in order to choose an appropriate algorithm that suits a particular problem, 

the analysis of algorithms is necessary. For this, a number of efficiency parameters are 

considered. The two most important efficiency parameters are the time required to 

execute the algorithm and the amount of memory space it requires. 

Now we will discuss the efficiency of an algorithm in terms of the amount of time 

required in its execution. The estimated amount of time required in executing an 

algorithm is referred to as the time complexity (or time efficiency) of the algorithm.  

In sorting algorithms, several operations are performed, such as comparison operation 

(that compares two values to determine which is smaller or larger), interchange (swap) 

operation, an increment of an index variable in a loop, etc. However, comparison and 

interchange operations are the most significant operations as they require much more 

time than any other simple operation. Moreover, the number of interchanges cannot 

be greater than the number of comparisons. Therefore, we consider the number of 

comparisons as a useful measure of a sort’s time efficiency. 

In determining the time complexity of an algorithm, the size of an instance (input) also 

plays an important role. If the size of an instance is n, then the time complexity of the 

algorithm is some function of n. Thus, we need to determine a function f(n) that 

relates the number of operations to be performed to the size of the input. While 

comparing any two sorting algorithms, the algorithm whose function grows slower 

than the other is considered to be better. In mathematical terms, this relation is 

represented in Big Oh notation. In this notation, a function f(n) is O[g(n)], if there exist 

positive integers k and c such that f(n)<=c*g(n), for all n>=k [where, f(n) and g(n) are 

the functions of two different algorithms]. The expression O is also called Landau’s 

symbol. 

Using the concept of Big Oh notation, we can thus compare various sorting algorithms 

and classify them as good or bad in general terms. If the algorithm has O(n) 

complexity, it implies that it has linear complexity and it grows linearly with the size of 

the input. For example, consider an algorithm that takes t time units to sort an array 

of 10 elements. In this case, the algorithm will take 10*t time units for 100 elements 
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(10*10=100). Unfortunately, no such sorting algorithm exists. Generally, the 

complexities of most of the sorting algorithms range between O(n2) and O(n log n). 

O(n2) is known as the polynomial complexity and O(n log n) is known as the logarithmic 

complexity. The insertion, bubble, selection, and shell sort algorithms have the 

complexity of O(n2), while heap, merge and quick sort algorithms have the complexity 

of O(n log n). If the size of the input is n, then O(n log n) is significantly faster than 

O(n2) as shown in Table 13.1. 

 

Table 13.1 Comparing O(n log n) with O(n2) 

 
 

13.5 External Sorting 

External sorting refers to the sorting of a file that is on a disk (or tape). Internal sorting 

refers to the sorting of an array of data that is in RAM. The main concern with external 

sorting is to minimize disk access since reading a disk block takes about a million 

times longer than accessing an item in RAM. 

Perhaps the simplest form of external sorting is to use a fast internal sort with a good 

locality of reference (which means that it tends to reference nearby items, not widely 

scattered items) and hope that your operating system’s virtual memory can handle it. 

(Quicksort is a one sort algorithm that is generally very fast and has a good locality of 

reference.) If the file is too huge, however, even virtual memory might be unable to fit 

it. Also, the performance may not be too great due to a large amount of time it takes to 

access data on disk. 

Most external sort routines are based on mergesort. They typically break a large data 

file into a number of shorter, sorted “runs”. These can be produced by repeatedly 

reading a section of the data file into RAM, sorting it with ordinary quicksort, and 

writing the sorted data to disk. After the sorted runs have been generated, a merge 

algorithm is used to combine sorted files into longer sorted files. The simplest scheme 

is to use a 2-way merge: merge 2 sorted files into one sorted file, then merge 2 more, 
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and so on until there is just one large sorted file. A better scheme is a multiway merge 

algorithm: it might merge perhaps 128 shorter runs together. 

 

13.6 Summary 

● The process of arranging data in some logical order is known as sorting. 

● The insertion sort algorithm selects each element and inserts it at its proper 

position in the earlier sorted sub-list. 

● The bubble sort algorithm requires n-1 passes to sort an array. In the first 

pass, the largest element in the list is placed at the last position. Similarly, 

after the second pass, the second largest element is placed at its appropriate 

position. Thus, in each subsequent pass, one more element is placed at its 

appropriate position. 

● In selection sort, first, the smallest element in the list is searched and placed 

at the first position by swapping it with the first element. Then, the second 

smallest element is searched and placed at the second position, and so on. 

● Heapsort uses a special data structure known as the heap, which is a 

complete binary tree. 

● The merge sort algorithm is based on the fact that it is easier and faster to sort 

two smaller arrays than one larger array. Therefore, it follows the principle of 

divide-and-conquer. 

● The quicksort algorithm also follows the principle of divide-and-conquer. It 

first picks up a partitioning element, called a pivot, that divides the list into 

two sublists such that all the elements in the left sub-list are smaller than the 

pivot, and all the elements in the right sub-list are greater than the pivot. 

● The shell sort algorithm performs several passes through the list, and in each 

pass, the elements that are separated by a specific distance, say d, are 

arranged in order. 

 

13.7 Key Terms 

● Max-heap (or descending heap): A kind of heap in which the value present at 

any node is greater than or equal to the value of each of its child nodes. 

● Min-heap (or ascending heap): A kind of heap in which the value present at 
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any node is smaller than or equal to the value of each of its child nodes. 

● Time complexity (or time efficiency) of the algorithm: The estimated 

amount of time required in executing an algorithm. 

● Pivot: It is a partitioning element, used in quicksort, that divides the list into 

two sublists such that all the elements in the left sub-list are smaller than the 

pivot, and all the elements in the right sublist are greater than the pivot. 

 

13.8 Check Your Progress 

Short- Answer type 

Q1) Using the concept of ___________ notation, we can compare various sorting 

algorithms and classify them as good or bad in general terms. 

Q2) Heap sort makes use of a data structure called a ___________. 

Q3) Which of these is an internal sorting technique? 

(a) Heap sort  (b) Quick sort  (c) Merge sort  (d) All of 

these 

Q4) Max-heap is also known as ascending heap. True/ False? 

Q5) The quicksort algorithm is based on the principle of divide-and-conquer. True/ 

False? 

Long- Answer type 

Q1) What are the steps for sorting the values stored in an array in ascending order 

using selection sort? 

Q2) Define Merge sort. Differentiate between Merge sort and Quicksort. 

Q3) Write a brief analysis of the insertion sort. 

Q4) Write a program to sort an array of strings using bubble sort. 

Q5) Sort the following array in descending order using heap sort. 

1, 3, 24, 17, 5, 32, 6, 99 
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