
Master of Computer Application

(Open and Distance Learning Mode)

Semester – I

Mathematical Foundation for Computer Application

Centre for Distance and Online Education (CDOE)

DEVI AHILYA VISHWAVIDYALAYA, INDORE
“A+” Grade Accredited by NAAC

IET Campus, Khandwa Road, Indore - 452001

www.cdoedavv.ac.in

www.dde.dauniv.ac.in

CDOE-DAVV

Program Coordinator

Dr. Anand More

School of Computer Science and IT

Devi Ahilya Vishwavidyalaya, Indore – 452001

Content Design Committee

Dr. Pratosh Bansal

Centre for Distance and Online Education

Devi Ahilya Vishwavidyalaya, Indore – 452001

Dr. C.P. Patidar

Institute of Engineering & Technology

Devi Ahilya Vishwavidyalaya, Indore – 452001

Dr. Shaligram Prajapat

International Institute of Professional Studies

Devi Ahilya Vishwavidyalaya, Indore – 452001

 Language Editors

Dr. Arti Sharan

Institute of Engineering & Technology

Devi Ahilya Vishwavidyalaya, Indore – 452001

Dr. Ruchi Singh

Institute of Engineering & Technology

Devi Ahilya Vishwavidyalaya, Indore – 452001

 SLM Author(s)

Mr. Tapesh Sarsodiya

B.E., M.E.

IET, Devi Ahilya Vishwavidyalaya, Indore – 452001

Mrs. Sunita Goud

M. Tech.

SCS, Devi Ahilya Vishwavidyalaya, Indore – 452001

Copyright : Centre for Distance and Online Education (CDOE), Devi Ahilya Vishwavidyalaya

Edition : 2022 (Restricted Circulation)

Published by : Centre for Distance and Online Education (CDOE), Devi Ahilya Vishwavidyalaya

Printed at : University Press, Devi Ahilya Vishwavidyalaya, Indore – 452001

Mathematical Foundation for

Computer Application

CONTENTS

INTRODUCTION 1

UNIT 1 ALGORITHMS 3-93

1.0 Introduction
1.1 Unit Objectives
1.2 Algorithms: An Introduction

1.2.1 Definition, Characteristics and Properties of Algorithms
1.2.2 Types of Algorithms
1.2.3 Areas of Research in the Study of Algorithms
1.2.4 Algorithm for Sequential Search
1.2.5 Algorithms as Technology
1.2.6 Algorithms and Other Technologies
1.2.7 Measuring the Running Time of an Algorithm
1.2.8 Algorithm Design Strategies
1.2.9 Analysis of Algorithms

1.2.10 Merits and Demerits of Algorithm
1.2.11 Flowchart and Algorithms
1.2.12 Designing an Algorithm using Flowcharts

1.3 Exponentiation
1.3.1 How to Compute Exponentiation Fast?

1.4 Linear Search
1.4.1 Algorithm for Linear Search
1.4.2 Analysis of Linear Search algorithm

1.5 Binary Search
1.5.1 The Search Method
1.5.2 Algorithm for Binary Search
1.5.3 Analysis of Binary Search Algorithm
1.5.4 Fibonacci Search

1.6 Big Oh Notation (or Big O Notation)
1.6.1 Properties of the Big O Notation
1.6.2 General Rules
1.6.3 Finding Prime Factor of a Given Number
1.6.4 List of Prime Numbers

1.7 Worst Case
1.8 Advantage of Logarithmic Algorithms Over Linear Algorithms
1.9 Complexity

1.9.1 Space Complexity
1.9.2 Time Complexity
1.9.3 Practical Complexities
1.9.4 Performance Measurement

1.10 Algorithm Representation through a Pseudocode
1.10.1 Coding
1.10.2 Program Development Steps
1.10.3 Software Testing

1.11 Amortized Analysis

1.12 Summary
1.13 Key Terms
1.14 Answers to ‘Check Your Progress’
1.15 Questions and Exercises
1.16 Further Reading

UNIT 2 GRAPH THEORY 95-136

2.0 Introduction
2.1 Unit Objectives
2.2 Graphs: Types and Operations

2.2.1 Bipartite Graphs
2.2.2 Subgraph
2.2.3 Distance in a Graph
2.2.4 Cut-Vertices and Cut-Edges
2.2.5 Graph Connectivity
2.2.6 Isomorphic Graphs
2.2.7 Homeographic Graphs
2.2.8 Cut-Sets and Connectivity of Graphs
2.2.9 Operations on Graphs

2.3 Degree of Vertex
2.4 Adjacent and Incidence Matrices
2.5 Path Circuit

2.5.1 Floyd’s and Warshall’s Algorithms
2.5.2 Eulerian Path and Circuit
2.5.3 Hamiltonian Graphs

2.6 Graph Colouring
2.6.1 Four Colour Theorem

2.7 Summary
2.8 Key Terms
2.9 Answers to ‘Check Your Progress’

2.10 Questions and Exercises
2.11 Further Reading

UNIT 3 TREES 137-162

3.0 Introduction
3.1 Unit Objectives
3.2 Trees: Basics

3.2.1 Trees and Sorting
3.3 Minimum Height and Minimum Distance Spanning Trees

3.3.1 Depth-First Search and Breadth-First Search
3.3.2 Optimal Spanning Graph

3.4 Planar Graphs
3.5 Summary
3.6 Key Terms
3.7 Answers to ‘Check Your Progress’
3.8 Questions and Exercises
3.9 Further Reading

UNIT 4 RECURSION 163-216

4.0 Introduction
4.1 Unit Objectives
4.2 Mergesort
4.3 Insertion Sort
4.4 Bubble Sort and Selection Sort

4.4.1 Bubble Sort
4.4.2 Selection Sort

4.5 Binary and Decimal Numbers
4.5.1 Binary Number System
4.5.2 Decimal Number System
4.5.3 Binary to Decimal Conversion
4.5.4 Decimal to Binary Conversion
4.5.5 Double-Dabble Method
4.5.6 Decimal Fraction to Binary

4.6 Recursion and Recurrence Relations
4.6.1 Recursion and Iteration
4.6.2 Closed Form Expression
4.6.3 Sequence of Integers
4.6.4 Recurrence Relations
4.6.5 Linear Homogenous Recurrence Relations (LHRR)
4.6.6 Solving Linear Homogeneous Recurrence Relations
4.6.7 Solving Linear Non-Homogeneous Recurrence Relations
4.6.8 Linear Homogeneous Recurrence Relations with Constant Coefficient (LHRRWCC)
4.6.9 Divide and Conquer Recurrence Relation (DCRR)

4.7 Recursive Procedures
4.7.1 Functional Recursion
4.7.2 Recursive Proofs
4.7.3 The Recursion Theorem
4.7.4 Infinite Sequences
4.7.5 Recursive Function and Primitive Recursive Function

4.8 Summary
4.9 Key Terms

4.10 Answers to ‘Check Your Progress’
4.11 Questions and Exercises
4.12 Further Reading

UNIT 5 NUMBER THEORY 217-261

5.0 Introduction
5.1 Unit Objectives
5.2 Number Theory: Basics

5.2.1 Fundamental Theorem of Arithmetic
5.2.2 Prime Numbers
5.2.3 Division Algorithms
5.2.4 Divisibility
5.2.5 Absolute Value
5.2.6 Order and Inequalities

5.3 Greatest Common Divisor
5.3.1 Linear Diophantine Equation

5.4 Euclidean Algorithm
5.5 Fibonacci Numbers

5.6 Congruences and Equivalence Relations
5.6.1 Congruences Relations
5.6.2 Equivalence Relations

5.7 Public Key Encryption Schemes
5.7.1 Message Authentication Code
5.7.2 Digital Structure

5.8 Summary
5.9 Key Terms

5.10 Answer to ‘Check Your Progress’
5.11 Questions and Exercises
5.12 Further Reading

Introduction

NOTES

Self-Instructional Material 1

INTRODUCTION

Mathematics is, perhaps, the most important subject for achieving excellence in
any field of science or commerce. The book has been structured to define the key
mathematical concepts and its formulations by providing helpful and relevant
material in lucid, self-explanatory and simple language to help you to understand
the basic concepts and achieve your goals. It can be used by you as an introduction
to the underlying ideas of mathematics that are applicable to computer science as
well.

This book, Mathematical Foundations of Computer Science, is divided
into five units. The first unit introduces the concept of algorithms, its properties and
characteristics. It also discusses the advantage of logarithmic algorithms over linear
algorithms. The next unit covers the various features of graphs, its types and
operations. The third unit deals with the types of tree structures and the various
situations in which they are applied. The next unit explains the concept of recursion
and the recursive procedures. The last unit discusses the basics of the number
theory.

The topics are logically organized and explained with related mathematical
theorems, analysis and formulations to provide a background for statistical thinking
and analysis with good knowledge of calculus. The interactive examples have also
been carefully designed so that you can gradually build up your knowledge and
understanding.

The key features of this book are:

 It balances theory with applications.

 The theorems and proofs are followed by solved exercises.

 Simplified notations and techniques of mathematical methods to make the
text easy to understand.

 The book motivates new concepts with the extensive use of examples.

 The mathematical applications provided will help you to understand
mathematics in action and to contextualize what you are actually learning.

 The text facilitates understanding of key mathematical concepts and their
application in solving problems.

The book follows the self-instructional mode wherein each unit begins with
an Introduction to the topic. The Unit Objectives are then outlined before going on
to the presentation of the detailed content in a simple and structured format. Check
Your Progress questions are provided at regular intervals to test the student’s
understanding of the subject. A Summary, a list of Key Terms and a set of Questions
and Exercises are provided at the end of each unit for recapitulation.

Algorithms

NOTES

Self-Instructional Material 3

UNIT 1 ALGORITHMS

Structure

1.0 Introduction
1.1 Unit Objectives
1.2 Algorithms: An Introduction

1.2.1 Definition, Characteristics and Properties of Algorithms
1.2.2 Types of Algorithms
1.2.3 Areas of Research in the Study of Algorithms
1.2.4 Algorithm for Sequential Search
1.2.5 Algorithms as Technology
1.2.6 Algorithms and Other Technologies
1.2.7 Measuring the Running Time of an Algorithm
1.2.8 Algorithm Design Strategies
1.2.9 Analysis of Algorithms

1.2.10 Merits and Demerits of Algorithm
1.2.11 Flowchart and Algorithms
1.2.12 Designing an Algorithm using Flowcharts

1.3 Exponentiation
1.3.1 How to Compute Exponentiation Fast?

1.4 Linear Search
1.4.1 Algorithm for Linear Search
1.4.2 Analysis of Linear Search algorithm

1.5 Binary Search
1.5.1 The Search Method
1.5.2 Algorithm for Binary Search
1.5.3 Analysis of Binary Search Algorithm
1.5.4 Fibonacci Search

1.6 Big Oh Notation (or Big O Notation)
1.6.1 Properties of the Big O Notation
1.6.2 General Rules
1.6.3 Finding Prime Factor of a Given Number
1.6.4 List of Prime Numbers

1.7 Worst Case
1.8 Advantage of Logarithmic Algorithms Over Linear Algorithms
1.9 Complexity

1.9.1 Space Complexity
1.9.2 Time Complexity
1.9.3 Practical Complexities
1.9.4 Performance Measurement

1.10 Algorithm Representation through a Pseudocode
1.10.1 Coding
1.10.2 Program Development Steps
1.10.3 Software Testing

1.11 Amortized Analysis
1.12 Summary
1.13 Key Terms
1.14 Answers to ‘Check Your Progress’
1.15 Questions and Exercises
1.16 Further Reading

4 Self-Instructional Material

Algorithms

NOTES

1.0 INTRODUCTION

Informally, an algorithm refers to any well-defined computational procedure that
takes some values as ‘input’ and produces some value or set of values as ‘output’.
It is composed of a finite set of steps, each of which may require one or more
operations. Every operation may be characterized as either simple or complex.
Operations performed on scalar quantities are termed simple, while those performed
on vector data are normally termed as complex. An algorithm can also be viewed
as a tool for solving a well-specified ‘computational problem’. The statement of
the problem specifies, in general terms, the desired input/output relationship.

In simple terms, an algorithm can be defined as a step-by-step procedure
for performing some task in a finite amount of time.

For a given problem, there are several ways of designing an algorithm, but
the best way is the one that executes the algorithm fast. The most commonly used
design approaches include, incremental approach, divide and conquer approach,
dynamic programming, greedy strategy, branch and bound, backtracking and
randomized algorithms.

Algorithms are used in a broad spectrum of computer applications.
Algorithms to sort, search and process text, solve graph problems and basic
geometric problems, display graphics and perform common mathematical
calculations are extensively studied and are considered a necessary component of
computer science.

1.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Describe the basic features of algorithms

 Compute exponentiation

 Describe the meaning and implementation of linear search

 Describe the meaning and implementation of binary search

 Understand the functions of Big O notation

 Define the best-case, worst-case and average-case situations in an algorithm

 Describe the advantages of logarithmic algorithms over linear algorithms

 Understand the various types of complexities, such as space complexity,
time complexity, practical complexity, etc

 Represent an algorithm through a pseudo code

 Describe the various techniques used in amortized analysis

Algorithms

NOTES

Self-Instructional Material 5

1.2 ALGORITHMS: AN INTRODUCTION

Informally, an algorithm refers to any well-defined computational procedure that
takes some values as ‘input’ and produces some value or set of values as ‘output’.
An algorithm is thus a sequence of computational steps that transform the input
into the output.

You can also view an algorithm as a tool for solving a well-specified
‘computational problem’. The statement of the problem specifies in general terms
the desired input/output relationship. The algorithm describes a specific
computational procedure for achieving that input/output relationship.

In simple terms, you can say that ‘Aan algorithm is a step-by-step procedure
for performing some task in a finite amount of time’.

An algorithm is composed of a finite set of steps each of which may require
one or more operations. Every operation may be characterized as either a simple
or complex. Operations performed on scalar quantities are termed simple, while
operations on vector data normally termed as complex.

1.2.1 Definition, Characteristics and Properties of Algorithms

The following are some of the established definitions of algorithms:

 An algorithm is any well-defined computational procedure that takes some
value, or set of values as input and provides some value, or set of values as
output.

 An algorithm is a set of instructions for solving a problem.

 An algorithm is a sequence of computational steps that transforms inputs
into one or more output.

 An algorithm is the essence of a computational procedure in form of step-
by-step instructions.

 An algorithm is a finite set of instructions that accomplishes a particular
task.

Specification of Input Algorithm Specification of Output
as a Function of Input

Characteristics of Algorithms

The following are the major features of algorithms:

 Input: Each algorithm should have zero or more (but only finite) data items
which are supplied externally.

 Output: An algorithm must provide at least one data item to explain its
purpose.

 Finiteness: An algorithm must terminate after a finite number of steps which
were executed in a finite amount of time.

6 Self-Instructional Material

Algorithms

NOTES

 Definiteness: Each step must be unambiguously specified and clear, i.e.,
each step must be precisely defined.

 Effectiveness: Each step should be sufficiently simple and basic.

Algorithms that are definite and effective are also termed as computational
procedures.

What is a Good Algorithm?

A good algorithm should be efficient in terms of the running time as well as the
space utilized. An algorithm is said to be efficient, if it takes less amount of time to
execute and also utilizes less amount of memory.

Efficiency as a Function of Input Size

Efficiency can be measured in terms of the number of bits in an input number as
well as the number of data elements (numbers, points).

Properties of Algorithm

The following are the five important properties (features) of algorithm:

 Finiteness

 Definitiveness

 Input

 Output

 Effectiveness

 Finiteness: An algorithm must always terminate after a finite number of
steps. If we trace out the instructions of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps.

 Definitiveness: Each operation must have a definite meaning and it must
be perfectly clear. All steps of an algorithm need to be precisely defined.
The actions to be executed in each case should be rigorously and clearly
specified.

 Inputs: An algorithm may have zero or more ‘input’ quantities. These inputs
are given to the algorithm either prior to its beginning or dynamically as it
runs. An input is taken from a specified set of objects. Also, it is externally
supplied to the algorithm.

 Output: An algorithm has one or more ‘output’ quantities. These quantities
have specified relations to the inputs. An algorithm produces at least one
output.

 Effectiveness: Each operation should be effective, i.e., the operation must
terminate in a finite amount of time.

An algorithm is usually supposed to be ‘effective’ in the sense that all its
operations need to be sufficiently basic so that they can in principle be executed
exactly the same way in a finite length of time by someone using pencil and paper.

Algorithms

NOTES

Self-Instructional Material 7

1.2.2 Types of Algorithms

(i) Approximate algorithm

(ii) Probabilistic algorithm

(iii) Infinite algorithm

(iv) Heuristic algorithm

(i) Approximate Algorithm

An algorithm is said to approximate if it is infinite and repeating.

For example, 414.12

732.13

14.3 , etc.

(ii) Probabilistic Algorithm

If the solution of a problem is uncertain, then it is called a probabilistic algorithm.

For example, Tossing of a coin

(iii) Infinite Algorithm

An algorithm, which is not finite, is called infinite algorithm.

For example, a complete solution of a chessboard, division by zero

(iv) Heuristic Algorithm

Giving less inputs and getting more outputs is called heuristic algorithm.

1.2.3 Areas of Research in the Study of Algorithms

Several active areas of research are included in the study of algorithms. The following
four distinct areas can be identified:

1. Devising Algorithms

The creation of an algorithm is an art. It may never be fully automated. A
few design techniques are especially useful in fields other than computer
science, such as operations research and electrical engineering. All of the
approaches we consider have application in diverse areas, including
computer science. But some important design techniques such as linear,
non-linear and integer programming are not covered here as they are
traditionally covered in other courses.

2. Validating Algorithms

Once you have devised an algorithm, you need to show that it computes the
correct answer for all possible legal inputs. This process is referred to as
‘algorithm validation’. It is not necessary to express the algorithm as a
program. If it is stated in a precise way, it will do. The objective of the
validation is to assure the user that the algorithm will work correctly and
independently of the issues concerning the programming language, in which
it will eventually be written. After validity of the method gets checked, is

8 Self-Instructional Material

Algorithms

NOTES

shown, it is possible to write the program. On completion of program writing
the second phase begins. This phase is called ‘program providing’ or
‘program verification’. A proof of correctness requires the solution to be
stated in two forms. One form is usually a program, which is annotated by
a set of assertions about the input and output variables of the program. The
second form is called specification and this may also be expressed in the
predicate calculus. A proof shows that these two forms are equivalent for
every given legal input, they describe the same output. A complete proof of
program correctness requires that each statement of the programming
language is precisely defined and all basic operations are proved correct.
All these details may cause a proof to be very much longer than the program.

3. Analysing Algorithms

As an algorithm is executed, it uses computer’s central processing unit (CPU)
for performing operations. It also uses the memory for holding the program
and its data. Analysis of algorithm is the process of determining the computing
time and storage required by an algorithm.

4. Testing a Program

Testing of a program comprises of two phases: (i) Debugging and (ii) Profiling.
(i) Debugging refers to the process of carrying out programs on sample

data sets with the objective of finding faulty results. If any faulty result
occurs, it is corrected by debugging. A proof of correctness is much
more valuable than a thousand tests, since it guarantees that the program
will work correctly for a possible input.

(ii) Profiling refers to the process of executing a correct program on data
sets and the measurement of the time and space it takes in computing
the results. It is useful in the sense that it confirms a previously done
analysis and points out logical places for performing useful optimization.

For example,

If you wish to measure the worst-case performance of the sequential search
algorithm, we need to do the following:

 Decide the values of n for which computing time has be obtained

 Determine for each of the above value of n the data that exhibits the worst-
case behaviour

1.2.4 Algorithm for Sequential Search

1. Algorithm seqsearch (a, x, n)

2. //search for x in a[l: n] . a[0] is used as additional
space

3. {

4. i := n; a[0] := x;

5. while(a[i] * x) do i := i + 1;

6. return i;

7. }

Algorithms

NOTES

Self-Instructional Material 9

The decision on which the values of n to be used is based on the amount of timing
we wish to perform and also on what we expect to do with the times once they are
obtained. Assume that for algorithm, our interest is to simply predict how long it
will take, in the worst case, to search for x, given the size n of a.

1.2.5 Algorithms as Technology

If computers were infinitely fast and computer memory was free, you would be in
a position to adopt any correct method to solve a problem. In all likelihood, you
would like your implementation to be adhering to good software engineering
practice. However, you would use the method which is the easiest to implement.

However, computers may be fast, but they cannot be infinitely fast. Similarly,
memory may be cheap, but it cannot be free. Thus, computing time and space in
memory are bounded resources . You need to use these resources wisely. Such
algorithms which are efficient in terms of time or space will be helpful.

Efficiency

It has been found that algorithm devices used for solving the same problem usually
differ considerably in their efficiency. These differences are more significant than
those due to hardware and software.

1.2.6 Algorithms and Other Technologies

Algorithms are important on contemporary computers which have advanced
technologies, such as

 Hardware with high clock rates, pipelining and super scalar architectures

 Easy to use, intuitive Graphical User Interfaces (GUIs)

 Local Area Networking (LAN) and Wide Area Networking (WAN)

A truly skilled programmer possesses a solid algorithmic knowledge and technique.
It separates him/her from a novice. It is true that with modern computing technology,
you can perform some tasks even if you do not have much knowledge of algorithms.
However, if you have a good background in algorithms, you can perform much
better.

1.2.7 Measuring the Running Time of an Algorithm

Experimental Study

The following steps need to be carried out:

(i) A program should be written in a language which will implement the
algorithm.

(ii) This program should be run with input data which is of varying size and
composition.

(iii) Methods such as getTime() or System.currentTime
millis() should be employed for obtaining an accurate value of the
actual running time required by the algorithm for execution.

10 Self-Instructional Material

Algorithms

NOTES

Limitations of Experimental Study

The experimental studies have the following limitations:

(i) In order to calculate the running time of the algorithm, it must be implemented
and tested.

(ii) Since the experiments are carried out only with a few set of inputs, the
running time calculated need not be representative of other inputs which
were not part of the experimental study.

(iii) The same hardware and software platforms should be used for comparing
two algorithms.

Theoretical Analysis

The general methodology for analysing the running time of algorithms:

 Uses a high-level description of the algorithm instead of testing one of its
implementations

 Takes into account all possible inputs

 Enables evaluation of efficiency of any algorithm in a way that is independent
of the hardware and software environment.

1.2.8 Algorithm Design Strategies

For a given problem, there are several ways to design algorithms, but the best way
is the one which executes the algorithm fast, such that it operates quickly on inputs.

The following are the descriptions of several design approaches which yield
good algorithms:

Incremental Approach

This is one of the simplest approaches of algorithm designing. In this case, whenever
a new element is inserted into its appropriate place, the index is increased. You
start moving from the first step executing each step one by one till you reach the
end. Here, you do not split your problem.

Example includes insertion sort designed using incremental approach.

Divide and Conquer Approach

Some algorithms have recursion and they call themselves one or more times to
deal with sub-problems in order to reach the solution. These types of algorithms
follow the Divide and Conquer approach.

In this approach, you break the original problem into several sub-problems
which are similar to the original problem in structure but smaller in size, solve the
sub-problems recursively, and then combine these solutions to create a solution of
the original problem.

Traditionally, an algorithm is referred to as the ‘divide and conquer’ type,
only if it contains at least two recursive calls.

Algorithms

NOTES

Self-Instructional Material 11

The following are the three steps involved in this approach:
1. Divide: The given problem is divided into several sub-problems
2. Conquer: The sub-problems are solved recursively
3. Combine: The solutions of the sub-problems are combined to create

a solution of the original problem

Examples include quick sort, merge sort, binary search, etc.

Dynamic Programming

Dynamic programming is the most powerful design technique for optimization
problems. The divide and conquer approach is applicable where sub-problems
are independent. On the other hand, dynamic programming is applicable where
sub-problems share sub-problems. A dynamic programming algorithm remembers
past results and uses them to find new results.

Dynamic programming is generally used for optimization problems. In these
problems multiple solutions exist, but we need to find the ‘best’ solution. This
requires ‘optimal sub-structure’ and ‘overlapping sub-problems’.

 Optimal sub-structure: Optimal solution contains optimal solutions
to sub-problems.

 Overlapping sub-problems: Solutions to sub-problems can be stored
and reused in a bottom-up fashion.

Examples include assembly line scheduling, matrix chain multiplication and longest
common sub-sequence.

Greedy Strategy

Greedy algorithms typically applies to optimization problems such as dynamic
programming algorithms, where a set of choices must be made in order to arrive at
an optimal solution. The main idea behind greedy algorithm is to make each choice
in a locally optimal manner, i.e., choose the solution which looks best at the moment
without considering the future results. Greedy approach provides an optimal solution
for many problems much more quickly than a dynamic programming approach. In
greedy algorithms, you use optimal sub-structure in a top-down fashion. Instead
of first finding optimal solutions to sub-problems and then making a choice, greedy
algorithms first make a choice—the choice that looks best at the time—and then
solve the resulting sub-problems.

Greedy algorithms do not always guarantee optimal solutions, however,
they generally produce solutions that are very close in value to the optimal.

Examples include activity selection problem, Huffman algorithm, fractional
knapsack problem.

Branch and Bound

Branch and Bound algorithm is used for finding optimal solutions of various
optimization problems, especially discrete and combinational types. In Branch
and Bound algorithm, a given problem which cannot be bounded has to be divided

12 Self-Instructional Material

Algorithms

NOTES

into two new restricted problems. Branch and Bound algorithms can be slow, and
in worst cases they grow exponentially as the input size grows, but in some cases
these algorithms perform well.

Examples include Knapsack problem, non-linear programming, maximum
satisfiability problem, least cost search, 15-puzzle, and so on.

Backtracking

The term backtrack was first coined by D.H. Lehmer in the 1950s. If a problem
has several possible choices at any stage, then you select any choice and start
moving by considering that choice. If it choice solves your problem then it is good,
otherwise, you backtrack, i.e., move backwards and choose some other choice
and repeat the same procedure until the solution is obtained. Some sequence of
choices may be a solution to your problem.

Examples include N-Queens problem, sum of subsets problem, Hamiltonian
circuit problem, graph colouring, etc.

Randomized Algorithms

 An algorithm whose input is determined by the values produced by a random
number generator is a randomized or probabilistic algorithm. Such an algorithm
employs a degree of randomness as part of its logic. Various decisions made in the
algorithm depend on the output of the random number generator. As random
number generator produces different outputs from run to run, so the output of a
randomized algorithm could also differ from run to run for the same input.

The following are the two types of randomized algorithms:

(i) Las Vegas algorithms

(ii) Monte Carlo algorithms

Example includes randomized quicksort.

CHECK YOUR PROGRESS

1. How can efficiency be measured as a function of input size?

2. What is the ‘Incremental approach’ to design algorithms?

3. What are the two main types of randomized algorithms?

1.2.9 Analysis of Algorithms

During analysis, performance of an algorithm should be evaluated by predicting
how much resources the algorithm requires. You usually concentrate on determining
the running time (worst case) without considering the space requirements, unless
stated. So, to predict the resource requirements, you need a computational model.
Popular computational models include RAM (Random Access Model), PARAM,
Message Passing Model, Turing Machine, etc.

Algorithms

NOTES

Self-Instructional Material 13

In RAM model, you have to deal with instructions which are executed one
after the other and there should also be no concurrent operations. Instructions
include the following:

 Arithmetic: Add, multiply, substract, floor, ceiling, divide
 Shift left and shift right
 Data movement: Assignment, load, copy, store
 Logical: Comparison
 Control: Conditional/unconditional branching, subroutine call, return

These instructions are called the primitive operations. Primitive operations are
low-level operations which are independent of the programming language. They
can be identified in the pseudocode.

There is no generally accepted set of rules for the analysis of algorithms.
You can perform analysis by counting the number of primitive operations in the
algorithm.

By analysing the pseudocode, you are able to count the number of primitive
operations executed by an algorithm.

In Example 1.1 the algorithm which determines the maximum elements
from a set of elements given in an array of size n is given. Determine the number of
primitive operations required.

For example,
MAXIMUM (A, n)

1. current_max ¬ A[0]

2. for i ¬ 1 to n – 1 do

3. if current_max < A[i]

4. then current_max ¬ A[i]

{increment counter i}

5. return current_max

No. of primitive operations = 2 + 1 + n + 4(n – 1) + 1 = 5n (At least)

= 2 + 1 + n + 6(n – 1) + 1 = 7n – 2 (At most)

Consider the following example for insertion sort, which is a very efficient algorithm
for sorting a small number of elements.

Insertion sort: It is a very good algorithm for sorting or arranging, either in the
increasing or decreasing order for small number of elements.

In this case the sequence of numbers which are to be sorted and output is a
sorted sequence

Insertion-Sort (A)

1.for i 2 to length A [i] do

2.item A [i]

3.//Insert A [i] into the sorted sequence A [1... i – 1]

4.j i –1

14 Self-Instructional Material

Algorithms

NOTES

5.while j > 0 and A [j] > item do

6.A [j + 1] A [j]

7.j j – 1

8.A [j + 1] item

In this algorithm, Steps 2 to 8 are under for loop construct which indicates
indentation. Similarly, Steps 6 and 7 are under while loop construct. We have
taken i, j items as local variables in this procedure. The input to this algorithm
is an array which is shown in brackets after the name of the algorithm, and here the
input is an array of some numbers which are to be sorted.

Consider the following example to understand how insertion sort works:

31 41 59 26 41 58

Dry run: The length of the array is 6 since there are six elements.

i item j A[j]

2 41 1 31 Exits from while loop

31 41 59 26 41 58

3 59 2 41 Exits from while loop

31 41 59 26 41 58

4 26 3 59 Enters into while loop

2 41 Enters into while loop

1 31 Enters into while loop

0 Enters from while loop

26 31 41 59 41 58

5 41 4 59 Enters into while loop

3 41 Exits from while loop

26 31 41 41 59 58

6 58 5 59 Enters into while loop

4 41 Exits from while loop

So, the final sorted array is,

26 31 41 41 58 59

Algorithms

NOTES

Self-Instructional Material 15

Each round of iteration of an insertion sort removes an element from the input
data, inserting it at the correct position in the already sorted list, until no elements
are left in the input.

Analysis of insertion sort: Each step is associated with two factors, namely,
cost and frequency.

Cost: The amount of time a particular step takes during execution which is a
constant quantity denoted by c

1
, c

2
, c

3
, c

4
……..

Frequency: The number of times a particular step executes

Note: The main step of the looping constructs executes one time more than its
internal statements. As in the above example, Step 1 executes seven times, Steps 2
to 4 and Step 8 executes six times. Likewise, Step 5 executes one more time than
Steps 6 and 7 because at last it checks for the condition which becomes false.

Consider that the number of elements in an array is n. So, length [A]=n.

Let t
i
 be the number of times the while loop test in line 5 is executed for

that value of i.

 I nser t i on Sor t (A) Cost Frequency

1

2

3

4

5

6

7

8

f or i 2 t o l engt h[A]

do i t em A[i]

/ / I ns er t A[i] i nt o t he s or t ed
s equenc e A [1…i – 1]
j i – 1

whi l e j > 0 and A[j] > i t em

 do A[j + 1] A[j]

j j – 1

 A[j + 1] i t em

c1

c2

0

c4

c5

c6

c7

c8

n

n – 1

n – 1

n – 1

n
Σ ti
i=2
n

Σ ti–1
i=2
n

Σ ti–1
i=2

n – 1

The running time of the algorithm denoted by T(n) is the sum of the running
times for each step. A statement whose cost is c

i
 and frequency is n will contribute

c
i
n to the total running time. To compute T(n), the running time of INSERTION-
SORT, we sum the products of the Cost and Frequency columns obtaining,

T(n) = c
1
n + c

2
(n – 1) + c

4
(n – 1) + c

5

2

n

i
i

t

 + c

6
2

1
n

i
i

t

+ c

7

2

1
n

i
i

t

+ c

8
(n – 1)

Best case: It is the function defined by the minimum number of steps taken
on any input of size n. It gives the minimum value of T(n) for any possible input
data. Best case provides a lower bound on the running time for any input and

16 Self-Instructional Material

Algorithms

NOTES

occurs when minimum number of steps are executed, i.e., the while loop condition
is always false or the array is already sorted. For that case, t

i
 = 1.

2

1
n

i
i

t n

So,

T(n) = c
1
n + c

2
(n – 1) + c

4
(n – 1) + c

5
(n – 1)

+ c

8
(n – 1)

T(n) = (c
1
 + c

2
 + c

4
 + c

5
 + c

8
) n – (c

2
 + c

4
 + c

5
 + c

8
)

T(n) = an + b

T(n) = O(n)

For best case, the running time of insertion sort is a linear function in n.

Worst case: It is the function defined by the maximum number of steps
taken on any input size of size n. It gives the maximum value of T(n) for any
possible input data. Worst case provides an upper bound on the running time for
any input and gives you a guarantee that the algorithm will never take longer time.

You usually concentrate on finding the worst case running time, i.e., in
searching algorithms worst case occurs when you try to find a number but the
number is not present. Likewise, worst case occurs when the maximum number of
steps are executed, i.e., the while loop condition always leads to true or the array
elements are given in decreasing order. For that case, t

i
= j.

Hence,

T(n) = c
1
n + c

2
(n – 1) + c

4
(n – 1) + c

5 2

n

i

j

+ c

6

2

1
n

i

j

+ c
7

2

1
n

i

j

 + c
8
(n – 1)

T(n) = c
1
n + c

2
(n – 1) + c

4
(n – 1) + c

5
((n(n + 1)/2) – 1)

+ c
6
(n(n – 1)/2) + c

7
(n(n – 1)/2) + c

8
(n – 1)

T(n) = (c
5
/2 + c

6
/2 + c

7
/2)n2 + (c

1
 + c

2
 + c

4
 + c

5
/2 – c

6
/2

– c
7
/2 + c

8
)n – (c

2
 + c

4
 + c

5
 + c

8
)

T(n) = an2 + bn + c

T(n) = O(n2)

For worst case, the running time of insertion sort is a quadratic function in n.

Average case: It is the function defined by the average number of steps
taken on any input of size n. It gives the expected value of T(n). Generally, you do
not analyse the average case, because it is often as bad as the worst case. This

Algorithms

NOTES

Self-Instructional Material 17

case lies between the best and worst cases. Hence, in this case, t
i
 = i/2 or (i + 1)/

2 or (i – 1)/2.

T(n) = O(n2)

Note: During analysis we drop the lower contributing terms and the coefficients to
do analysis for large n.

Analysis of Some Other Algorithms:

MATRIX-ADD (A, B, C, m, n) Cost Frequency (Times)

1. for i 1 to m c
1

m + 1

2. do j 1 to n c
2

m(n + 1)

3. do C[i, j] A[i, j] + B[i, j] c
3

m.n

So, T(n) = c
1
(m + 1) + c

2
(m(n + 1)) + c

3
.mn

T(n) = c
1
m + c

1
 + c

2
.mn + c

2
m + c

3
.mn

T(n) = (c
2
+ c

3
).mn + (c

1
 + c

2
)m + c

1

T(n) = O(mn)

SUM (A, n) Cost Frequency (Times)

1. sum 0 c
1

1

2. for i 1 to n c
2

n + 1

3. do sum sum + A[i] c
3

n

4. return sum c
4

1

So, T(n) = c
1
.1 + c

2
.(n + 1) + c

3
.n + c

4
.1

T(n) = (c
2
 + c

3
).n + (c

1
 + c

2
 + c

4
)

T(n) = an + b

T(n) = O(n)

To have a good best case running time, the algorithm should be modified so that it
tests whether the input satisfies some special case condition, and if it does so, then
outputs a pre-computed answer. The best case running time is generally not a
good measure of an algorithm.

1.2.10 Merits and Demerits of Algorithm

Many algorithms are used in a broad spectrum of computer applications. Such
elementary algorithms are extensively studied and are considered a necessary
component of computer science. Examples of these algorithms include algorithms
to sort, search and process text, solve graph problems and basic geometric
problems, and display graphics and perform common mathematical calculations.

Sorting is useful in arranging data objects in a specific order, e.g., in
numerically ascending or descending order. Sorting may be internal or external.

18 Self-Instructional Material

Algorithms

NOTES

Using internal sorting, you can arrange data stored internally in a computer’s
memory. Simple algorithms for sorting by selection, exchange or insertion are easy
to understand and straightforward to code. However, in case the number of objects
to be sorted is large, simple algorithms would not be helpful as they are usually
very slow. In such cases, you need a more sophisticated algorithm, such as heap
sort or quick sort, to achieve acceptable performance. Using external sorting, you
can arrange data records that are stored.

Searching for data means looking for a desired data object in a group of
data objects. Elementary searching algorithms comprise of linear search and binary
search. In linear search, a sequence of data objects is examined one by one. In
binary search, on the other hand, a more sophisticated strategy for searching data
is adopted. While searching a large array, binary search works faster than linear
search. You can also store the collection of data objects as a tree that need to be
searched frequently. If such a tree is properly structured, searching the tree would
be very efficient.

A sequence of characters is termed as a text string. In a word processing
system, efficient algorithms for manipulating text strings, such as algorithms for
organizing text data into lines and paragraphs and searching for occurrences of a
given pattern in a document, are necessary. A source program in a high-level
programming language is a text string. Text processing is one of the essential tasks
of a compiler. A compiler uses efficient algorithms to perform lexical analysis and
parsing. When individual characters are grouped into meaningful words or symbols,
it is termed as lexical analysis. When the syntactical structure of a source program
is recognized, it is termed as parsing.

A graph is used in modelling a group of interconnected objects. A graph
representing a set of locations connected by routes for transportation is a good
example. Graph algorithms are used to solve such problems which deal with objects
and their connections, such as determining whether or not all locations are
connected, visiting all locations that are accessible from a given location, or
determining the shortest path from one location to another.

Mathematical algorithms are widely applied in science and engineering.
Algorithms to generate random numbers, perform operations on matrices, solve
simultaneous equations and numerical integration, etc., are examples of basic
algorithms for mathematical computations. In the modern programming languages,
predefined functions are usually provided for many common computations, such
as random number generation, logarithm, exponentiation and trigonometric
functions.

There are applications in which a computer program has to adapt to a
change in its environment so as to continue performing well. Using a self-organizing
data structure, which gets reorganized at regular intervals, such that those
components which are most likely to be accessed are placed where they can be
accessed most efficiently, is a common approach to make a computer program
adaptive. A self-modifying algorithm that adapts itself is also conceivable. In order

Algorithms

NOTES

Self-Instructional Material 19

to develop adaptive computer programs, biological evolution has given impetus to
evolutionary computation methods, such as genetic algorithms.

Some applications need a large amount of computations in a timely manner.
For saving time, you need to develop a parallel algorithm which uses many
processors simultaneously and thus quickly solves a given problem. The basic
idea is that the given problem is divided into sub-problems and each processor is
used to solve a sub-problem. The processors usually have to communicate among
themselves so as to facilitate cooperation. For communicating with one another,
the processors may share memory. Alternatively, they may be connected by
communication links into some type of network, such as a hypercube.

1.2.11 Flowchart and Algorithms

In the beginning, the use of flowcharts was restricted to electronic data processing
for representing the conditional logic of computer programs. The1980s witnessed
the emergence of structured programming and structured design. As a result of
this, in database programming, data flow and structure charts began to replace
flowcharts. With the widespread adoption of such ALGOL-like computer languages
as Pascal, textual models like pseudocode are being used frequently for representing
algorithms. Unified Modeling Language (UML) started the synthesis and codification
these modelling techniques in the 1990s.

A flowchart refers to a graphical representation of a process which depicts
inputs, outputs and units of activity. It represents the whole process at a high or
detailed (depending on your use) level of observation. It serves as an instruction
manual or a tool to facilitate a detailed analysis and optimization of workflow as
well as service delivery.

Flowcharts have been in use since long. Nobody can be specified as the
‘father of the flowchart’. It is possible to customize a flowchart according to need
or purpose. This is why flowcharts are considered a very unique quality improvement
method for representing data.

Symbols

A typical flowchart has the following types of symbols:

 Start and end symbols: They are represented as ovals or rounded
rectangles, normally having the word ‘Start’ or ‘End’.

 Arrows: They show the ‘flow of control’ in computer science. An arrow
coming from one symbol and ending at another symbol shows the
transmission of control to the symbol the arrow is pointing to.

 Processing steps: They are represented as rectangles.

Example: Add 1 to X.

 Input/Output symbol: It is represented as a parallelogram.

Examples: Get X from the user; display X.

20 Self-Instructional Material

Algorithms

NOTES

 Conditional symbol: It is represented as a diamond (rhombus). It has a
Yes/No question or True/False test. It contains two arrows coming out of it,
normally from the bottom and right points. One of the arrows corresponds
to Yes or True, while the other corresponds to No or False. These two
arrows make it unique.

There are also other symbols in flowcharts may contain, e.g., connectors.
Connectors are normally represented as circles. They represent converging paths
in the flowchart. Circles contain more than one arrow. However, only one arrow
goes out. Some flowcharts may just have an arrow point to another arrow instead.
Such flowcharts are useful in representing an iterative process, what is known as a
loop in terms of computer science. A loop, for example, comprises a connector
where control first enters processing steps, a conditional with one arrow exiting
the loop, and another going back to the connector.

Oval

Terminator

To represent the begin/end or start/stop
of a flow chart

Rectangle

Process

To represent calculations and data
manipulations

Parallelogram

Data To represent Input/Output data

Diamond

Decision

To represent a decision or comparison
control flow

Double sided
Rectangle

Predefined Process
To represent Modules or set of
operations or a function

Bracket with
broken line

Annotation
To represent descriptive comments or
explanations

Document

Print out

To represent output data in the form a
document

Multiple
documents

Print outs
To represent output data in the form of
multiple documents

Circle

Connector

To connect different parts of the flow
chart

Hexagon

Repetition/ Looping

To represent a group of repetitive
statements

Trapezoid

Manual Operation

To represent an operation which is
done manually

Card

Card To represent a card. E.g., punched card

Arrows

Flows of control To represent the flow of the execution

Shape Symbol Symbol Name Purpose

Algorithms

NOTES

Self-Instructional Material 21

It is now used at the beginning of the next line or page with the same number.
Thus, a reader of the chart is able to follow the path.

Instructions

The following is the step-by-step process for developing a flowchart:

Step 1: Information on how the process flows is gathered. For this, the following
tools are used:

 Conservation

 Experience

 Product development codes

Step 2: The trial of process flow is undertaken.

Step 3: Other more familiar personnel are allowed to check for accuracy.

Step 4: If necessary, changes are made.

Step 5: The final actual flow is compared with the best possible flow.

Construction/Interpretation tips for a flowchart

 The boundaries of the process should be defined unambiguously.

 The simplest symbols should be used.

 It should be ensured that each feedback loop contains an escape.

 It should be ensured that there is only one output arrow out of a process
box. Otherwise, it would require a decision diamond.

Types of Flowcharts

A flowchart is common type of chart representing an algorithm or a process and
showing the steps as boxes of different kinds and their order by connecting these
with arrows. We use flowcharts to analyse, design, document or manage a process
or program in different fields.

There are many different types of flowcharts. On the one hand, there are
different types for different users, such as analysts, designers, engineers, managers
or programmers. On the other hand, those flowcharts can represent different types
of objects. Sterneckert (2003) divides four more general types of flowcharts:

 Document flowcharts showing a document flow through system

 Data flowcharts showing data flows in a system

 System flowcharts showing controls at a physical or resource level

 Program flowchart showing the controls in a program within a system

However, there are several of these classifications. For example, Andrew
Veronis named three basic types of flowcharts: the system flowchart, the general
flowchart, and the detailed flowchart. Marilyn Bohl (1978) stated ‘in practice,

22 Self-Instructional Material

Algorithms

NOTES

two kinds of flowcharts are used in solution planning: system flowcharts and
program flowcharts...’. More recently, Mark A. Fryman (2001) stated that there
are more differences. Decision flowcharts, logic flowcharts, systems flowcharts,
product flowcharts and process flowcharts are just a few of the different types of
flowcharts that are used in business and government.

Interpretation

 Analyse flowchart of the actual process

 Analyse flowchart of the best process

 Compare both charts looking for areas where they are different. Most of
the time, the stages where differences occur are considered to be the problem
area or process.

 Take appropriate in-house steps to correct the differences between the
two separate flows.

Example: Process flowchart—Finding the best way home

This is a simple case of processes and decisions in finding the best route home at
the end of the working day.

A flowchart provides the following:

 Communication: Flowcharts are excellent means of communication. They
quickly and clearly impart ideas and descriptions of algorithms to other
programmers, students, computer operators and users.

 An overview: Flowcharts provide a clear overview of the entire problem
and its algorithm for solution. They show all major elements and their
relationships.

 Algorithm development and experimentation: Flowcharts are a quick
method of illustrating program flow. It is much easier and faster to try an
idea with a flowchart than to write a program and test it on a computer.

 Check program logic: Flowcharts show all major parts of a program. All
details of program logic must be classified and specified. This is a valuable
check for maintaining accuracy in logic flow.

 Facilitate coding: A programmer can code the programming instructions
in a computer language with more ease with a comprehensive flowchart as
a guide. A flowchart specifies all the steps to be coded and helps to prevent
errors.

 Program documentation: A flowchart provides a permanent recording of
program logic. It documents the steps followed in an algorithm.

Advantages of Flowcharts

 Clarify the program logic.

 Before coding begins, a flowchart assists the programmer in determining
the type of logic control to be used in a program.

Algorithms

NOTES

Self-Instructional Material 23

 Serve as documentation.

 Serve as a guide for program coding of program writing.

 A flowchart is a pictorial representation that may be useful to the
businessperson or user who wishes to examine some facts of the logic used
in a program.

 Help to detect deficiencies in the problem statement.

Limitations of Flowcharts

 Program flowcharts are bulky for the programmer to write. As a result
many programmers do not write the chart until after the program has been
completed. This defeats one of its main purposes.

 It is sometimes difficult for a business person or user to understand the logic
depicted in a flowchart.

 Flowcharts are no longer completely standardized tools. The newer
structured programming techniques have changed the traditional format of
a flowchart.

Differences between Flowcharts and Algorithms

Flowchart

 It is the graphical representation of the solution to a problem.

 It is connected with the shape of each box indicating the type of operation
being performed. The actual operation, which is to be performed, is written
inside the symbol. The arrow coming out of symbol indicates which operation
to perform next.

Algorithm

 It is a process for solving a problem.

 It is constructed without boxes in a succession of steps.

Ways to Write an Algorithm

An algorithm can be written in the following three ways:

 Straight Sequential: A series of steps that can be performed one after the
other

 Selection or Transfer of Control: Making a selection of a choice from
two alternatives of a group of alternatives

 Iteration or Looping: Performing repeated operations

The following are the examples of algorithms and flowcharts for some different
problems:

24 Self-Instructional Material

Algorithms

NOTES

Examples of Straight Sequential Execution

Example 1.1: Write a flowchart to find the maximum and minimum of given
numbers.

Read a, b

Is
a>b

Write “max:”,b, “min:”,a

Write “max:”,a, “min:”,b

STOP

T

F

START

Example 1.2: Write the various steps involved in executing a ‘C’ program and
illustrate it with the help of a flowchart.

Solution: Executing a program written in C involves a series of steps. They are as
follows:

 Creating the program

 Compiling the program

 Linking the program with functions that are needed from the C library.

 Executing the program

Although these steps remain the same irrespective of the operating system,
system commands for implementing the steps and conventions for naming files
may differ on different systems.

An operating system is a program that controls the entire operation of a
computer system. All input/output operations are channelled through the operating
system. The operating system, which is an interface between the hardware and the
user, handles the execution of user programs.

The two most popular operating systems today are UNIX (for
minicomputers) and MS-DOS (for microcomputers).

Algorithms

NOTES

Self-Instructional Material 25

System Ready

Enter ProgramProgram Code

Edit
Source Program

Compile
Source Program

C
Compiler

Syntax
Error

?

Link with
System Library

Object code
No

System
Library

Input
Data

Execute
Object Code

Executable Object code

logic & Data
Errors

?

Data Error Logic Error

CORRECT OUTPUT

No Errors

STOP

Yes

Source Program

Examples for Flowcharts with Algorithms

a. Draw a flowchart for adding two numbers and write an algorithm for it.

 Start

Read FirstNum

Read SecondNum

Sum = FirstNum + SecondNum

Write Sum

Stop

26 Self-Instructional Material

Algorithms

NOTES

Step 1: Start
Step 2: Read FirstNumber
Step 3: Read SecondNumber
Step 4: Sum= FirstNumber + SecondNumber
Step 5: Write (Sum)
Step 6: Exit

Algorithm for addition of two numbers:

b. Draw a flowchart to find the larger number between two numbers and write
an algorithm for it.

Read a, b

Is
a>b

Write b

Write a

STOP

T

F

START

Step 1: Start
Step 2: Read a and b
Step 3: IF a > b THEN Write (a)
 ELSE Write(b)
Step 5: Stop

Algorithm for finding large number between two numbers

Algorithms

NOTES

Self-Instructional Material 27

c. Draw a flowchart to display natural numbers between 1 and N in reverse
order.

F

Read N

Is
N>0

START

Write N

N=N-1

STOP

T

d. Draw a flowchart to display umber of odd digits in a given number.

Step 1: Start
Step 2: Read N
Step 3: Repeat while N>0
 Write (N)
 N=N-1
Step 4:Exit

Algorithm for displaying Natural numbers
between 1 and N in Reverse Order.

Step 1: Start
Step 2: Read N
Step 3: S=0
Step 4: REPEAT while N>0
 R=N mod 10
 IF R mod 2 THEN
 S=S+1
 N =N/10
Step 5. Write(s)
Step 6: Exit

Algorithm to display number of odd digits
exist in a given number.

28 Self-Instructional Material

Algorithms

NOTES

T

R=N%10

S=S+1

Read N

Is
N

START

Write S

STOP

F

Is
R%2

N=N/10

T

F

S=0

e. Draw a flowchart to evaluate the series 1! + 2!+ 3!++N!

Step 1: Start
Step 2: Read N
Step 3: S=0,I=1
Step 4: Repeat while I<=N
 K=factorial(I)
 S=S+K
 I=I+1
Step 5. Write(S)
Step 6: Exit

Algorithm for evaluating the series
1!+2!+…..+N!

T

Read N

START

Write S

STOP

F

S=0 I=1

Is
I<=N

I=I+1

K= factorial(I)

S=S+K

Algorithms

NOTES

Self-Instructional Material 29

f. Flowchart to evaluate N!

 factorial(N)

F=1

is N

F=F*N

N=N-1

F

T

Return F

Step 1: F=1
Step 2: Repeat while N <> 0
 F=F*N
 N=N-1
Step 3: Return F

Algorithm to find factorial(N).
Where N is a value and function returns
Factorial value for N

g. Draw a flowchart to evaluate the series 1+x+ x2/2! + ...+xn /N!

I=I+1

T

 START

Read X, N

S=0
I=0

Is I <= N

F=factorial(I)

P=power(X, I)

S=S+P/F

Write S

STOP
F

30 Self-Instructional Material

Algorithms

NOTES

Step 1: Read X,N
Step 2: S=0,I=0
Step 3: Repeat while I<=N
 F=factorial(I)
 P=power(X,I)
 S=S+P/F
 I=I+1
Step 4: Writes(S)
Step 5: Exit

Algorithm to evaluate 1 + X + X2/2!
+…+ Xn/N!

h. Flowchart to evaluate Power(X, N)

F

power(X,N)

I=0 P=1

Is
I<N

P=P*X

I=I+1

Return P

T

Step 1: I=0,P=1
Step 2: Repeat while I<N
 P=P*X
 I=I+1
Step 3: Return P

Algorithm to evaluate Power(X, N).
Where X and N are values

Algorithms

NOTES

Self-Instructional Material 31

1.2.12 Designing an Algorithm using Flowcharts

Example 1.3: Algorithm to pick the largest of three numbers.

Step 1: Read A, B, C.

Step 2: If A > B, go to Step 3.

Else go to Step 5.

Step 3: If A > C

Print A as the largest number.

Else

Print C as the largest number.

Step 4: Stop.

Step 5: If B > C

Print B as the largest number.

Else

Print C as the largest number.

Step 6: Stop.

Start

Read A,B,C

is
A>B

Print A

Stop

is
A>C

is
B>C

Print C Print B

Stop Stop

Yes No

No No

Yes Yes

32 Self-Instructional Material

Algorithms

NOTES

Explanation: Read the three numbers A, B and C. A is compared with B. If A is
larger, then it is compared with C. If A turns out to be the largest number again,
then A is the largest number; otherwise, C is the largest number. If in the second
step, A is less than or equal to be B, then B is compared with C. If B is larger, then
B is the largest number; otherwise, C is the largest number.

Example 1.4: Algorithm to find the roots of a quadratic equation ax2 + bx + c =
0 for all cases.

Step 1:Read a, b, c.

Step 2: disc b2 – 4ac.

Step 3: If disc 0, go to Step 4.

Else, if disc > 0, go to Step 5.

Else, go to Step 6.

Step 4: root l – b/2a.

root 2 rootl.

go to Step 7.

Step 5: Root l (–b + sqrt (disc)) / 2a.

Root 2 (–b – sqrt (disc)) / 2a.

go to Step 7.

Step 6: real-part –b / 2a.

im-part sqrt(–disc) / 2a.

Print real-part + i im-part.

Print real-part – i im-part.

Stop.

Step 7: Print root l, root 2.

Stop.

Algorithms

NOTES

Self-Instructional Material 33

root 1 = (–b + disc) / 2a
root 2 = (–b – disc) / 2a

real-part = b / 2a
im-part = disc / 2a

print real-part + i im-part

print real-part + i im-part

root 1 = –b/2a
root 2 = root 1

Print root 1, root 2

Is
disc

d sc = bi – 4ac2

Read A,B,C

Start

Stop Stop

> 0 < 0

= 0

Example 1.5: Algorithm for finding maximum and minimum numbers.

Step 1: Read number.

Step 2: Maximum number. Minimum number.

Step 3: If (another number) go to Step 4.

Else go to Step 7.

Step 4: Read number.

Step 5: If number > Maximum Maximum = number.

Else if number < Minimum

Minimum = number.

34 Self-Instructional Material

Algorithms

NOTES

Step 6: go to Step 3.

Step 7: Print Maximum.

Print Minimum.

Step 8: Stop.

Start

Is
another
number

Read Number

Maximum = number
Minimum = number

read number

Print maximum
print minimum

maximum = number

minimum = number

Is
number >
maximum

Is
number <
minimum

stop

No

Yes

Yes

Yes

No

No

Example 1.6: Algorithm for finding maximum and minimum of given n numbers.

Step 1: Read N.

Step 2: Counter 1.

Read number.

Maximum number.

Minimum number.

Step 3: If Counter < N go to Step 4.

Else go to Step 7.

Algorithms

NOTES

Self-Instructional Material 35

Step 4: Read number.

Counter Counter + 1.

Step 5: If number > Maximum

Step 6: Maximum number.

Step 7: Else If number < Minimum

Step 8: Minimum number.

Step 9: go to Step 3.

Step 10: Print Maximum. Print Minimum.

Step 11: Stop.

Start

Is
Counter

< N

Read N

Maximum = number
Minimum = number

real number

Print maximum
print minimum

maximum = number

minimum = number

Is
number >
maximum

Is
number <
minimum

stop

No

Yes

Yes

Yes

No

No

Counter = counter + 1

Counter = 1

Read Number

36 Self-Instructional Material

Algorithms

NOTES

Example 1.7: Algorithm for generating Fibonacci numbers up to n.

The first and second terms in the Fibonacci series are 0 and 1. The third and subsequent
terms in the sequence are found by adding the preceding two terms in the series.
The Fibonacci series is: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Step 1: Read N.

Step 2: Previous 0. Current 1.

Print Previous, Current.

Step 3: Next Previous + Current.

Step 4: If Next < N

Print Next.

Previous Current.

Current Next,

go to Step 3.

Else go to Step 5.

Step 5: Stop.

Start

Is
Counter

< N

Read N

Previous = 0
Current = 1

print Next

stop

No

Yes

Next = previous + current

Print previous
current

Previous = current
Current = next

Algorithms

NOTES

Self-Instructional Material 37

Example 1.8: Algorithm for generating first k Fibonacci numbers.

Step 1: Read k.

Step 2: Counter 2.

Previous 0.

Current 1.

Print ‘First k Fibonacci numbers are:’

Print Previous, Current.

Step 3: Next Previous + Current.

Counter Counter + 1.

Print Next. Previous Current.

Current Next.

Step 4: If (Counter < k) go to Step 3.

Else go to Step 5.

Step 5: Stop.

Start

Is
Counter

< N

Read k

Previous = 0
Current = 1
Counter = 3

print Next

stop

No

Yes

Next = previous + current

Print previous
current

Counter = counter + 1
previous = counter

current = next

38 Self-Instructional Material

Algorithms

NOTES

Example 1.9: Sum of first n Factorials

The factorial of a non-negative integer n is the product of all positive integers less
than or equal to n and is denoted by n! It is defined as follows:

N! = n(n-1) … 2*1

For example, 5! =5*4*3*2*1. Its older notation was n . In factorial
number system where the denominations are 1, 2, 6, 24, 120, …, etc. the
nth digit is in the range 0 to n. This identity works as shown below in the example:

1*1!+2*2!+3*3!+ … +k*k! = (k+1)! – 1

Sum of 2!+3! = (2*1) + (3*2*1) = (2) + (6) = 8

The following algorithm is used to find the sum of n factorials:

Algorithm of Sum of n Factorials
Step 1: integer n, factorial, i, j, sum;

Step 2: sum0;

Step 3: print ‘Enter the number’;

Step 4: read n;

Step 5: for i1 to n //Running outer loop till n value

{

factorial1

for j1 to i

//Inner loop to calculate the sum of n factorial values

{

factorial factorial*j;

//Calculating n factorial values

}

sumsum+factorial;

//Calculating sum of n factorial values

}

Step 6: print ‘Sum of n Factorials’;

Step 7: print sum;

//Print the sum value of n factorials

Implementation to find the Sum of first n Factorials
/*——————— START OF PROGRAM ————————*/

#include <stdio.h> //Declaration of Header files

#include <conio.h>

/*——-1/1! + 2/2! + 3/3! + 4/4! ...-——*/

void main()

{

int factorial,sum=0,i,j,n;

//Declaring and assigning the variables

Algorithms

NOTES

Self-Instructional Material 39

printf(“Enter a value for [n] value = “);

scanf(“%d”, &n);

//Accept input value for n term

for(i=1;i<=n;i++) //For outer loop till n value

{

factorial=1;

for(j=1;j<=i;j++)

//Using inner for loop to calculate the sum of n factorial

{

factorial = factorial *j;

}

sum=sum+ factorial;

}

Printf(“\n sum of %d factorial = %d”, n, sum);

}

getch();

}

The result of the above program is as follows:
Enter a value for [n] value = 4

sum of 4 factorial = 33

How the above program works it is explained step-wise-step in the following
ways:

1!+2!+3!+4! = 33

The value of 1! = 1

The value of 2! = 2

The value of 3! = 6

The value of 4! = 24

1+2+6+24= 33

Example 1.10: To Find Largest Value and Second Largest Value of the List

The largest and second largest values in the given list are determined by array
implementation. Array can contain the various elements of the list. The algorithm
to find the largest and second largest of given list is as follows:

Algorithm to find the largest value and second largest value of the given list
Step 1: integer M, a[M], i, largest, t, second_largest;

Step 2: print ‘Enter a value for array’;

Step 3: read M;

Step 4: for i1 to M

print ‘Enter values:’;

40 Self-Instructional Material

Algorithms

NOTES

read a[i];

Step 5: if i==1

largesttsecond_largesta[i];

Step 6: else if a[i]>largest

second_largestlargest;

largesta[i];

Step 7: else if a[i]>second_largest && a[i]<largest

second_largesta[i];

Step 8: else if a[i]<t

ta[i];

Step 9: print ‘Largest value in the given list =’;

Step 10: print largest;

Step 11: ‘Second largest value in the given list =’;

Step 12: print second_largest;

The result of the above algorithm is as follows:
Enter a value for array

5

Then array A[M] is assigned a value 5 as A[5].

The input values are entered in the following way:
Enter values

45

90

112

4

35

Largest value in the given list = 112

Second largest value in the given list = 90

The first element of the array is 45 which is assumed to be the largest value
and it is kept in the temporary location where it is temporarily stored in variable t.
All the remaining values are checked from this number. Now, the A[i] value is
assigned as 45. At second step, the condition is satisfied so largest value is 90.
Now, 90 is checked with the next entered value 112. Because the condition is
not satisfied so 112 is assumed as greater value. The values 4 and 35 are less
than 90, so the condition for less than largest is not satisfied. The checking process
of second largest value ‘45’ is done after checking the rest four values and
declaring 112 as first largest value. Further, the statement
‘second_largest=largest’ is used. The first element of the array is again
taken as largest among the four values. Now, 45 is checked step-by-step in if
else if conditional statement to find the second largest value.

Algorithms

NOTES

Self-Instructional Material 41

Program to find the largest value and second largest value in a given list
/*—————————— START OF PROGRAM ——————————*/

#include <stdio.h>

#include <conio.h>

#define M 5 //Define preprocessor directive that assigns
M = 5

void main()

{

int a[M], i, largest, t, second_largest;

clrscr(); //Clear the screen of previous

for(i=1; i<=M); i+)

{

printf(“Enter %d value”);

scanf(“%d”, &a[i]);

if(i==1)

largest=t=second_largest=a[i];

//The largest, t, second_largest values are assigned as
the value of a[i].

if(a[i]>largest)

{

second_largest=largest;

largest=a[i];

}

if(a[i]>second_largest && a[i]<largest)

second_largest=a[i];

if(a[i])<t)

t=a[i];

}

printf(“\nLargest Vvalue in the given list = %d”, largest);

printf(“\nSecond largest value in the given list = %d”,
second_largest);

getch();

}

The result of the above program is as follows:
Enter 1 value = 45

Enter 2 value = 90

Enter 3 value = 112

Enter 4 value = 4

Enter 5 value = 35

Largest value in the given list =112

Second largest value in the given list=90

42 Self-Instructional Material

Algorithms

NOTES

In the above program, #define M 5 statement defines preprocessor
directive that works as a macro. It means wherever M comes in the program, its
value 5 is changed automatically. The #define statement can not be terminated
by a semicolon (;) because the preprocessor is a program that comes before
main() statement.

Example 1.11: Determining nth root of a number.

The nth root of a number a is a number where n is positive integer. The nth roots
are taken with the following iteration where a is the input values and n is the root
value to be taken. The equation is arranged in the following ways:

nb a

where a is the number, n is the nth root and b is the value that retains the nth root
of number a. For example, nth root is equal to 3 and number a is equal to 2 can
be written as because 23 = 8. The following algorithm is used to find out the nth
root of a given value:

Algorithm to find the nth root of a number
Step 1: double calculate_root(double,double);

//Declare a calculate_root function having two parameters

Step 2: double Find_nth_Root(double,double,double);

//Declare a calculate_root function having three parameters

Step 3: double number(double,double);

//Declare a number function having two parameters

Step 4: double x1, NUMBER_OF_ITERATIONS40, n;

//Assign value 1 to x variable and NUMBER_OF_ITERATIONS=40

Step 5: double N;

//Declare a variable N as double data type

Step 6: double root;

//Declare a variable root as double data type

Step 7: x_label:

//Assign a label named as x_label

Step 8: print ‘Enter root do want [2,3, …5] ?’

Step 9: read n;

//Accept input value n

Step 10: if n<=0

//Check the condition where n is less than 0

Step 11: print ‘Number should be Greater than 0’;

Step 12: print n;

Step 13: goto x_label;

//Go to label on x_label

Step 14: y_label:

//Assign a label named as y_label

Algorithms

NOTES

Self-Instructional Material 43

Step 15: print ‘Enter the number for Root’;

Step 16: read N;

Step 17: if N<=0

Step 18: print ‘Number should be greater than 0’;

Step 19: print ‘PRESS ANY KEY TO ENTER AGAIN’;

Step 20: goto y_label;

//Go to label on y_label

Step 21: xcalulate_root(n,N);

//x retains the returned value of function calculate_root

Step 22: print ‘The first assumed root is’,x;

Step 23: rootFind_nth_Root(N,n,x);

//root retains the Find_nth_Root returned value

Step 24: print ‘Root of n’,n;

Step 25: print N;

Step 26: print root;

Step 27: double calculate_root(double n,double N)

Step 28: integer i,xr;

//integer i and xr are declared

Step 29: xr1;

//xr is assigned as 1

Step 30: double j1;

//double j is assigned as 1

Step 31: while(1)

Step 32: for i0 to n //Running for loop

 {

 xrxr*j; //xr retains the value of xr*j

 }

Step 33: if xr>N

 Return j-1; //Returns j-1

Step 34: jj+1; //j value is increased by 1

Step 35: xr1; //xr value is increased by 1

Step 36: double Find_nth_Root(double NUM,double n,double
X0) //Function Find_nth_Root starts from here.

Step 37: int i;

Step 38: double d1.0;

Step 39: double first_term, second_term, rootX0;

Step 40: for i1 to NUMBER_OF_ITERATIONS

//Body of for loop starts that calculates first term and
second term value of enter values of NUMBER_OF_ITERATIONS

Step 41: dnumber(root,n);

//d retains the n th value of given number.

44 Self-Instructional Material

Algorithms

NOTES

Step 42: first_term((n-1)/n)*root;

// first_term retains the value of let say 5 (5-1)/5)*
root value

Step 43: second_term(1/n)*(NUM/d);

Step 44: rootfirst_term+second_term;

Step 45: print first_term,second_term,root;

Step 46: return root;

Step 47: double number (double x,double n)

Step 48: double d1;

Step 49: integer i;

Step 50: for i1 to n-1

Step 51: dd*x; //Printing the final nth root value of
given number n

Step 52: return d;

//Returns the resulted value to d

The above algorithm can work in the following way:

The odd nth root let say cube root of a real number b can not be identified
with the fractional power a^{1/n}, although so has been done in the entries nth
root and cube root. The fractional power with a negative base is not uniquely
determined therefore, it depends not only on the value of the exponent but also on
the form of the exponent; e.g.,

(–1)^{1/3} = the 3rd root of –1, i.e. = –1

(–1)^(2/6) = the 6th root of (–1)^2, i.e. = 1

Implementation to find the nth root of a number
/*—————————— START OF PROGRAM ——————————*/

#include<stdio.h>

#include<conio.h>

#define NUMBER_OF_ITERATIONS 40

//Preprocessor directive where NUMBER_OF_ITERATIONS is
defined as macro

double calculate_root(double,double);

double Find_nth_Root(double,double,double);

double number(double,double);

void main()

{

 double x=1,n;

 double N;

 double root;

x_label:

Algorithms

NOTES

Self-Instructional Material 45

printf(“\n Enter root value [2,3, …5] ?”);

 scanf(“%f”,&n);

 if(n<=0)

 {

 printf(“\nNumber should be Greater than 0”);

printf(“Press any key to enter again”);

 getch();

 goto x_label;

 }

y_label:

printf(“\n\rEnter a number = “);

scanf(“%f”,&N);

 if(N<=0)

 {

 printf(“\nNumber should be greater than 0”);

printf(“\n PRESS ANY KEY TO ENTER AGAIN …”);

 getch();

goto y_label;

 }

x = calulate_root(n,N);

printf(“\n\nThe first assumed root is calculated as
%f\n”,x);

 root=Find_nth_Root(N,n,x);

printf(“\n\n%f Root of %f = “,n,N);

 printf(“Root value is = %f”,root);

 getch();

}

double calculate_root(double n,double N)

{

 int i, xr=1;

 double j=1;

 while(1)

 {

 for(i=0;i<n;i=i+1)

 {

 xr=xr*j;

 }

 if(xr>N)

 {

 return(j-1);

 break;

46 Self-Instructional Material

Algorithms

NOTES

 }

 j=j+1;

 xr=1;

 }

 }

double Find_nth_Root(double NUM,double n,double X0)

{

 int i;

 double d=1.0;

 double first_term,second_term,root=X0;

for(i=1;i<=NUMBER_OF_ITERATIONS;i++)

{

d=number(root,n);

first_term=((n-1)/n)*root;

second_term=(1/n)*(NUM/d);

root=first_term+second_term;

printf(“\n%f\t%f\t%f”,first_term,second_term,root);

}

 return(root);

}

double number(double x,double n)

{

double d=1;

int i;

for(i=1;i<=n-1;i++)

d=d*x;

return(d);

}

The result of the above program is as follows:
Enter root value [2,3, …5] ? 3

Enter a number = 64

Root value is = 4

In the above program, the syntax of #define is as follows:
#define macro-name replacement-string

The #define command is used to make substitutions throughout the
program file in which it is located. It causes the compiler to go through the file,
replacing every occurrence of macro-name with replacement-string. The
replacement-string stops at the end of the line. The above program calculates the
nth root of any number a. This program uses the NEWTON_RAPTION_
ITERATION method for calculation. For Example, you have to calculate the square

Algorithms

NOTES

Self-Instructional Material 47

root of 16, then n=2 (square root), a=16 (the number). The following examples
show how nth root of the given number can be written:

Enter a Number = 32, Enter a Root = 5. The (n th) 5th root of 32 is 2.

Enter a Number = 11, Enter a Root = 4. The 4th root of 11 is 1.82116.

Example 1.12: Greatest Common Divisor (GCD).

The GCD of two integers is the largest integer value that divides both integer
values where both the values are not zero. The basic identities of GCD are as
follows:

GCD(A,B)=GCD(B,A)

GCD(A,B)=GCD(-A,B)

GCD(A,0)=ABS(A)

Both the integer values can be assumed as nonnegative integers. The GCD
procedure extracts the greatest common divisor A because the common divisor B
divides to get the remainder until finally B divides A. The result A is in fact a greatest
common divisor because it contains every other common divisor B.

GCD Algorithm
Step 1: integer m, n, q, r; //Variables are defined

Step 2: print‘Enter two values:’;

Step 3: read m,n;

//Input two values for m and n variables

Step 4: if m==0 OR n==0

//Checking the condition whether m is equal to 0 or n is
equal to 0

print‘One number is Zero’;

else

reach: //Label reach is defined for loop

qm/n;

//Get the value of q after ding m by n

rm – q*n; //Gets remainder value

Step 5: if r==0

print ‘GCD Value is :’; //Prints message

print n; //Prints GCD value

goto end; //Got to end label

else

mnr;

//Assigning m is equal to n that is also equal to r

goto reach; //Go to reach label

end:; //Label end is defined

If the two given values are 10, 12 then the greatest common factor is the
number that divides both the values 10 and 12.

48 Self-Instructional Material

Algorithms

NOTES

The GCD of two given integers (a and b) is the largest positive integer
which divides both integers a and b, for example, gcd (10,12)=2. The following
table shows the step-by-step procedure to get resultant GCD value:

Let the two values are, m =15 and n = 18.

div quo %Quo %div Resultant value
0 1
1 15 False True 1
2 7 False False 1
3 5 False True 3
4 3

The loop exits and returns 3. So, the resultant GCD value of the two given
values 15 and 18 is 3.

Program to find GCD of given values:
/*—————————— START OF PROGRAM ——————————*/

#include <stdio.h>

#include <conio.h>

void main()

{

int m, n, q, r;

clrscr();

printf(“Enter two values:”);

scanf(“%d%d”, &m,&n);

if (m==0||n==0)

printf(“One number is Zero”);

else

reach:

{

q=m/n;

r=m – q*n;

}

if(r==0)

{

printf(“GCD Value is : %d”, n);

goto end; //Go to end label

}

else

{

m=n=r;

goto reach;

}

end:;

}

Algorithms

NOTES

Self-Instructional Material 49

The GCD can also be calculated applying Euclidean algorithm. If the integers a
and b are two positive integers and n is the remainder, then (a, b) = (b, r).

Euclidean_gcd(a,b)

Step 1: integer x, y, f, d;

Step 2: xf; yd;

Step 3: if y=0 return x

Step 4: rx mod y;

Step 5: xy;

Step 6: yr;

Step 7: goto Step 2.

The above algorithm works in the following way:

Small value (x) = 10, Large value (y) =12.

Large Small Remainder
12 10 2
10 2 0

Result: 2 is the GCD of 10, 12.

The above algorithm is known as Euclid’s GCD algorithm that extracts the
greatest common divisor x. The common divisor y divides x and keeps remainder
as value n. This process is continued until y divides x finally. Therefore, value
assigned for x is the greatest common divisor if it contains every other common
divisor y.

Example 1.13: Base Conversion (Decimal to Binary).

The base of a binary number is 2 and of decimal number is 10 (denary). Binary
numbers have only two numerals (0 and 1), whereas decimal numbers have 10
numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). An example of a binary number is 10011100
and decimal number is 0.012345679012. The decimal numeral system is the one
that is the most widely used. Computer operations are performed with number
base conversion.

The following algorithm is an example of printing an integer value into binary
format:

Algorithm
Step 1: integer number, binary_val,temp_val,counter,d_val;

Step 2: binary_val0; //Assigning value 0 to binary_val

Step 3: temp_valnumber; // Assigning temp_val is equal
to number

Step 4: counter0; //Assigning value 0 to counter

Step 5: print ‘Enter the number’;

Step 6: read number; //Accept input values to number

Step 7: if temp_val>0

{

50 Self-Instructional Material

Algorithms

NOTES

d_val mod(temp_val,2)

binary_val binary_val + d_val*10^counter;

//10^counter means power(10,counter)

d_val d_val + a_val*p_val;

temp_val int(temp_val/2)

//Change the fraction values as integer data types.

counter counter + 1;

//Increase the counter value by one

}

Step 7: print ‘Binary Value’;

Step 8: print binary_val; // Prints resultant binary
value

How the above algorithm works is explained below:

Let us take a decimal value 6.
d_val = 6 mod 2 that returns 0

binary value=0+3*10^0 returns 0

d_val = 3 mod 2 returns 1

counter = 0 +1= 1

The decimal number 6 is equal to binary number 110. This conversion is
explained in the following way:

number number/2 number % 2
6 3 0
3 1 1
1 0 1

Implementation of base conversion (decimal to binary)
/*—————————— START OF PROGRAM ——————————*/

#include <stdio.h> //Declaring Header files

#include <conio.h>

#include <math.h>

void main() //Start main() function

{

int number, binary_val, temp_val, counter, d_val, p_val;

binary_val=0;

// Declaring integer data types variables

temp_val=number; //Assigning temp_val is equal to number

counter=0; //Initailizing 0 to counter

printf(“\n Enter a number”);

scanf(“%d”, &number); //Accept input value

if (temp_val>0)

{

Algorithms

NOTES

Self-Instructional Material 51

d_val = temp_val%2;

//Returns remainder to d_val

p_val=power(10,counter);

binary_val= binary_val+ d_val*p_val; //The value of
binary_val is added to d_val by d_val by 10 ‘raise to the
power’ counter value

temp_val = int(temp_val/2)

//if temp_val contains fraction value, int() function
changes the integer type value

counter = counter +1;

//Counter variable is increased

}

printf(“Binary Value = %d”, binary_val); //Printing the
binary value

getch();

}

Base Conversion (binary to decimal)

Algorithm
Step 1: integer number,d_val,temp_val,counter,a_val;

Step 2: d_val0; //Assigning 0 to d_val

Step 3: temp_valnumber; //Assigning temp_val is equal
to number

Step 4: counter0; //Assigning 0 to counter

Step 5: print ‘Enter the number’;

Step 6: read number; //Accept input value for number

Step 7: if temp_val>0 //Body of if control statement

{

a_val mod(temp_val,10);

p_valpower(2,counter);

d_val d_val+ a_val*p_val;

temp_val int(temp_val/10);

counter counter +1;

}

Step 8: print ‘Decimal value’;

Step 9: print d_val;

How the above algorithm works is explained as follows:

Let us take binary number 1011.

=1*23+0+22+1*21+1*20

=8+0+2+1 = 11

52 Self-Instructional Material

Algorithms

NOTES

The binary number 1011 is equal to decimal number 11.
/*—————————— START OF PROGRAM ——————————*/

#include <stdio.h> //Declaring Header files

#include <conio.h>

#include <math.h>

void main() //Start main() function

{

int number,d_val,temp_val,counter,a_val;

// Declaring integer data types variables

temp_val=number;

//Assigning temp_val is equal to number

d_val=0;

counter=0; //Initailizing 0 to counter

printf(“\n Enter a number”);

scanf(“%d”, &number); //Accept input value

if (temp_val>0)

{

a_val = temp_val%10;

//Returns remainder to d_val

p_val = pow(2,counter);

//Returns counter value raise to the power 2 to p_val
variable

d_val=d_val+ a_val*p_val;

//The value of d_val is added to multiplied value of
a_val and p_val

temp_val = int(temp_val/10)

//if temp_val contains fraction value, int() function
changes the integer type value

counter = counter +1;

//Counter variable is increased

}

printf(“Decimal Value = %d”, d_val); //Printing the binary
value

getch();

//Pressing key to return the program

}

The above program is able to convert the binary number into decimal number.
The result of the program is as follows:

Enter a number = 1011

Decimal Value = 11

When a theoretical algorithm design is combined with the real-world data,
it is called algorithm engineering. When you take an algorithm and combine it

Algorithms

NOTES

Self-Instructional Material 53

with a hardware device that is connected to the real-world, you can verify and
validate the algorithm results and behaviour more precisely and accurately. A simple
data acquisition or stimulus device may be considered as the real-world device.
Alternatively, you can implement an algorithm on some embedded platform, such
as a field-programmable gate array (FPGA) or microprocessor which can be
similar to the final system design.

The first specific use of the term, ‘algorithm engineering’ was at the inaugural
Workshop on Algorithm Engineering (WAE) in 1997.

It has of late been used for describing the steps in a graphical system design:
‘A modern approach to design, prototype and deploy the embedded systems
which combine open graphical programming with the commercial off-the-shelf
(COTS) hardware for dramatically simplifying development, bringing higher-quality
designs with a migration to custom design’.

With the help of algorithm engineering, you can transform a pencil-and-
paper algorithm into a robust, efficient, well-tested and easily usable implementation.
It covers various topics, from modelling cache behaviour to the principles of good
software engineering. However, experimentation is its main focus.

CHECK YOUR PROGRESS

4. List the instructions that are dealt with in RAM model.

5. What are primitive operations?

6. What is a flowchart?

7. Define algorithm engineering.

1.3 EXPONENTIATION

The mathematical operation of the form xn is known as exponentiation. This involves
two numbers, base and exponent. Here, in xn, x is the base and n is the exponent.
For positive integral values of n exponentiation means repeated multiplication as
shown below:

xn = x x ……..x x (n times)

This can be compared with mathematical operation of multiplying with a positive
integer that means repeated addition:

xn = x + x + ……..x + x (n times)

54 Self-Instructional Material

Algorithms

NOTES

Exponentiation is written as a superscript towards the right of the base. The
exponentiation xn is equivalent to saying ‘x raised to the nth power or x raised
to the power n or x raised to the power n’. Some use statements more brief that
these and say ‘x to the n.’

Negative Exponentiation

The exponentiation xn, is also defined when n is a negative integer and x¹ 0. There
is no natural extension for all real valued x and n, but for all positive real values of
the base x , xn is defined for real and even complex exponents n by the exponential
function ey. Trigonometric functions are also expressed as a combination of complex
exponentiation.

Exponentiation is used in many fields such as physics, chemistry, biology,
computer science and economics. Applications such as wave behaviour, chemical
reaction, kinetics, population growth, public key cryptography and compound
interest are used in these fields.

Exponents One and Zero

Exponentiation is recursive in nature and one and zero are base cases. 51 mean 5
only and 55 = 5·54; 54 = 5·53 and continuing like this, we get 51 = 5·50.

Another way of saying this is that when n, m and n – m are positive (and if
x is not equal to zero), one can see by counting the number of occurrences of x
that,

n
n m

m

x
x

x

Extended to the case that n and m are equal, the equation would read,

01
n

n n
n

x
x x

x

For equal numerator and denominator this gives the definition of x0. Thus,
we define 50 = 1 for the equality to hold. This leads to two basic rules of
exponentiation:

(i) Any number to the power 1 is the same number.
(ii) Any nonzero number to the power 0 is 1.

Negative Integer Exponents

By definition, when base is a nonzero number and exponent is 1 is used give
negative, reciprocal of that base:

x–1 = 1/x and one may write x–n = 1/xn for x¹ 0 and n I+.

Negative integral exponent to a base means repeated division of 1 by the
base. For example,

5–1 = 1/5 and 5–3 = ((1/5)/5)/5

Algorithms

NOTES

Self-Instructional Material 55

Identities and Properties

The most important identity satisfied by integer exponentiation is: xa+ b = xa.xb.

This also leads to xa–b = xa/xb for x0, and

(xm)n = xmn

There is another basic identity:

(x.y)n = xn. yn

Exponentiation is not commutative, since 25 = 32, but 52 = 25.

Not associative since 23 is base and 4 is exponent. It is 84 or 4096, but when base
is 2 and exponent is 34 then it becomes 281.

1.3.1 How to Compute Exponentiation Fast?

Different method can be used to compute fast exponentiation. The major ones
include the following:

(i) Squaring Algorithm

For fast computations, ‘exponentiation by squaring’ algorithm is used. This algorithm
is good for fast computation of large exponent to a number. Due to nature of its
working, it is known as square-and-multiply algorithm. Binary exponentiation is
another name given to this algorithm. Double-and-add, is also a name given to this
algorithm. It makes use of binary expansion of the exponent and is used in modular
arithmetic.

The following recursive algorithm computes xn for a non-negative integer n. Here,
xn is written as Power (x, n) and defined as below.

2

1, if 0

Power (,) Power (, 1,) if is odd

Power (, / 2) , if is even

n

x n x x n n

x n n

Here, normal strategy of xn = x.xn–1 is not adopted rather, ‘n is even’ fact is
optimized, and according to this fact:

/ 2 / 2n n nx x x

Using approach as this, log
2
n squaring and at maximum of log

2
n

multiplications are performed which is more efficient computationally in comparison
to that of multiplying the base with itself in a recursive manner.

Given any (,) R Z , nx n x , xn is calculated by:

1. if n < 0 then
1

:= and := -x n n
x2. i: = n, y: = 1, z: = x

3. if i is odd then y: = y.z

56 Self-Instructional Material

Algorithms

NOTES

4. z: = z * z

5.

:=
2
i

i , this discards the remainder after

performing division

6. if i o, then go to step 3
7. give y as result

There is one problem in this algorithm that this gives 00 = 1 which is
mathematically indeterminate.

(ii) Montgomery’s Ladder Technique

Disadvantages of squaring algorithm lies in doing analysis of the operations
performed at every step. This algorithm may become problematic if exponent
serves the purpose of a secret key. A variant has been created from squaring
algorithm by making use of a technique known as Montgomery’s Ladder to solve
this problem.

Given an integer n=(n
r –1

...n
0
)

2
 in base 2 with n

r –1
=1 we can compute xn as

follows:
x
1
=x; x

2
=x2

for i=r-2 to 0 do

 if n
i
=0 then

 x
2
=x

1
*x

2
; x

1
=x

1
2

 else

 x
1
=x

1
*x

2
; x

2
=x

2
2

return x
1

(iii) 2K-ary Method

In this algorithm calculation is performed for the value of xn by way of expansion
of the exponent in base 2k. This method was proposed for the first time in 1939 by
Brauer. In this algorithm the functions used are f(0) = (k,0) and f(m) = (s,u),
where m= 2s*u where u is odd.

Algorithm:

Input

 An element x G and k > 0, where k is a parameter

 A non-negative integer n=(n
r –1

,n
r –2

, n
0
)

2
k

 The pre-computed values x3,x5,...x2k–1.

Output

Element xn G

Algorithms

NOTES

Self-Instructional Material 57

Steps
1. y=1 and i=r –1

2. while i>0 do

3. (s,u)=f(n
i
)

4. for j=1 to k-s do y=y2

5. y=y*xu

6. for j=1 to s do y=y2

7. i=i–1

8. return y

Note: Optimal efficiency is achieved for small integral value of k satisfying
log(n)<(k(k+1)*22*k)/(2k+1–k–2) + 1

(iv) Sliding Window Method

This is a variant of 2k-ary method which is more efficient. For example, to calculate
exponent 398 having binary equivalent as (110 001 110)

2
, a window of length 3 is

chosen and then 2k-ary algorithm is used for computing
1,x3,x6,x12,x24,x48,x49,x98,x196, x199,x398 and also 1,x3,x6,x12,x24,x48,x96,x192,x199,
x398. This saves on multiplication and this evaluates (101 00 111 0)n

2.

General algorithm is given below:

Input

 An element x G

 An integer n=(n
l
,n

l–1
,...,n

0
)

2
, n I+ and k>0, where k is a parameter

 Pre-computed values x3, x5,... x2k–1.

Output

Element xn G

Steps

1. y=1 and i=l–1

2. while i>–1 do

3. if n
i
=0 the y=y2 and i=i–1

4. else

5. s=max{i–k+1,0}

6. while n
s
=0 do s=s+1

7. for h=1 to i-s+1 do y=y2

8. u=(n
i
,n

i–1
,....,n

s
)

2

9. y=y*xu

58 Self-Instructional Material

Algorithms

NOTES

10. i=s–1

11. return y

Note: In the above algorithm, at line 6 the loop has longest string of length
 k ending in a nonzero value. Computation of all odd powers of 2 up to 22k–1 is
not required and those specifically involved in computation are considered.

Fixed Base Exponent

There are several methods which can be employed to calculate xn when the base
is fixed and the exponent varies. Pre-computations play a key role in these
algorithms.

(v) Yao’s Method

Yao’s method is orthogonal to the 2k-ary method where the exponent is expanded
in radix b=2k and the computation is as performed in the algorithm above. Let ‘n’,
‘n

i
’, ‘b’, and ‘b

i
’ be integers. Let the exponent ‘n’ be written as

1

0

where 0 for all [0, 1]
l

i i i
i

n n b n h i l

Let x
i
 = b

ix Then the algorithm uses equality as,

1 1

0 1

i

i

j
l h

nn
i i

i j n j

x x x

Since x G , exponent ‘n’ is written along with pre-computed values of xb
0
.... –1

b
lx

the element xn is computed by the use of algorithm below:

1. y=1,u=1 and j=h–1

2. while j > 0 do

3. for i=0 to l–1 do

4. if n
i
=j then u=u* b

ix

5. y=y*u

6. j=j –1

7. return y

By setting h=2k and b
i
 = hi then n

i
’s are digits of n in base h. Yao’s method does

the collection in u, first those x
i
 appearing for the highest power h–1and in the next

round also those having h–2 as power get collected in u and like that. The variable
y is multiplied h–1 times with the initial u, h–2 times with the next highest powers,
and so on. This algorithm makes use of l+h–2 multiplications and l+1 has to be
stored for computing xn.

Algorithms

NOTES

Self-Instructional Material 59

(vi) Euclidean Method

The Euclidean method was first introduced in ‘efficient exponentiation using
precomputation and vector addition chains’ by P.D Rooij. The algorithm below
computes xn using the following equality recursively:

1 00
1

(mod)0 1
0 0 1 01 1() . where /n nnn n qx x x x x q n n

If x G and exponent ‘n’ is written the way it is written in Yao’s method having
computed values of xb

0
....xb

l–1
 the element xn is computed by making use of the

algorithm below:

Steps

1. while true do

2. find M such that n
M
 n

i
 for all i in [0,l–1]

3. find N M such that n
N
 n

i
 for all i in [0,l–1],i M

4. if n
N
 0 then

5. *(/) , and modq
M N N N M M NMq n n x x x n n n

6. else break

7. return x
M

n

The algorithm first finds the largest value amongst the n
i
 and then the supremum

within the set of {n
i
 : i M }. It raises x

M
 to the power q, multiplies this value with

x
N
 and then assigns x

N
 the result of this computation and n

M
 the value n

M
 modulo

n
N
.

Further applications

Using this idea, speedy calculations for large exponents modulo division of a number
is done, that has applications in cryptography. Computation of powers in a ring of
integers modulo q is very useful and use can be made of this in computing integer
powers in a group. For this following rule is used,

Power(x, –n) = (Power(x, n))–1.

In every semi-group this method works and this is often used for computing
powers of matrices.

For example, in evaluating 13789722341 (mod 2345), if a naïve method is
used then it will require very long time and storage space. It involves computing
13789722341 and taking remainder after dividing by 2345. Even if more effective
methods are used it will consume long time as it will first square 13789, then
would find remainder after dividing by 2345 and further multiply this result by
13789. This process will continue involving 722340 modular multiplications. The
square-and-multiply algorithm is based on 13789722341 = 13789(137892)361170.
So, when 137892 is computed, full computation would consist of 361170 modular
multiplications and there is a gain of a factor of two. As new problem is also the

60 Self-Instructional Material

Algorithms

NOTES

same in its type, same observation can be applied again, and approximately halving
the size once more.

Repeated application of this algorithm is equivalent to decomposing the
exponent by performing a base conversion of decimal to binary as a sequence of
squares and products. This is explained as follows:

x11 = x(1011)bin

= x(1*2^3 + 0*2^2 + 1*2^1 + 1*2^0)

= x1*2^3 * x0*2^2 * x1*2^1 * x1*2^0

= x2^3 * 1 * x2 * x2^0

= x8 * x2 * x1

= (x4)2 * (x)2 * x

= (x4 * x)2 * x

= ((x2)2 * x)2 * x

= (x2 * x)2 * x

 Thus, algorithm requires only 3 multiplications instead of 10 (11-1)

Some more examples:

 x10 = ((x2)2*x)2 because 10 = (1,010)
2
 = 23+21, algorithm needs 4

multiplications instead of 9.

 x100 = (((((x2*x)2)2)2*x)2)2 because 100 = (1,100,100)
2
 = 26+25+22,

algorithm needs 8 multiplications instead of 99.

 x1,000 = ((((((((x2*x)2*x)2*x)2*x)2)2*x)2)2)2 because 103 = (1,111,101,
000)

2
, algorithm needs 14 multiplications instead of 999.

 x1,000,000 = ((((((((((((((((((x2*x)2*x)2*x)2)2*x)2)2)2)2)2*x)2)2)2*x)2

)2)2)2)2)2 because 106 = (11,110,100,001,001,000,000)
2
, algorithm needs

25 multiplications instead of 999,999.

 x1,000,000,000 = ((((((((((((((((((((((((((((x2*x)2*x)2)2*x)2*x)2*x)2)2

)2*x)2*x)2)2*x)2)2*x)2*x)2)2)2*x)2)2*x)2)2)2)2)2)2)2)2)2 because 109 =
(111,011,100,110,101,100,101,000,000,000)

2
, algorithm needs 41

multiplications instead of 999,999,999.

CHECK YOUR PROGRESS

8. What are the two basic rules of exponentiation?

9. List the methods used to compute exponentiation fast.

Algorithms

NOTES

Self-Instructional Material 61

1.4 LINEAR SEARCH

Linear search is the easiest and least efficient searching technique. In this technique,
the given list of elements is scanned till either the required element is found or the
list is exhausted. This technique is used in direct access media such as magnetic
tapes.

Example 1.14 illustrutes a linear search.

Example 1.14: Find an element 77 from the given list using linear search. The list
of elements is 10, 25, 77, 16, 47 and 98.

Linear search starts by checking the target element (i.e., 77) with the first
element of the list, i.e., 10, which is not equal to the target element; search continues
with the second element, i.e. 25, which is also not equal to the target element and
search continues with the third element, i.e. 77, which is equal to the target element
(=77). So, the search is stopped.

1.4.1 Algorithm for Linear Search

LINEAR_SEARCH (L, N, E)

1. [Initialization]

 loc = 1

 L[N + 1] = E

2. [Search the element in the vector]

 REPEAT WHILE (K[loc]<> E) DO

 loc = loc + 1

3. [Check whether the search is successful or not?]

 IF loc = N + 1, THEN WRITE (‘UNSUCCESSFUL SEARCH’)

 RETURN(0)

 ELSE WRITE(‘SUCCESSFUL SEARCH’)

 RETURN(loc)

1.4.2 Analysis of Linear Search Algorithm

For N total number of elements, the search time T is proportional to half of N:
T = K * N/2 where K is a constant

If K = 2, then T = K*N

The average linear search times are proportional to the size of the array, i.e., O(N)

Note: If an array is twice as big, it will take twice as long to search.

Implementation of Linear Search to Find a String from a String Vector/
Array

Program for Linear Search of Strings
 /*—————————START OF PROGRAM——————————*/

#include<stdio.h>

#define MAXROWS 10

62 Self-Instructional Material

Algorithms

NOTES

#define MAXCOLS 20

#define NOTFOUND -1

typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS];

int LSearch(STRINGS s,STRING target,int n)

{

 int loc=0;

 strcpy(s[n],target);

 while(strcmp(s[loc],target))

loc++;

 if(loc==n)

return NOTFOUND;

 else

return loc;

}

void main()

{

STRINGS a={“MON”,”TUE”,”WED”,”THU”,”FRI”,”SAT”,”SUN”};

int index;

index=LSearch(a,”WED”,7);

if(index==NOTFOUND)

printf(“Record not found”);

else

printf(“Record found at Location:%d”,index+1);

}

/*——————————END OF PROGRAM————————*/

Output: Record found at Location 3

Implementation of linear search to find a value in a vector or array
/*————————START OF PROGRAM——————————*/

#include<stdio.h>

#include<conio.h>

#define MAXROWS 10

#define MAXCOLS 20

#define NOTFOUND -1

typedef int VECTOR[MAXCOLS];

int LSearch(VECTOR s,int target,int n)

{

 int loc=0;

 s[n]=target;

 while(s[loc]!=target)

Algorithms

NOTES

Self-Instructional Material 63

 loc++;

 if(loc==n)

 return NOTFOUND;

 else

 return loc;

}

void main()

{

VECTOR a={5,4,3,2,7};

int index;

clrscr();

Program for Linear Search of Numbers

index=LSearch(a,2,5);

if(index==NOTFOUND)

printf(“Record not found”);

else

printf(“Record found at Location:%d”,index+1);

}

/*——————————END OF PROGRAM————————*/

Output: Record found at Location:4

1.5 BINARY SEARCH

Binary search is used to search for an element in a sorted list.

1.5.1 The Search Method

 First compare the key with the item in the middle position of the array.

 If any match is found, return it immediately.

 If the key is less than the middle key, then the item to be found must lie in the
lower half of the array; if it is greater, then the item to be found must lie in the
upper half of the array.

 Repeat the procedure on the lower (or upper) half of the array.

Example 1.15 illustrates a binary search

Example 1.15: Find an element 88 in an array of elements given below where L
is Lower bound of the array and U is the Upper bound of the array.

10 12 18 23 53 67 88 99 102
 0 1 2 3 4 5 6 7 8

 L U

64 Self-Instructional Material

Algorithms

NOTES

Calculate middle by M=FLOOR((L+U)/2), where L=0 and U=8

 M=4

Since value in Vector[M] is 53, which is less than the target value (=88), search
in the second half of the array.

10 12 18 23 53 67 88 99 102
 0 1 2 3 4 5 6 7 8

 L U

Calculate middle by M=FLOOR((L+U)/2), where L=5 and U=8

 M=6

Since value in Array[M] is equal to target value (=88), then it is a successful
search and record found at location 6.

1.5.2 Algorithm for Binary Search

BINARY_SEARCH(B,N,E)

1. [Initialization]

 L=1

 H=N

2. [Start the searching process]

 REPEAT THRU STEP 4 WHILE L<=H DO

3. [Get the index of midpoint of interval]

 M=FLOOR(L+H)/2

4.[Comparison to get the element]

 IF E < B[M] THEN

H=M-1

 ELSE

IF E > B[M] THEN

L = M +1

ELSE

 WRITE(‘SUCCESSFUL SEARCH’)

 RETURN(M)

5. [Unsuccessful search]

 WRITE(‘UNSUCCESSFUL SEARCH’)

6.[Finished]

 RETURN(0)

1.5.3 Analysis of Binary Search algorithm

For N total number of elements, the search time T is proportional to log(N) T=K
* log

2
(N).

The average searching time for binary search is O(log N).

Algorithms

NOTES

Self-Instructional Material 65

Implementation of Binary Search to Find an Element in a Sorted Vector/
Array

Program for Binary Search for Numbers
——————————START OF PROGRAM——————————/

#include<stdio.h>

#include<conio.h>

#define MAXCOLS 20

#define NOTFOUND -1

typedef int VECTOR[MAXCOLS];

int BSearch(VECTOR str,int target,int n)

{ int s,e,m,cmp;

s=0;

e=n-1;

while(s<=e)

{ m=(s+e)/2;

if(target<str[m])

e=m-1;

else

if(target>str[m])

s=m+1;

else return m;

 }

 return NOTFOUND;

 }

void main()

{

VECTOR a={1,2,3,4,5};

int index;

clrscr();

index=BSearch(a,4,5);

if(index==NOTFOUND)

printf(“Record not found”);

else

printf(“Record found at Location:%d”,index+1);

}

/*———————————END OF PROGRAM——————————*/

Output:

Record found at Location:5

66 Self-Instructional Material

Algorithms

NOTES

Implementation to Search a String in a Vector/Array having Strings in Sorted
Order

/*——————————START OF PROGRAM——————————*/

#include<stdio.h>

#include<conio.h>

#define MAXROWS 10

#define MAXCOLS 20

#define NOTFOUND -1

typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS];

int BSearch(STRINGS str,STRING target,int n)

{

int s,e,m,cmp;

s=0;

e=n-1;

while(s<=e)

{

m=(s+e)/2;

cmp=strcmp(target,str[m]);

if(cmp<0)

e=m-1;

 else

if(cmp>0)

 s=m+1;

else

return m;

 }

 return NOTFOUND;

 }

void main()

{

STRINGS str={“AB”,”ABC”,”BB”,”BCA”,”CC”,”CCC”};

int index;

clrscr();

index=BSearch(str,”CC”,6);

if(index==NOTFOUND)

printf(“Record not found”);

else

printf(“Record found at Location:%d”,index+1);

}

/*————————END OF PROGRAM——————————*/

Algorithms

NOTES

Self-Instructional Material 67

Output:

Record found at Location:5

Note: In the above two programs, the array should contain sorted values;
otherwise, use any sorting algorithm before calling BSearch.

Algorithm for Binary Search using Recursive Technique

Function BSearch(Vector,First_Index,Second_Index,Target)
1.[Search vector between First_Index and Second_Index

for target]

 IF First_Index>Second_Index)

 loc=0

 ELSE

 Middle_Index=(First_Index+Second_Index)/2;

 IF Target > Vector[Middle_Index]

 loc=BSearch(Vector,Middle_Index+1,Second_Index,Target)

 ELSE

 IF Target < Vector[Middle_Index]

 loc=BSearch(Vector,First_Index,Middle_Index-1,
Target)

 ELSE

 loc=Middle_Index

2.[Finished]

 RETURN(loc)

Implementation of Binary Search to Find an Element in a Sorted Vector/
Array using Recursion Technique

Program for binary search for numbers using recursion
#include <stdio.h>

#define MAXCOLS 20

#define NOTFOUND -1

typedef int VECTOR[MAXCOLS];

int BSearch(VECTOR vector,int findex,int sindex,int
target)

{

 int mindex,loc;

 if(findex>sindex)

 loc=NOTFOUND;

 else

 {

 mindex=(findex+sindex)/2;

68 Self-Instructional Material

Algorithms

NOTES

 if(target>vector[mindex])

 loc=BSearch(vector,mindex+1,sindex,target);

 else

 if(target<vector[mindex])

loc=BSearch(vector,findex,mindex-1,target);

 else

loc=mindex;

 }

return(loc);

}

void main()

{

 VECTOR a={10,20,30,40,50,60,70,80,90};

 int loc;

 loc=BSearch(a,0,8,40);

 if(loc==NOTFOUND)

 printf(“Target string not found”);

 else

 printf(“Starting from 0th location target is at
location:%d”,loc);

}

Output

Starting from 0th location target is at Location:3

Implementation to Search a String in a Vector/Array having Strings in Sorted
Order using Recursion Technique

Program for binary search for strings using recursion
#include <stdio.h>

#include <string.h>

#define MAXCOLS 20

#define MAXROWS 10

#define NOTFOUND -1

typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS];

int BSearch(STRINGS str,int findex,int sindex,STRING
target)

{

 int mindex,loc,cmp;

 if(findex>sindex)

 loc=NOTFOUND;

 else

 { mindex=(findex+sindex)/2;

Algorithms

NOTES

Self-Instructional Material 69

 cmp=strcmpi(target,str[mindex]);

 if(cmp<0) /* if target greater than middle
string */

 loc=BSearch(str,mindex+1,sindex,target);

 else

if(cmp>0) /* if target less than middle string
*/

loc=BSearch(str,findex,mindex-1,target);

else

loc=mindex;

 }

return(loc);

}

void main()

{

 STRINGS str[]={“aa”,”bb”,”cc”,”dd”};

 int loc;

 loc=BSearch(str,0,3,”bb”);

 if(loc==NOTFOUND)

 printf(“Target string not found”);

 else

 printf(“Starting from 0th location target is at
Location:%d”,loc);

}

Output

Starting from 0th location target is at Location:1

1.5.4 Fibonacci Search

The Fibonacci progression is a numeric progression such that F
0
 = 0, F

1
 = 1 and

F
n
= F

n–1
+F

n–2
 for n

2
. The Fibonacci search splits the given list of elements

according to the Fibonacci progression unlike splitting in middle as in the binary
search.

Algorithm for Fibonacci search
Function Fibonacci_search(Array, Target, N)

1. [Initialize I with 0]

 I = 0

2. [Check ?]

 WHILE(Fib(I) < N)

I = I + 1

3. [Assignments]

 A = Fib(I – 2)

 B = Fib(I – 3)

70 Self-Instructional Material

Algorithms

NOTES

4. [Calculate middle element]

 Middle=N-A-1

5. [Search process]

 WHILE Array[Middle]<>Target DO

 IF Array[Middle] > Target THEN

 IF b < 0 THEN

 RETURN NOTFOUND

 T = A – B

 Middle = Middle – B

 A = B

 B = T

 ELSE

 IF A < 1 THEN

 RETURN NOTFOUND

 MIDDLE = MIDDLE + B

 A = A – B

 B = B – A

 6.[Finished]

 RETURN Middle

Algorithm for Fibonacci Function
Function Fib(N).

1.[Generate number]

 IF N = 0 THEN

 RETURN 0

 ELSE

 IF N = 1 THEN

 RETURN 1

 ELSE

 RETURN Fib(n – 1)+Fib(n – 2)

Analysis of Fibonacci Search Algorithm

Fibonacci numbers grow exponentially, it immediately follows that any node with
N descendants that has rank at most O(logN)

The average searching time for Fibonacci search is O(log N).

Implementation to Search a String in a Vector/Array having Strings in Sorted
Order using Fibonacci Search

Program for Fibonacci search for strings
/*—————————STARTING THE PROGRAM——————————*/

#include<stdio.h>

Algorithms

NOTES

Self-Instructional Material 71

#include<conio.h>

#include<string.h>

#define MAXCOLS 20

#define MAXROWS 10

#define NOTFOUND –1

typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS];

int Fib(int n)

{ if(n==0)

 return 0;

 else

 if(n==1)

 return 1;

 else

 return Fib(n – 1) + Fib(n – 2);

}

int Fsearch(STRINGS str, STRING target, int n)

{ int i,a,b,middle,t;

 i = 0;

 while(Fib(i) < n)

i++;

 a=Fib(i – 2);

 b=Fib(i – 3);

 middle = n – a – 1;

 while(strcmpi(str[middle],target)!=0)

 { if(strcmpi(str[middle],target)>0)

 {

 if(b < 0)

 return NOTFOUND;

 t = a – b;

 middle = middle – b;

 a = b;

 b = t;

 }

 else

{ if(a < 1)

 return – 1;

 middle = middle + b;

 a = a – b;

 b = b – a;

}

72 Self-Instructional Material

Algorithms

NOTES

 }

 return(middle);

}

void main()

{

 int i,n;

 STRINGS str[]={“aa”,”bb”,”cc”,”dd”,”ee”,”ff”,”gg”};

 i=Fsearch(str,”gg”,7);

 if(i==NOTFOUND)

 printf(“\nRecord not found”);

 else

 printf(“\nStarting from 0th location record found
at:%d”,i);

}

Output

Starting from 0th location record found at:6

1.6 BIG OH NOTATION (OR BIG O NOTATION)

An algorithm is a step-by-step procedure for performing some task in a finite
amount of time. Sometimes we need to know how much time and space (computer
memory) a computer algorithm requires, i.e., how efficient it is. This is termed as
time and space complexity. Typically, the complexity refers to a function of the
values of the inputs, and we would like to know what is that function. The best,
average and worst cases can also be considered.

The big O notation (also known as big OH notation) provides a convenient
way to compare the speed of algorithms. This is a mathematical notation used in
the priori analysis. If an algorithm is said to have a computing time of O(g(n)), then
it implies that if the algorithm is run on some computer on the same type of data put
for increasing the values of n, the resulting times will always be less than same
constant times |g(n)|.

The best algorithm runs in O(1) times. Good algorithm runs in O(log N)
times. Fair algorithm runs in O(N) times. Worst algorithm runs in O(N2) times.

Note: If A(n) = a
m
 nm + ...+a

1
n1 + a

0
 is a polynomial of degree m, then f(n) = O(nm).

Thus, if the frequency of execution of a statement is in the form of A(n), then the
statements computing time will be O(nm).

Formally, O(g(n)) is the set of functions, f, such that for some c > 0, f(n) <
cg(n) for all positive integers, n > N, i.e. for all sufficiently large N. It can be

represented as c
ng

nf
n

)(

)(
lim .

Algorithms

NOTES

Self-Instructional Material 73

Informally, we say the O(g) is the set of all functions, which grows no faster
than g. The function g is an upper bound to functions in O(g).

We can analyse any algorithm by the O notation irrespective of the
programming language and machine.

Consider two other functions:)(g and)(g .

)(g is the set of functions f(n) for which f(n))(ncg for all positive integers,

n>N, and)()()(gOgg

1.6.1 Properties of the Big O Notation

The following are the properties of big O notation:

 Constant factors may be ignored: For all k > 0, kf is O(f).

 e.g. cn2 and kn2 are both O(n2).

 Higher powers of n grow faster than lower powers: nr is O(n8) if sr 0 .

 The growth rate of a sum of terms is the growth rate of its fastest growing
term: If f is O(g), then f+g is O(g).

e.g. an3+bn2 is O(n3).

 The growth rate of polynomial is given by the growth rate of its leading
term: If f is a polynomial of degree d, then f is O(nd).

 If f grows faster than g, which grows faster than h, then f grows faster than
h.

 The product of upper bounds of functions gives an upper bound for the
product of the functions: If f is O(g) and h is O(r) , then fh is O(gr).

e.g. If f is O(n2) and g is O(log n), then fg is O(n2 log n).

 Exponential functions grow faster than powers: nk is O(bn), for all b > 1, k,

e.g. n4 is O(2n) and n4 is O(exp(n)).

 Logarithms grow more slowly than powers: log
b
 n is O(nk) for all b > 1, k >

0

e.g. log2n is O(n0.5).

 All logarithms grow at the same rate: log
b
 n is)(log nd for all b, d>1.

 The sum of the n rth powers grows as the (r+1)th power:

n

k

rr nisk
1

1)(

e.g.)(
2

)1(2

1
nis

nn
i

n

k

74 Self-Instructional Material

Algorithms

NOTES

1.6.2 General Rules

 Simple statement sequence: It is to be noted first that a sequence of
statements executed once only is O(1). It is immaterial as to how many
statements are in the sequence; only that the number of statements (or the
time that they take to execute) is constant for all problems.

 Simple loops: If a problem of size n can be solved with a simple loop. For
example,

for (i = 0;i < n; ++i)

{

 Statement(s);

}

Where Statement(s) is an O(1) sequence of statements, then the time
complexity is nO(1) or O(n).

 Nested loops:
 for(j = 0;j < n; ++j)

for(i = 0;i < n; ++i)

{

 Statement(s);

}

when we have n repetitions of an O(n) sequence, then the complexity is
nO(n) or O(n2).

 Loop index does not vary linearly: Where the index jumps by an
increasing amount in each iteration.
i = 1;

while(i n)
{

 Statement(s);

 i = 2*i;

}

in which i takes values 1, 2, 4,… until it exceeds n. This sequence has

1 + n2log values, so the complexity is O(log
2
n).

 If the inner loop depends on an outer loop index:
for(j = 0;j < n; j++)

 for(i = 0;i < j; i++)

{

Statement(s);

}

The inner loop i = 0, 1, 2…n gets executed n times, so the total is:

n nn
i

1 2

)1(
 and the complexity is O(n2).

Algorithms

NOTES

Self-Instructional Material 75

Notice that the above two nested loops also have the same complexity, so
the variable number of iterations of the inner loop does not affect the ‘big
picture’. However, if the number of iterations of one of the loops decreases
by a constant factor with every iteration as shown below:
i = n;

while(i > 0)

{ for(i = 0;i < n; ++i)

 {

 Statement(s);

}

 h = h/2;

}

Then there are log
2
 n iterations of the outer loop and the inner loop is O(n).

So the overall complexity is O(n log n) .

The most common computing times of algorithms in the big O notation are:

O(1)<O(logn)<O(n)<O(nlogn)<O(n2) <O(n3)<O(2n)<=O(n!)

1.6.3 Finding Prime Factor of a Given Number

Finding a prime factor begins with the lowest prime number 2. If 2 divides the
number completely and leaves no remainder it is marked as the very first prime
factor. It continues dividing until it longer divides evenly. Then the control flow
moves to the next lowest prime numbers. The step is repeated until the next prime
factor comes. The following algorithm is used to find the prime factor of a given
number:

Algorithm to Find Prime Factor of a Given Number
Step 1: integer input, divisor, count;

Step 2: print ‘Enter a value:’,

Step 3: read input;

Step 4: count0;

Step 5: Do

Step 6: divisor0;

Step 7: if input mod 2==0 OR input==1

//To remove all the factors of 2

break;

countcount+1; //Increase counter value by 1

print count, divisor;

inputinput/2; //Remove this factor from input

Step 8:End Do

Step 9: divisor3;

Step 10: Do

Step 11: if divisor>input

76 Self-Instructional Material

Algorithms

NOTES

break;

Step 12: Do //Remove the factors repeatedly

Step 13: if input mod divisor ==0 OR input==1

break;

countcount+1;

print count, divisor;

inputinput/divisor;

//Remove factors from input

Step 14: End Do

Step 15: divisor divisor+2;

//Move to next odd number

Step 16: End Do

The above algorithm lists out all prime factors of an n integer >=2.
First it sides back all factors of 2. Then, all factors, such as 3, 5, 7 and so on can
be removed. This process is run until all the prime factors are sided back and kept
in a temporary location. According to the above algorithm, if the input value is 53,
the prime factors of 53 are 1 and 53 itself.

Implementation of Finding Prime Factor of a Given Number
/*—————————— START OF PROGRAM ——————————*/

#include <stdio.h>

#include <conio.h>

void main()

{

int number, i, j, k;

clrscr();

printf(“Enter a number:”);

scanf(“%d”, &d);

while(i<=number)

{

k=0;

if (number%i==0)

{

j=1;

while(j<=i)

{

if(i%j==0)

k++; //Value k is increased by 1

j++; //Value j is increased by 1

}

if(k==2)

printf(“\nPrime factors are:”);

printf(“%d”,i);

Algorithms

NOTES

Self-Instructional Material 77

i++;

}

getch();

}

The result of the above program is as follows:
Enter a number: 123

Prime factors are: 3 41

In the above program, finding a prime factor of a given number can be
performed in the following step. You first enter a number let say ‘123’ as input
value. The prime factors of 123 are 3 and 41 (prime numbers). If you multiple 3
and 41, it returns 123, that is a prime number.

1.6.4 List of Prime Numbers

Prime numbers are numbers that can be divided only by 1 or by themselves.
Below, in white, are the prime numbers between 1 and 100.

The following algorithm is used to find the list of prime numbers:

Algorithm to Find the List of Prime Numbers
Step 1: integer N,D;

// Declare the variables the integer being considered
needed for the integer divison

Step 2: integer N_is_prime;

// N is equal to 1 (default) when N is prime and N = 0
when N is not prime

Step 3: for N3 to 30 //Running for loop

// This loop considers all prime integers between 3 and
30

N_is_prime1;

// assume N is prime

Step 4: for D2 to (N-1)

if N%D == 0

//Returns remainder if N is divided by D

N_is_prime = 0;

// if the remainder is 0 then N is prime

78 Self-Instructional Material

Algorithms

NOTES

Step 5: if N_is_prime == 0

break; //Exit from loop

// if N is prime do not do any more integer divisions

Step 6: if N_is_prime == 1

print N;

Implementation to find the list of prime numbers
/*—————————— START OF PROGRAM ——————————*/

#include<stdio.h>

#include <conio.h>

void main()

{

int N; // the integer being considered

int D; // needed for the integer divison

int N_is_prime; // = 1 (default) when N is prime and = 0
when N is not prime

for (N=3;N<=30;N++)

// This loop considers all prime integers between 3 and
100

{

N_is_prime = 1; // assume N is prime

for (D=2;D<=N-1;D++)

{

if (N%D == 0) N_is_prime = 0;

// if the remainder is 0 then N is prime

if (N_is_prime == 0)

break;

// if N is prime don’t do any more integer divisions

}

if (N_is_prime == 1)

printf(“%d\n”,N);

}

getch();

}

The result of the above program is as follows:
2

3

5

7

11

13

17

Algorithms

NOTES

Self-Instructional Material 79

19

23

29

CHECK YOUR PROGRESS

10. What do you understand by the linear search technique?

11. When is the binary search method used?

12. What is big O notation?

1.7 WORST CASE

In the field of computer science, complexity indicates a measure of resources
required by an algorithm and worst-case complexity is a measure of resources
required by the algorithm to solve a problem in worst case. Here, by ‘resources’
we mean time of run and memory required. These are time and space complexity.
Worst-case indicates the maximum amount of resource required by the algorithm
to solve the problem.

Measured in terms of time required, worst-case time-complexity gives
maximum time required by an algorithm to perform when any input of size n is
given with a guarantee that algorithm finishes its work within that time. This also
forms a basis for comparing efficiency of two algorithms.

Best case, worst case and average cases are three situations in which analysis
is done for a given algorithm. These terms tell about use of resources in terms of at
least, at most and on average, respectively. Here, resources usually include
running time and amount of memory space the algorithm occupies. It may mean
other resources as well, but mostly time and space complexities are used. Worst-
case execution time is of particular importance in real time computing as it is critical
to know the maximum time required to execute instructions with a guarantee that
the algorithm will always finish within that time.

Worst-case is compared with average performance and is mostly used in
algorithm analysis. In case of a looping statement there is O(n) time complexity. If
another loop is put in that loop the complexity increases and it becomes O(n^2),
since it has to do n^2 things for an input size of n.

Worst case algorithms are non deterministic.

1.8 ADVANTAGE OF LOGARITHMIC
ALGORITHMS OVER LINEAR ALGORITHMS

An algorithm that takes search time of the order of O(log n) is logarithmic whereas
a linear algorithm takes search time of O(kn) to find kth smallest or largest item in
a list containing n items. This linear algorithm is not effective when list is large and

80 Self-Instructional Material

Algorithms

NOTES

value of k is large. Such algorithm is suitable only for the cases where value of k is
small. Binary search is an example of logarithmic search.

In linear algorithm, program moves in a sequential manner, whereas a binary
search adopts the policy of ‘divide and conquer’. For example, if we start searching
a number, say 30, in a list of 100 numbers, and the list is serially arranged then it
will search linearly from 1 to 29 and then come to 30. But in Binary search, it
would divide in two halves and will discard one half and will again search in another
half. This search strategy reduces the number checking by a factor of two each
time to find the target value, if it is in the list and this will be done in logarithmic
time.

Suppose we want to design an algorithm to find whether determinant value
of a particular n n matrix is more than a predetermined value k. Using linear
search this can be done in O(n2) time whereas using binary search, ceiling of the
determinant value (d) can be found in O(n2log d) time. Here, d is the size of output
and not of the input.

Algorithm of logarithmic nature always takes less time that of linear search.
A linear search has worst case behaviour of N iterations and takes much time as N
grows. If there are one million items, it will make one million searches. But in case
of logarithmic search such as binary search, time taken in worst case is floor value
of (log

2
210 – 1) which is approximately 9. Search is continued even if iteration fails

to find a match at the probed position, with one or other of the two sub-intervals,
each with almost halved size. If N, denoting the number items, is odd then both
sub-intervals will have (N –1)/2 elements. But if N is even the two sub-intervals
will have N/2 –1 and N/2 elements.

In a list of N items, after first iteration, remaining items will N/2 items at the
maximum and in second iteration, items will get reduced to at most N/4 items, then
to N/8 items and so on. This way algorithm continues, iterating until the span
becomes empty. This will, at the most will take log

2
(N) + 1 iterations. Here,

stands for the floor function which neglects the decimal part of the number. In
worst case for any N it takes exactly (log

2
N) + 1 iterations.

Linear search can be applied to a list sorted as well as unsorted, but binary
search is applied to a list that is already sorted.

1.9 COMPLEXITY

1.9.1 Space Complexity

The space complexity of an algorithm indicates the quantity of temporary storage
required for running the algorithm, i.e. the amount of memory needed by the
algorithm to run to completion.

Algorithms

NOTES

Self-Instructional Material 81

In most cases, you do not count the storage required for the inputs or the
outputs as part of the space complexity. This is because the space complexity is
used to compare different algorithms for the same problem in which case the
input/output requirements are fixed.

Also, you cannot do without the input or the output, and you want to count
only the storage that may be served. You also do not count the storage required
for the program itself since it is independent of the size of the input.

Like time complexity, space complexity refers to the worst case, and it is
usually denoted as an asymptotic expression in the size of the input. Thus, a o(n)
– space algorithm requires a constant amount of space independent of the size of
the input.

The amount of memory an algorithm needs to run to completion is called its
space complexity. The space required by an algorithm consists of the following
two components:

(i) Fixed or static part: Fixed or static part is not dependent on the
characteristics (such as number size) of the inputs and outputs. It includes
various types spaces, such as instruction space (i.e., space for code), space
for simple variables and fixed-size component variables, space for constants,
etc.

(ii) Variable or dynamic part: Variable or dynamic part consists of the space
required by component variables whose size is dependent on the particular
problem instance at run-time being solved, the space needed by referenced
variables and the recursion stack space (depends on instance characteristics).

The space requirements S(p) of an algorithm p is S(p) = c + Sp (instance
characteristics), where ‘c’ is a constant.

We are supposed to concentrate on estimating SP (instance characteristics)
since the first part is static.

The problem instances for algorithm are characterized by n, the number of
elements to be summed. The space needed by n is one word since it is of type
integer. The space needed by a is the space needed by variables of type array of
floating-point numbers.

This is at least n words since a must be large enough to hold the n elements
to be summed. So, we obtain S

S
(n) = (n + 3) (n for a[], one each for n, i, and s).

Iterative function for sum
Algorithm RSum (a, n)

{

if (n 0) then return 0.0;

else return

RSum (a, n – 1) + a[n];

}

82 Self-Instructional Material

Algorithms

NOTES

1.9.2 Time Complexity

The time complexity of an algorithm may be defined as the amount of time the
computer requires to run to completion.

The time T(P) consumed by a program P is the sum of the compile-time and
the run-time (execution-time). The compile time is independent of the instance
characteristics. Also, it may be assumed that a compiled program can be run many
times without recompilation. As a result, we are more interested in the run-time of
a program. This run-time is denoted by t

p
 (instance characteristics).

Many factors on which t
p
 depend are not known at the time a program is

written; so it is always better to estimate t
p
. If we happen to know the type of the

compiler used, then we could proceed to find the number of additions, subtractions,
multiplications, divisions, compare statements, loads, stores and so on that would
be made by a program P.

So we can obtain an expression of the form.

tp(n) = Ca ADD(n) + Cs SUB(n) + Cm MUL(n) + Cd DIV(n) +.........

Where n denotes the instance characteristics, and C
a
 , C

s
, C

m
 , C

d
 and so

on denote the time needed for addition, subtraction, multiplication, division, etc.

But here we need to note that the exact amount of time needed for the
operations mentioned here cannot be found exactly; so instead we could only
count the number of program steps, which means that a program step is counted.

A program step is defined as a syntactically or semantically meaningful
segment of a program that has an execution time that is independent of the instance
characteristics.

For example, consider the statement return a + b * c – d % e/f

This can be regarded as a step since its execution time is independent of the
instance characteristics.

The number of steps that are assigned to any program statement depend on
the type of statement. The comments do not count for the program step. A general
assignment statement, which does not call another algorithm, is considered one
step whereas in an iterative statement like for, while and repeat_until, you count
the step only for the control part of the statement.

The general syntax for ‘for’ and ‘while’ statements is as follows:
for i = (exprl) to (expr2) do

while(expr) do

Each execution of the control part of a while statement is given step count
equal to the number of step counts assignable to <expr>. The step count for each
execution of the control part of a for statement is one, unless the counts attributable
to <expr> and <exprl> are functions of the instance characteristics.

Algorithms

NOTES

Self-Instructional Material 83

1.9.3 Practical Complexities

One of the main reasons to analyse algorithms is to find out the relative performance
of two or more algorithms for the same problem. Consider the problem of sorting
an array a[0:n – 1] for which the best known algorithms are bubble sort,
selection sort, insertion sort, quick sort, merge sort, etc. The time complexities of
these algorithms fall in two categories. One set of algorithm have O(n2) and the
other set have O(n log n). Unless we analyse and find their complexities, it may be
difficult to say which is faster and which is not.

While comparing the algorithms we must also keep in mind that n is very
large or sufficiently large. The performance of the algorithms strongly depends on
the size of n too. For instance, quick sort behaves very badly when n is small, i.e.,
O(n2), which is same as bubble sort or insertion sort. However, when the size is
sufficiently large its time complexity is O(n log n).

The aim of this section is to illustrate the practical time calculation of a
program, what are the timing functions to use (given by the operating system or the
complier), how to set up the test data, calculate the actual time taken by common
asymptotic functions, f(n) using a real computer executing certain number of
instructions per second. You will be wondering that certain functions may take
years of computer time (even on a Pentium III or mainframe machines) for sufficiently
large values of n.

Typical Examples

(1) Assume that a computer can execute 109 steps/sec and a particular program
needs n10 steps, then:

for n = 10, the time required is = 10 sec

for n = 100, the time required is = 3171 years

for n = 1000, the time required is = 3.17 × 1013 years

(2) Assuming that out task needs n2 steps (bubble sort to selection sort) then:

for n = 10, the time required is = 0.1 sec

for n = 100, the time required is = 10 sec

for n = 1000, the time required is = 1msec

for n = 1000000, the time required is = 16.6 min

Looking at the first example, we see that even a polynomial function f(n10) takes
enormous amount of time (unimaginable 1013 years). When the function is
exponential, (say 2n) imagine what could be the time taken.

84 Self-Instructional Material

Algorithms

NOTES

Table 1.1 shows the run-time on a 1,000,000,000 instructions/sec.

Table 1.1 Run-time for Various Values of n

n n n log n 2n 10n n2

10 s01.0 s03.0 s1.0 10s s1

50 s05.0 s28.0 s5.2 3.1yrs 13 days

100 s01.0 s66.0 s10 3171yrs 4 × 1013 yrs

1000 s1 s96.9 1ms 3.17 × 1013 yrs 3.17 × 1043 yrs

1000000 1ms 19.92ms 16.67min 3.17 × 1043 yrs -

1.9.4 Performance Measurement

This section explains how the run-time of a function is calculated using specific
complier options. You will not show the space calculations and the compilation
time in this example. There is of course a small difference between the time
calculation on DOS/Windows 95 or 98 environment and UNIX environment.

Therefore, the reader must be careful in introducing the appropriate statement
in his/her program depending on the platform.

The test data is another important aspect of time complexity calculation.
For example, when you want to generate the test data for bubble sort (or for that
matter any sorting or searching program) function, it is better to use a random
number generator to populate the array. This will enable you to find the run-time
on an average case or worst case.

Programs need to be tested and in turn, the time complexity need to be
calculated. For example, in the case of bubble sort, the best case is to input a
sorted sequence itself. In case of the searching algorithm, just put the key in the 1st
position.

Example1.16 shows the famous factorial program with statements required
for finding the time complexity on DOS platforms. The function gettime () obtains
the time in a structure with hours, minutes, seconds and hundredth of a second. In
the program shown, only hundredth of a second is considered assuming that the
program does not take of the order of seconds. The time before and after calling
the functions is recorded and the difference multiplied by 10 gives the result in
milliseconds. If this program gets tested on a Pentium – III @ 500 MHz computer
then for most of the values of n, you may get the result as 0 as the machine is fast
as the program consumes less than a millisecond.

Example 1.16: Run-time Calculation – Factorial Program (DOS version)
/* Factorial – Recursive method */

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

#include<dos.h>

Algorithms

NOTES

Self-Instructional Material 85

long Fact(int);

void main()

{

int n;

long f;

struct time t;

long stime, etime;

printf(“Enter n:”);

scanf(“%d”, &n);

gettime(&t);

stime=t.ti_hund;

f=Fact(n);

gettime(&t);

etime=t.ti_hund;

printf(“The Factorial is = %1d\n”, f);

printf(“Time taken = %1d\n”,(etime – stime) * 10);
/* time in msec */

}

long Fact(int n)

{

delay(10);

if (n==0) return 1;

else return n* Fact(n-1);

}

On UNIX platform, you must follow the following piece of
code:

#include<sys/types.h>

#include<sys/times.h>

…………….

…………….

…………….

main()

{

struct tms t; long stime, etime;

………….

…………

stime = times (&t);

f(); /* function whose run-time to be calculated
*/

etime = times(&t);

86 Self-Instructional Material

Algorithms

NOTES

…………../* calculate the difference *10*/

…………../* similar to program 1.11 */

}

1.10 ALGORITHM REPRESENTATION THROUGH A
PSEUDOCODE

A pseudocode is neither an algorithm nor a program. It is an art of expressing a
program in simple English that parallels the forms of a computer language. It is
basically useful for working out the logic of a program. Once the logic seems right,
you can attend to the details of translating the pseudocode to the actual programming
code. The advantage of pseudocode is that it lets you concentrate on the logic and
organization of the program while sparing you the efforts of simultaneously worrying
how to express the ideas in a computer language.

A simple example of pseudocode:
set highest to 100

set lowest to 1

ask user to choose a number

guess (highest + lowest) / 2

while guess is wrong, do the following:

{

if guess is high, set highest to old guess minus 1

if guess is low, set lowest to old guess plus 1

new guess is (highest + lowest) / 2

}

1.10.1 Coding

In the field of computer programming, the term code refers to instructions to a
computer in a programming language. The terms ‘code’ and ‘to code’ have different
meanings in computer programming. The noun ‘code’ stands for source code or
machine code. The verb ‘to code’ , on the other hand, means writing source code
to a program. This usage seems to have originated at the time when the first symbolic
languages evolved and were punched onto cards as ‘codes’.

It is a common practice among engineers to use the word ‘code’ to mean a
single program. They may say ‘I wrote a code’ or ‘I have two codes’. This inspires
wincing among the literate software engineer or computer scientists. They rather
prefer to say ‘I wrote some code’ or ‘I have two programs’. As in English it is
possible to use virtually any word as a verb, a programmer/coder may also say
‘coded a program’; however, since a code is applicable to various concepts, a
coder or programmer may say ‘hard-coded it right into the program’ as opposed
to the meta-programming model, which might allow multiple reuses of the same
piece of code to achieve multiple goals. As compared to a hard-coded concept, a

Algorithms

NOTES

Self-Instructional Material 87

soft-coded concept has a longer lifespan. This is the reason of soft-coding of
concept by the coder.

While writing your code, you need to remember the following key points:

 Linearity: If you are using a procedural language, you need to ensure that
code is linear at the first executable statement and continues to a final return
or end of block statement.

 If constructs: You would better use several simpler nested ‘if’ constructs
rather than a complicated and compound ‘if’ constructs.

 Layout: Code layout should be formatted in such a way that it provides
clues to the flow of the implementation. Layout is an important part of coding.
Thus, before a project starts, there should be agreement on the various
layout factors, such as indentation, location of brackets, length of lines, use
of tabs or spaces, use of white space, line spacing, etc.

 External constants: You should define constant values outside the code.
It ensures easy maintenance. Changing hard-coded constants takes too
much time and is prone to human error.

 Error handling: Writing some form of error handling into your code is
equally important.

 Portability: Portable code makes it possible for the source file to be
compiled with any compiler. It also allows the source file to be executed on
any machine and operating system. However, creating a portable code is a
fairly complex task. The machine-dependent and machine-independent
codes should be kept in separate files.

1.10.2 Program Development Steps

The following steps are required to develop a program:

 Statement of the problem

 Analysis

 Designing

 Implementation

 Testing

 Documentation

 Maintenance

Statement of the problem: A problem should be explained clearly with
required input/output and objectives of the problem. It makes easy to
understand the problem to be solved.

Analysis: Analysis is the first technical step in the program development
process. To find a better solution for a problem, an analyst must understand
the problem statement, objectives and required tools for it.

88 Self-Instructional Material

Algorithms

NOTES

Designing: The design phase will begin after the software analysis process.
It is a multi-step process. It mainly focuses on data, architecture, user
interfaces and program components. The importance of the designing is to
get the quality of the product.

Implementation: A new system will be implemented based on the designing
part. It includes coding and building of new software using a programming
language and software tools. Clear and detailed designing greatly helps in
generating effective code with less implementing time.

Testing: Program testing begins after the implementation. The importance
of the software testing is in finding the uncover errors, assuring software
quality and reviewing the analysis, design and implementation phases.

1.10.3 Software Testing

Software testing will be performed in the following two technical ways:

 Black box tests or Behavioral tests (testing in the large): These types
of techniques focus on the information domain of the software.

Example: Graph-based testing, Equivalence partitioning, Boundary value
analysis, Comparison testing and Orthogonal array testing.

 White box tests or Glass box tests (testing in the small): These types of
techniques focus on the program control structure.

Example: Basis path testing and Condition testing

 Documentation: Documentation is descriptive information that explains
the usage as well as functionality of the software.

Documentation can be in several forms:

 Documentation for programmers

 Documentation for technical support

 Documentation for end-users

 Maintenance: Software maintenance starts after the software installation.
This activity includes amendments, measurements and tests in the existing
software. In this activity, problems are fixed and the software updated to
make the system faster and better.

Programming is the process of devising programs in order to achieve the desired
goals using computers. A good program has the following qualities:

 A program should be correct and designed in accordance with the
specifications so that anyone can understand the design of the program.

 A program should be easy to understand. It should be designed that
anyone can understand its logic.

 A program should be easy to maintain and update.

Algorithms

NOTES

Self-Instructional Material 89

 It should be efficient in terms of the speed and use of computer resources
such as primary storage.

 It should be reliable.

 It should be flexible; that is to say, it should be able to operate with a wide
range of inputs.

1.11 AMORTIZED ANALYSIS

Amortized analysis means finding the average running time per operation over a
worst-case sequence of operations. While giving the average case complexity,
probability is involved. On the other hand, amortized analysis ensures the time per
operation over the worst-case performance.

 Amortized analysis assumes the worst-case input and typically disallows
random choices.

 The average case analysis and amortized analysis are two different concepts.
In the former, we average all possible inputs, whereas in the latter, we average
a sequence of operations.

 The amortized analysis disallows the random selection of input.

Various techniques are used in amortized analysis. They are discussed as follows:

 Aggregate analysis: In this type of analysis, the upper bound T(n) on the
total cost of a sequence of n operations is decided; then the average cost is
calculated as T(n)/n.

 Accounting method: In this method, the individual cost of an operation is
calculated by combining the immediate execution time and its influence on
the run- time of future operations.

 Potential method: This method is very much like the accounting method,
but overcharges operations early to compensate for undercharges later.

CHECK YOUR PROGRESS

13. What do you understand by worst-case complexity of algorithms?

14. Define space complexity.

15. What is time complexity?

16. What do you understand by a pseudocode?

17. What is amortized analysis?

90 Self-Instructional Material

Algorithms

NOTES

1.12 SUMMARY

In this unit, you have learned that:

 An algorithm is a step-by-step procedure for performing some task in a
finite amount of time. The five important properties (features) of algorithm
are: finiteness, definitiveness, input, output and effectiveness.

 Testing of a program comprises two phases: (i) debugging and (ii) profiling.
Debugging refers to the process of carrying out programs on sample data
sets for finding out faulty results. Profiling refers to the process of executing
a correct program on data sets and the measurement of the time and space
it takes in computing the results.

 Algorithms can be classified into four categories: approximate algorithms,
probabilistic algorithms, infinite algorithm and heuristic algorithms.

 The most commonly used design approaches for designing an algorithm
include: incremental approach, divide and conquer approach, dynamic
programming approach, greedy strategy, branch and bound algorithm
approach, backtracking and randomized algorithms approach.

 The mathematical operation of the form xn is known as exponentiation. This
involves two numbers, base and exponent. Here, in xn, x is the base and n
is the exponent.

 The methods which can be used to compute exponentiation fast are: squaring
algorithm, Montgomery’s ladder technique, sliding window method, Yao’s
method, and euclidean method.

 Linear search is the easiest and least efficient searching technique. In this
technique, the given list of elements are scanned from the first one till either
the required element is found or the list is exhausted. This technique is used
in direct access media, such as magnetic tapes.

 Binary search is used to search for an element in a sorted list.

 The Fibonacci progression is a numeric progression such that F
0
 = 0, F

1
 =

1, and F
n
 = F

n–1
+F

n–2
 for n

2
. The Fibonacci search splits the given list of

elements according to the Fibonacci progression unlike splitting in middle
as in the binary search.

 The amount of memory an algorithm needs to run to completion is called its
space complexity.

 The time complexity of an algorithm may be defined as the amount of time
the computer requires to run to completion.

Algorithms

NOTES

Self-Instructional Material 91

1.13 KEY TERMS

 Debugging: It refers to the process of carrying out programs on sample
data sets so as to check for faulty results.

 Profiling: It refers to the process of executing a correct program on data
sets and the measurement of the time and space it takes in computing the
results.

 Randomized algorithm: It refers to an algorithm whose input is determined
by the values produced by a random number generator.

 Average case: It is the function defined by the average number of steps
taken on any input of size n.

 Space complexity: It refers to the amount of memory an algorithm needs
to run to completion.

 Time complexity: It refers to the amount of time the computer requires to
run to completion.

1.14 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Efficiency as a function of input size can be measured in terms of the number
of bits in an input number as well as the number of data elements (numbers,
points).

2. Incremental approach is one of the simplest approaches to design algorithms.
In this approach, whenever a new element is inserted into its appropriate
place, the index is increased. One needs to start moving from the first step,
executing each step till he reaches the end. Here, the problem is not split.

3. The following are the two main types of randomized algorithms:
(i) Las Vegas algorithms
(ii) Monte Carlo algorithms

4. Instructions include the following:
 Arithmetic: Add, multiply, substract, floor, ceiling, divide
 Shift left and shift right
 Data movement: Assignment, load, copy, store
 Logical: Comparison
 Control: Conditional/unconditional branching, subroutine call, return

5. Primitive operations are low-level operations which are independent of the
programming language. They can be identified in the pseudocode.

6. A flowchart refers to a graphical representation of a process which depicts
inputs, outputs and units of activity. It represents the whole process at a
high or detailed (depending on your use) level of observation. It serves as

92 Self-Instructional Material

Algorithms

NOTES

an instruction manual or a tool to facilitate a detailed analysis and optimization
of workflow as well as service delivery.

7. When a theoretical algorithm design is combined with the real-world data,
it is called algorithm engineering.

8. This leads to two basic rules of exponentiation:
(i) Any number to the power 1 is the same number.
(ii) Any nonzero number to the power 0 is 1.

9. The following methods can be used to compute exponentiation fast:
 Squaring algorithm
 Montgomery’s ladder technique
 2 K-ary method
 Sliding window method
 Yao’s method
 Euclidean method

10. In this technique, the given list of elements is scanned till either the required
element is found or the list is exhausted. This technique is used in direct
access media such as magnetic tapes.

11. Binary search is used to search for an element in a sorted list.

12. The big O notation (also known as big OH notation) provides a convenient
way to compare the speed of algorithms. This is a mathematical notation
used in the priori analysis. If an algorithm is said to have a computing time of
O(g(n)), then it implies that if the algorithm is run on some computer on the
same type of data put for increasing the values of n, the resulting times will
always be less than same constant times |g(n)|.

13. Worst-case complexity of an algorithm refers to the measure of resources it
requires to solve a problem in the worst case. Here, resources include, time
of run and memory required. Worst-case indicates the maximum amount of
resource required by the algorithm to solve the problem.

14. The space complexity of an algorithm indicates the quantity of temporary
storage required for running the algorithm, i.e., the amount of memory needed
by the algorithm to run to completion.

15. The time complexity of an algorithm may be defined as the amount of time
the computer requires to run to completion.

16. A pseudocode is neither an algorithm nor a program. It is an art of expressing
a program in simple English that parallels the forms of a computer language.
It is basically useful for working out the logic of a program.

17. Amortized analysis means finding the average running time per operation
over a worst-case sequence of operations.

Algorithms

NOTES

Self-Instructional Material 93

1.15 QUESTIONS AND EXERCISES

Short-Answer Questions

1. Why an algorithm needs to be verified before it gets analysed?

2. Write a short note on Greedy algorithms.

3. Write a short note on squaring algorithm which is used for computing
exponentiation fast.

4. Write an algorithm for Fibonacci search.

Long-Answer Questions

1. Explain the different methods used to compute exponentiation fast.

2. Write a program to show the implementation of linear search to find a value
in a vector or array.

3. Write a program to show the implementation of binary search to find an
element in a sorted vector/array using recursion technique.

4. Write a program to show the implementation of Fibonacci search to find a
string in a sorted vector/array.

1.16 FURTHER READING

Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete
Mathematics, 3rd edition. New York: McGraw-Hill, 2007.

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of
Computer Algorithms. Hyderabad: Orient BlackSwan, 2008.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms. The MIT Press, 1990.

Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms. New Delhi: Prentice
Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms. New
Jersey: Pearson, 2006.

Baase, Sara and Allen Van Gelder. Computer Algorithms – Introduction to
Design and Analysis. New Jersey: Pearson, 2003.

Mott, J.L. Discrete Mathematics for Computer Scientists, 2nd edition. New
Delhi: Prentice-Hall of India Pvt. Ltd., 2007.

Liu, C.L. Elements of Discrete Mathematics. New Delhi: Tata McGraw-Hill
Publishing Company, 1977.

Rosen, Kenneth. Discrete Mathematics and Its Applications, 6th edition. New
York: McGraw-Hill Higher Education, 2007.

Graph Theory

NOTES

Self-Instructional Material 95

UNIT 2 GRAPH THEORY

Structure

2.0 Introduction
2.1 Unit Objectives
2.2 Graphs: Types and Operations

2.2.1 Bipartite Graphs
2.2.2 Subgraph
2.2.3 Distance in a Graph
2.2.4 Cut-Vertices and Cut-Edges
2.2.5 Graph Connectivity
2.2.6 Isomorphic Graphs
2.2.7 Homeographic Graphs
2.2.8 Cut-Sets and Connectivity of Graphs
2.2.9 Operations on Graphs

2.3 Degree of Vertex
2.4 Adjacent and Incidence Matrices
2.5 Path Circuit

2.5.1 Floyd’s and Warshall’s Algorithms
2.5.2 Eulerian Path and Circuit
2.5.3 Hamiltonian Graphs

2.6 Graph Colouring
2.6.1 Four Colour Theorem

2.7 Summary
2.8 Key Terms
2.9 Answers to ‘Check Your Progress’

2.10 Questions and Exercises
2.11 Further Reading

2.0 INTRODUCTION

In this unit, you will learn about the various features of graphs. A graph is a depiction
in a diagrammatic format of a set of dots for the vertices, joined by lines or curves
for the edges. Every graph has a diagram associated with it. This diagram is helpful
in understanding the problems involved in the graph. In this unit you will learn
about the various types of graphs and operations involving them. You will also
learn the difference between a simple graph and pseudograph, and will also come
to know that the degree of a vertex is the number of edges incident with that vertex
and that a vertex with degree zero is called an isolated vertex. There are various
types of graphs, such as complete graph, bipartite graph and subgraph. The edge
connectivity of a graph is the minimum cardinality of a set of edges. This unit also
deals with isomorphic and homeographic graphs.

96 Self-Instructional Material

Graph Theory

NOTES

2.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the various types of graphs and their operations

 Describe the characteristics of the degree of a vertex

 Understand the functions of adjacent and incidence matrices

 Explain the various features of a path circuit

 Colour graphs and maps

2.2 GRAPHS: TYPES AND OPERATIONS

A graph G is a triplet (V(G), E(G), G) consisting of a non-empty set V(G)
of vertices, a set E(G) of edges and a function G that is assigned to each
edge and a subset {u, v} of V(G) (u, v need not be distinct). If e is an edge
and u, v are vertices such that G(e) = uv, then e is a line (edge) between
u and v; the vertices u and v are the end points of the edge e.

For example, (i) G = (V(G), E(G), G)

Where, V(G) = {v1, v2, v3, v4}

E(G) = {e1, e2, e3, e4, e5, e6}

G(e1) = {v1v2}, G(e2) = {v2v2}, G(e3) = {v2v3},

G(e4) = {v1v3}, G(e5) = {v4v5} and G(e6) = {v1v4}

(ii) G = (V(G), E(G), G)

Where, V(G) = {v1, v2, v3}, E(G) = {e1, e2, e3},

G(e1) = {v1v2}, G (e2) = {v2v3}; G(e3) = {v3v1}

Every graph has a diagram associated with it. These diagrams are useful for
understanding problems involved in the graph. In the pictorial representation,
vertices are represented by small circles and edges by lines whenever the
corresponding pair of vertices forms an edge.

The pictorial representation of examples (i) and (ii) are shown in Figure 2.1.

v2 v3

e3e1

e2

v1

()ii

e6 e4 e3

e2

v2e1v1

v4 v3

e5

v5

()i

Figure 2.1 Pictorial Representation of Graphs

Graph Theory

NOTES

Self-Instructional Material 97

Notes:

1. In example (i), e2 joins the vertex v2 to itself. Such an edge is called self
loop.

2. If there is more than one edge between a pair of vertices in a graph, then
these edges are called parallel edges.

3. Hereafter the graph G = (V, E) will be denoted for simplicity.

4. A graph which consists of parallel edges is called a multigraph.

Simple Graph: A graph with no self loops and parallel edges is called a simple
graph.

Pseudograph: A graph with self loops and parallel edges is called a pseudograph
(see Figure 2.2).

Note: Every simple graph and every multigraph is a pseudograph, but the
converse is not true.

G:

Figure 2.2 A Pseudograph

The above graph G is neither a simple graph nor a multigraph.

Following are some of the types of graphs commonly used:

2.2.1 Bipartite Graphs

A simple graph G is called bipartite if its vertex set V can be partitioned into
two disjoint non-empty sets V1 and V2 in such a way that every edge in the
graph connects a vertex in V1 and a vertex in V2. Note that no edge in G
in Figure 2.3 connects either two vertices in V1 or two vertices in V2.

v2

v3

v6

v5

v1

v4

G

Figure 2.3 A Bipartite Graph

98 Self-Instructional Material

Graph Theory

NOTES

For example, G is bipartite, because its vertex set v = {v1, v2, v3, v4, v5,
v6} is partitioned into two non-empty sets V1 = {v1, v3, v5} and V2 = {v2,
v4, v6}. Also, every edge in G connects a vertex in V1 and a vertex in V2.

Complete Bipartite Graph
The complete bipartite graph km, n is the graph that has its vertex set partitioned
into two non-empty subsets of m and n vertices, respectively. There is an
edge between two vertices, if one vertex is in the first subset then the other
vertex is in the second subset.

Figure 2.4 has examples of complete bipartite graphs.

k2, 3 k3, 3

k1, 4 (Star Graph)

Figure 2.4 Complete Bipartite Graphs

2.2.2 Subgraph

A graph H = (V(H), E(H)) is called a subgraph of a graph G = (V(G), E(G))
if (a) V(H) V(G) and (b) E(H) E(G).

A subgraph H of a graph G is called a spanning subgraph if V(H) = V(G).

Figure 2.5 shows examples of subgraphs:

G:

H: H1:

Subgraph Spanning Subgraph

Figure 2.5 Subgraphs

Graph Theory

NOTES

Self-Instructional Material 99

2.2.3 Distance in a Graph

For a non-trial graph G and a pair u, v of vertices of G, the distance dG
(u – v) is defined as the length of a shortest (u – v) path in G (if such path
exists). If G contains no (u – v) path, then one defines dG (u – v) = .

Examples of Figure 2.6 illustrate the distance in a graph.

G1:
u v

() (,) = 2i d u vG1

G2:

x

y

() (,) = ii d x yG2

Figure 2.6 Distance in a Graph

G is a connected graph and v is an arbitrary vertex in G. Then, following
important terms are defined as follows:

(i) The eccentricity of v is defined as the length of the longest path in G
starting from vertex u and is denoted by e(v). e(v) = max {d(u, v):
u v(G)}.

(ii) The diameter of G is defined as the maximum eccentricity among all the
vertices of G, i.e., diam (G) = max {e(v): v V(G)}.

(iii) The radius of G is defined as the minimum eccentricity among all the
vertices of G, i.e., rad (G) = min {e(v): v V(G)}.

(iv) The centre of G is defined as the set of vertices having minimum
eccentricity among all the vertices of G, i.e., cent (G) = {v V(G):
e(v) = rad (G)}.

Notes:

1. rad (G) diam (G) 2 rad (G), G is a graph.

2. The median of a connected graph G is defined as the set of vertices having
minimum distance.

2.2.4 Cut-Vertices and Cut-Edges

A vertex v in a graph G is said to be a cut-vertex if (G – v) >(G), where
(G) is the component of G and a component is a maximal connected
subgraph of G, i.e., a vertex v of a connected graph is a cut-vertex, iff
(G – v) is disconnected (Figure 2.7).

100 Self-Instructional Material

Graph Theory

NOTES

G1:
v

G2:

Figure 2.7 Cut-Vertices and Cut-Edges

G1 contains one cut-vertex v and G2 contains no cut-vertices (See Figure
2.7).

Theorem 2.1: A vertex v in a connected graph G is a cut-vertex iff vertices
u and w exist (both are different from v) in such a way that every path
connecting u and w contains v.

Proof: Let G be a connected graph and v be a cut-vertex.

Claim: There exist vertices u and w in such a way that every path between
u and w contains v.

Since v is a cut-vertex, (G – v) is disconnected and (G – v) contains two
components say G1 and G2. Let u and w be the vertices of G1 and G2,
respectively. Clearly there is no (u – w) path in (G – v). Hence, every path
connecting u and w must contain v.

Conversely, lets assume that there exist vertices u and w in such a way that
every (u – w) path contains v.

Claim: v is a cut-vertex.

Suppose v is not a cut-vertex. Then, (G – v) is connected. Since u, w are
vertices in G – v, there is a path between u and w in G – v, which does not
contain the vertex v. This is a contradiction. Hence, v is a cut-vertex.

Cut-edge: An edge e in a graph G is said to be a cut-edge, if (G – e) is
disconnected (see Figure 2.8).

For example,

G1:
e

G2:

Figure 2.8 G
1
 containing One Cut-Edge and G

2
 with no Cut-edge

As in cut-vertex, a similar result can be furnished.

Theorem 2.2: An edge e in a connected graph G is a cut-edge iff there
exists vertices u and w such that every path connecting u and w must contain
the edge ‘e’.

Proof: Let G be a connected graph and e be a cut-edge.

Graph Theory

NOTES

Self-Instructional Material 101

Claim: There exist vertices u and w such that every (u – w) path must
contain the edge e, since e is a cut-edge in G, (G – e) is disconnected and
(G – e) contains atleast two components say G1 and G2.

Let u and w be the vertices respectively in G1 and G2. Thus, there is no path
between u and w in (G – 2). Hence, every path connecting u and w must
contain the edge e.

Conversely, suppose that there exist vertices u and w such that every path
connecting u and w must contain the edge e.

Claim: e is a cut-edge.

Suppose e is not a cut-edge. Then (G – e) is connected and hence, e is some
circuit in G. Therefore, there exists a path connecting u and w, which does
not contain the edge e. This is a contradiction. Hence, e is a cut-edge.

2.2.5 Graph Connectivity

In this sub-section, the structure of graphs will be studied. A walk in a graph
G is an alternating sequence.

W : v0, e1, v1, e2,..., vn–1, en, vn (n 0) of vertices and edges, beginning and
ending with vertices, such that ei = vi – 1 vi, i = 1, 2,..., n. It is denoted by
(v0 – vn) walk. The number of edges (not necessarily distinct) is called the
length of walk. In graph G, u, e1, v, e2, w, e6, x, e4, u is a walk of length 4.

Figure 2.9 illustrates the path and walk in a graph.

G e: 4

x

u v

y

w
e6

e7

e5

e3e2

e1

Figure 2.9 Path and Walk in a Graph

A trail is a walk in which no edge is repeated and a path is a trail in which no
vertex is repeated. Thus, a path is a trail, but not every trail is a path. In the
above graph G, x, e6, w, e3, v, e1, u, e2, w, e7, y is a trail that is not a path,
and u, e4, x, e6, w, e7, y e5, v is a path.

Problem 1: Every (u – v) walk in a graph contains a (u – v) path.

Proof: Let W be a (u – v) walk in a graph G. If u = v, then w is the trail
path, i.e., walk of length zero.

Suppose u v and W : u = u0, u1, u2,..., un = v. If no vertex of G appears
in W more than once, then w itself is a (u – v) path. Otherwise, there are
vertices of G that occur in w twice or more. Let i and j be distinct positive
integers such that i < j with ui = uj. Then say ui, ui + 1,...,uj – 2, uj – 1 are
removed from w and the resulting sequence is (u – v) walk w1 whose length

102 Self-Instructional Material

Graph Theory

NOTES

is less than that of w. By induction hypothesis, this w1 contains a (u – v) path
and hence w has a (u – v) path. If no vertex of G appears more than once
in w1, then w1 is a (u – v) path. If not, apply the procedure, until you get
a (u – v) path.

Cycle: A cycle is a walk. v0, v1,..., vn is a walk in which n 3, v0 = vn and
the ‘n’-vertices v1, v2,..., vn are distinct. It is said that a (u – v) walk is
closed if u = v and open if u v.

Connection: Let u and v be vertices in a graph G. You say that u is connected
to v if G contains a (u – v) path. The graph G is connected, if u is connected
to v for every pair and u, v are vertices of G.

Disconnection: A graph G is disconnected, if there exists two vertices u and
v for which there is no (u – v) path.

Component: A subgraph H of a graph G is called a component of G, if H
is a maximal connected subgraph of G and component is denoted by (G).

Note: If (G) > 1, then G is disconnected (see Figure 2.10)

()i ()ii

Figure 2.10 Connected and Disconnected Graph

Graph (i) is connected and (ii) is disconnected.

Note that graph (ii) has 3 components.

Connectedness in a Directed Graph

 Strongly Connected: A directed graph is strongly connected if there is a
path from u to v and v to u, whenever u and v are vertices in the graph.

 Weakly Connected: A directed graph is weakly connected, if there is a
path between any two vertices in the underlying undirected graph.

 Unilaterally Connected: A directed graph is said to be unilaterally
connected, if in the two vertices u and v, there exists a directed path either
from u to v or from v to u. (see Figure 2.11)

Graph Theory

NOTES

Self-Instructional Material 103

For example,

G1

a

b

d

c a

b

d

c

Weakly Connected Directed Graph Unilaterally Connected Directed Graph

Strongly Connected Directed Graph

a

b

d

c

G2

G3

Figure 2.11 Connectedness in Directed Graph

G1 is weakly connected; G2 unilaterally connected and G3 is strongly connected.

2.2.6 Isomorphic Graphs

Two graphs G and H are said to be isomorphic if there exist bijections

: V(G) V(H) and : E(G) E(H) such that iff G (e) = uv iff H ((e))
= (u) (v).

Such a pair of mappings (,) is called an isomorphism between G and H
and is written as G H.

In other words, two simple graphs G and H are isomorphic if there is a
bijection : V(G) V(H) such that uv E(G) iff (u) (v) E(H).

Figure 2.12 shows examples of isomorphic graphs.

G:

v3

v1 v2

v4
v5

v6

a

H:

d c

b

f

e

Figure 2.12 Isomorphic Graphs

Here G and H are isomorphic.

The correspondence which gives isomorphism between G and H is as follows:

v1 v2 E(G) dc = (v1) (v2) E(H)

v1 v3 E(G) da = (v1) (v3) E(H)

v3 v6 E(G) ab = (v3) (v6) E(H)

v6 v5 E(G) be = (v6) (v5) E(H)

v3 v4 E(G) af = (v3) (v4) E(H)

104 Self-Instructional Material

Graph Theory

NOTES

v6 v2 E(G) bc = (v6) (v2) E(H)

v4 v2 E(G) fc = (v4) (v2) E(H)

 G H

Notes:

1. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic
if a one-to-one correspondence exists from V1 to V2 such that u and
v are adjacent in G1 iff (u) and (v) are adjacent to G2.

2. If G H, then degrees of corresponding vertices are equal.

Example 2.1: Prove that the following graphs G and H are non-isomorphic.

G:

v3

v4 v5

v2
v1

H: u3 u4 u5

u1

u2

Solution: Clearly G and H are isomorphic.

In G, V1 is adjacent to the vertices V3, V4, V5; V2 is adjacent to the vertices
V3, V4, V5.

In H, u1 is adjacent to u3, u4, u5 and u2 is adjacent to u3, u4, u5.

Here, the function defined by (vi) = ui, 1 i 5 gives the isomorphism.

Example 2.2: Prove that the following graphs G and H are non-isomorphic.

G u: 3 u5
u4

u2

u1 w1

H w: 2

w4

w3

w5

Solution: Clearly G and H are non-isomorphic graphs.

In G, these two vertices (u1 and u2) are adjacent with three other vertices
(u3, u4, u5) whereas in H, the vertex w2 is adjacent to w1, w2, w4 and the
vertex w3 is adjacent to w1, w2 and w5 and vertices w2 and w3 are adjacent
to each other.

In G, u1 and u2 are non-adjacent. Hence, G is not isomorphic to H.

Note: From the above example, it is clear that two graphs are isomorphic if
they have same number of vertices and same number of edges and the
degrees of the corresponding vertices are equal, but the converse is not true.

Graph Theory

NOTES

Self-Instructional Material 105

2.2.7 Homeographic Graphs

Two graphs G
1
 and G

2
are homeomorphic if an isomorphism is found from any

subdivision of G
1
 to any subdivision of G

2
.

Subdivision of a graph is another graph that results from subdivision of
edges in that graph. Let there be an edge e having {u, v} as endpoints. Subdivision
of edge e with these endpoints will yield a graph that contains another vertex w as
a new vertex with an edge set that replaces e by two new edges having endpoints
{u,w} and {w,v}. Lets take an example of a graph as shown in Figure 2.13.

There is an edge connecting two endpoints {u,v}.

u e v

Figure 2.13 An Edge Connecting Two Endpoints

This graph may have subdivision as two edges, e
1
 and e

2
, with a new vertex w.

u w v
e1 e2

Figure 2.14 The Edges of a Graph

Reverse of this operation smoothens out a vertex w connecting a pair of edges
(e

1
, e

2
) and removes these edges that contain vertex w replacing these with a new

edge connecting other endpoints of the pair. In Figure 2.14 it is emphasized that
only 2-valent vertices can be smoothed.

This can be understood in Figure 2.15. Let there be a simple connected
graph having two edges, e

1
 joining vertices {u,w} and e

2
 joining vertices {w,v}.

u w v
e1 e2

Figure 2.15 A Simple Connected Graph with Two Edges Joining Vertices

There is common vertex w that might be smoothed away. If done so this
results in a situation as shown in Figure 2.16.

u e v

Figure 2.16 Smoothing Away of the Common Vertex

Determining whether for graphs G
1
 and G

2
, G

2
 is homeomorphic to a subgraph of

G
1
, it is a problem that is NP-complete.

Barycentric Subdivision

A subdivision of this type is a special subdivision that subdivides every edge of a
graph. Such a subdivision results in a bipartite graph and procedure can be repeated
in a way that nth barycentric subdivision is the barycentric subdivision of n-1th

106 Self-Instructional Material

Graph Theory

NOTES

barycentric subdivision of the graph. Second subdivision of this type results in a
simple graph.

Embedding on a Surface

Subdivision of a graph preserves planarity. Kuratowski’s theorem states that ‘a
finite graph is planar if and only if it contains no subgraph homeomorphic to the
complete graph on five vertices or complete bipartite graph on six vertices, three
of which connect to each of the other three’.

A complete graph is denoted as K
5
 and a complete bipartite graph of six

vertices in which three vertices are connected to another three vertices is denoted
as K

3,3
. If a graph is homeomorphic to K

5
 or K

3,3
 it is known as Kuratowski

subgraph.

A generalization, that follows from Robertson–Seymour theorem, asserts

that for each integer g, a finite obstruction set ()() { }g
iL g G of graphs is there,

such that a graph G can be embeded on a surface of genus g, iff G does not

contain any homeomorphic copy of any of the ()g
iG . For example, the finite

obstruction set L(0) = {K
5
,K

3,3
} contains the Kuratowski subgraphs.

For Example,

In Figure 2.17, graph G
1
 and graph G

2
 are homeomorphic.

G
1

G
2

G
1
'G

2
'

Figure 2.17 Homoeomorphic Graphs

If G
1
 is the graph created by subdivision of the outer edges of G

1
 and G

2
' is the

graph resulting from subdivision of inner edge of G
2
, then G

1
' and G

2
' have similarity

in drawing as shown in Figure 2.17 and hence, G
1
' and G

2
' have isomorphism

which leads to the fact that G
1
 and G

2
 are homoeomorphic.

2.2.8 Cut-Sets and Connectivity of Graphs

Let G be a connected graph. Let us recollect the definition of cut-edge (bridge)
and cut-vertex. If G contains an edge e such that G–e is disconnected, then e is a
bridge of G. Further, if G contains a vertex v such that G–v is disconnected, then
v is a cut-vertex of G.

1. Edge cut-set: A subset S of the edge set of a connected graph G is called
an edge cut-set or cut-set of G if,

(i) G – S is disconnected.

(ii) G – S1 is connected for every proper subset S1 of S.

Graph Theory

NOTES

Self-Instructional Material 107

2. Vertex cut-set: A subset u of the vertex set of G is called a vertex cut-
set if,

(i) G – u is disconnected.

(ii) G – u1 is connected for every proper subset u1 of u.

For example,

v1

e2

v6 v5

v4

v2

v3

e1

e5

e6e4

e3 e7
e8

e9

G:

Figure 2.18 Cut-Set

(i) S = {e1, e4, e6, e8} is a cut-set (see Figure 2.18).

v6

v5

v3

v1 v2

v4G-S:

Figure 2.19 Vertex Cut-Set

(ii) u = {v1, v3, v5} is a vertex-cut-set (see Figures 2.19 and 2.20).

v6

v5

v6

G-U:

Figure 2.20

Note: For a connected graph, there may be more than one cut-set.

For example, consider the graph G in Figure 2.20. Some cut-sets of G are:

S1 = {e1, e4, e6, e8}

S2 = {e1, e2}, S3 = {e1, e3, e9}

As s result one is forced to introduce two more parameters for graphs, viz.
edge-connectivity (G) and vertex connectivity k(G).

1. Edge Connectivity: The edge connectivity l(G) of a graph is the minimum
cardinality of a set S of edges of G such that G – S is disconnected, i.e., the

108 Self-Instructional Material

Graph Theory

NOTES

edge (line) connectivity of a connected graph is the number of edges in a
minimum cut-set in the graph (see Figure 2.21).

G:

e3

e3

e6

e8

e7
e5e4

e1

e2

λ() = 2G

Figure 2.21 Edge Connectivity

Notes:

1. If G is a tree then (G) = 1.

2. G has (G) = 0 iff G is disconnected or trivial.

2. Vertex Connectivity: The vertex connectivity K(G) of a graph G is the
minimum number of vertices whose deletion makes G a disconnected or
trivial graph, i.e., the number of vertices in a minimum vertex cut is called the
connectivity of the graph (Figure 2.22).

G: v1

e2

v6

e9
v5

e8

v4

v2

e5

e6
v3

e4

e10

e1

e3 e7
K G() = 3

Figure 2.22 Vertex Connectivity

Problem 2: For every graph G, K(G) (G) (G).

Proof: Let v be a vertex of G with a minimum degree, i.e., d(v) = (G).
Removing (G) edges of G incident with v produces a graph G1, in which
v is isolated. Clearly G is disconnected or trivial.

 (G) (G) ...(2.1)

Claim: K(G) (G)

If, (G) = 0 then G is disconnected.

 K(G) = 0.

If (G) = 1, then G is a connected graph containing a cut-edge (bridge).
Therefore either G is isomorphic to K2 or G is a connected graph having
atleast one cut-vertex.

 In both cases, K(G) = 1.

Graph Theory

NOTES

Self-Instructional Material 109

Now, let us assume that (G) 2. Let S be a cut-set of G with (G) edges
and e = xy be an edge in S. If the edges of S – {e} are deleted from G, the
resulting subgraph H1 is connected and contains e as a cut-edge. Now select
an incident vertex different from x and y for each and every edge in S – {e}.
Remove these vertices from H

1
, the resulting subgraph H

2
 is disconnected,

then

K(G) (G) – 1 < (G)

Suppose the subgraph H2 is connected, then H2 is isomorphic to K2 or the sub-
graph H2 has a cut-vertex, since H2 is an induced subgraph of H1. In any case,
there exists a vertex of H2 whose removal results in a disconnected graph. There-
fore,

K(G) (G). ...(2.2)

From equations (2.1) and (2.2), K(G) (G) (G)

G:

Figure 2.23

In Figure 2.23 K(G) = 1, (G) = 3 and (G) = 3.

n-edge Connected: A graph G is n-edge connected (n 1) if (G) n and G
is n-connected if K(G) n.

2.2.9 Operations on Graphs

(i) The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is
the simple graph with vertex set V1 V2 and an edge set E1 E2
and is denoted by G1 G2 (see Figure 2.24).

G1:

x y

vu
w

G2:

u v

x z

G1 G2

x y z

wvu

Figure 2.24

(ii) The intersection of two simple graphs G1 = (V1, E1) and G2 = (V2, E2)
is the simple graph with vertex set V1 V2 and an edge set E1 E2
and is denoted by G1 G2 (see Figure 2.25). You need to remember
that for G1 G2, V1 V2 is always non-empty.

110 Self-Instructional Material

Graph Theory

NOTES

For example,

G1:

u

x y

v w

G2:

u

x y z

w
v

x

u v w

y
G1 G2

Figure 2.25

(iii) The ring sum of two graphs G1 and G2 is a graph consisting of the
vertex set V1 V2 and of edges that are either in G1 or in G2, but
not in both and is denoted by G1 G2, i.e.,

 G1 = (V1, E1); G2 = (V2, E2)

Then, G1 G2 = (V1 V2, E1 E2)

Where is the symmetric difference.

CHECK YOUR PROGRESS

1. How can a graph be represented diagrammatically?

2. What is a simple graph?

3. What is a pseudograph?

4. Name the various types of graphs.

5. What does the edge connectivity of a graph mean?

6. What does the vertex connectivity of a graph mean?

7. What are isomorphic graphs?

8. What is a subdivision of graph?

2.3 DEGREE OF VERTEX

The degree of a vertex v is the number of edges incident with that vertex. In other
words, the degree of a vertex is the number of edges having that vertex as an end
point, and is denoted by d(v) Figure 2.26.

v1 v2

v3 v4

Here, d(v1) = 2
d(v2) = 3
d(v3) = 2
d(v4) = 3

Figure 2.26 Degree of a Vertex

A loop contributes 2 to the degree of vertex.

Graph Theory

NOTES

Self-Instructional Material 111

Isolated Vertex: A vertex with degree zero is called an isolated vertex.

Pendant Vertex: A vertex with degree one is called a pendant vertex.

Adjacent Vertices: A pair of vertices that determine an edge are called adjacent
vertices.

Note: A vertex is even or odd based on its degree being even or odd.

Example 2.3: Let G be a simple graph with n vertices. Prove that the
number of edges E(G) is at most nC2.

Solution: Let G = (V(G), E(G), G) be a simple graph with ()V G = n.

Since, G assigns to each edge, a 2-element subset {u, v} of V(G), there are
at most nC2 2-element subsets.

Hence, E(G) (1)

2

n n

Theorem 2.3: Let G be a graph with n vertices and e edges. Then,

1

()
n

i
i

d v = 2e

Proof: Let G be a graph with n vertices and e edges.

Since, every edge contributes degree 2 to this sum, so
1

()
n

i
i

d v = 2e.

Theorem 2.4: In a graph G, the number of odd vertices is an even number.

Proof: Let G be a graph with n vertices and e edges.

By Theorem 2.1, you have:

1

()
n

i
i

d v = 2e = Even number ...(2.3)

Among n vertices, some are even vertices and some are odd vertices. Let Ve
and V0 be the even and odd vertices respectively.

Now equation (2.3) can be written as:

0

() ()

e

n

v V v V

d v d v = Even number

0

()

v V

d v = Even number – ()
ev V

d v ...(2.4)

Since every term in the right side of equation (2.4) is even, the sum on the
left side must contain an even number of terms, i.e., the number of odd
vertices in G is even.

Minimum and Maximum Degrees: Let G be a graph. The minimum and
maximum degrees of G are (G) and (G), respectively and are given as:

(G) = min {d(v); v V(G)}

and, (G) = max {d(v); v V(G)}

112 Self-Instructional Material

Graph Theory

NOTES

k-Regular: A graph G is k-regular or regular of degree k, if every vertex of
G has degree k.

Complete Graph: A simple graph in which each pair of distinct vertices is
joined by an edge is called a complete graph. A complete graph on n vertices
is denoted by kn.

Figure 2.27 are the examples of complete graphs on 2 and 4 vertices,
respectively.

k2 k4 4-Regular Graph

Figure 2.27 Complete Graphs

Notes:

1. Every complete graph kn is a (n – 1) regular graph.

2. There is no 1-regular or 3-regular graphs with 5 vertices, since no graph
has an odd number of vertices.

Complement of a graph: The complement G of a graph G is that graph

with V(G) = V G and such that uv is an edge of G if and only if uv is not
an edge of G.

Figure 2.28 shows examples of complement of a graph.

u v

wx

x

u v

w

G
()i

G

()ii
GG

Figure 2.28 Complement of a Graph

There are also some useful terminologies for graphs with directed edges.

Graphs with directed edges: When (u, v) is an edge of the graph G with
directed edges, u is said to be adjacent to v and v is said to be adjacent from
u. The vertex u is called the initial vertex of (u, v) and v is called the terminal
or end vertex of the edge (u, v).

Graph Theory

NOTES

Self-Instructional Material 113

Figure 2.29 shows examples of graphs and directed edges.

u

w

v
G

v3

v5

v4

v2

v1

()i ()ii

Figure 2.29 Graphs with Directed Edges

In-degree and out-degree: In a graph with directed edges, the in-degree
of a vertex v denoted by d–(v) is the number of edges with v as their terminal
vertex. The out-degree of v denoted by d+(v) is the number of edges with
v as their initial vertex.

Note: Self loop at a vertex contributes 1 to both in-degree and out-degree
of this vertex.

Example 2.4: Find the in-degree and out-degree of the following graphs.

c b

a

d

e

()i

u w

v

()ii

Solution:

(i) d –(a) = 3; d – (b) = 1; d – (c) = 1; d– (d) = 2; and d – (e) = 1

d +(a) = 2; d + (b) = 2; d + (c) = 1; d + (d) = 2; and d + (e) = 1

(ii) d –(u) = 1; d – (v) = 1; d – (w) = 1 and

d +(u) = 1; d + (v) = 1; d + (w) = 1

Notes:

1. Let G = (V, E) be a graph with directed edges. Then ()

v V

d v = ()

v V

d v

= e.

2. By ignoring directions of edges in a graph with directed edges, you will get
an undirected graph. Such graphs are called underlying undirected graphs.

2.4 ADJACENT AND INCIDENCE MATRICES

To any graph G, there corresponds a V × E matrix called the incidence matrix of
G and is denoted by I(G) = ,][EVija where

1, if th edge is incident with th vertex

0, otherwiseij

j i
a

114 Self-Instructional Material

Graph Theory

NOTES

One more matrix associated with graph G is the adjacency matrix, e is
denoted by ,][)(VVijbGA

1, if th edge is incident with th vertex

0, otherwiseij

j i
a

Some authors used to define a
ij
 as the number of times (0, 1, and 2) v

i
 and

e
j
 are incident ; b

ij
 is the number of edges v

i
 and v

j
.

For example,

01000

10000

11110

00101

00011

5

4

3

2

1

54321

v

v

v

v

v

eeeee

I(G), incidence matrix of G

01000

01000

11011

00101

00110

5

4

3

2

1

54321

v

v

v

v

v

vvvvv

 A(G), adjacency matrix of G

The adjacency matrix A(G) = [b
ij
] of a directed graph is also a V × V

matrix,

1, if there is a directed edge from to
Where

0, otherwise

i j

ij

v v
b

(Similarly one can define the incidence matrix of a directed graph)
For example,

0 1 1 1 0

0 0 0 1 1

() 0 0 0 0 1

0 0 1 0 0

0 0 0 0 0

A G

Graph Theory

NOTES

Self-Instructional Material 115

Example 2.5: Write the adjacency matrix of graphs (i), (ii) and (iii).

Solution: The adjacency matrices of the graphs are:

(i)
0 1 0 1 0

0 0 1 0 0

() 0 0 0 1 1

0 1 0 0 0

0 0 0 1 0

A G

(ii)

00001

10000

11001

10100

00010

)(GA

(iii)

011000

101000

110000

000001

000001

000110

)(GA

Notes: From Example 2.5 one can conclude that:

1. The diagonal entries of an adjacency matrix are all zero, iff the graph is a graph
with no self-loops.

2. If G is disconnected and it has two components, then its adjacency matrix
A(G) can be written as,

,
)(0

0)(
)(

2

1

GA
GA

GA G1 and G2 are components.

With the help of these matrices, one can verify whether the given graphs are
isomorphic or not.
Example 2.6: Verify if G and G1 are isomorphic.

116 Self-Instructional Material

Graph Theory

NOTES

Solution: First lets write the adjacency matrices of G and G1.

010010

101000

010101

001010

100101

001010

)(GA

010100

101001

010100

101010

000101

010010

)(1GA

By keeping one matrix fixed and by applying permutation of rows and
corresponding columns, permutations on the unfixed matrix yields the fixed one.
Then, the given graphs are isomorphic.

It keeps A(G) fixed.

Also G and G
1
 have 4 vertices of degree 2 and two vertices of degree 3.

Since d(v
1
) = 2 and v

1
 is not adjacent to any other vertex of degree 2, corresponding

vertex in G
1
 is either w

4
 or w

6
, the only vertices of degree 2 in G

1
 not adjacent to

a vertex of degree 2.

Without the loss of generality, let us take .61 wv Suppose this 61 wv is
not ending with isomorphism, one has to take 41 wv .

Similarly, for other vertices of G, it can be set as:

2 3 3 4 4 5 5 1; ; ; ;v w v w v w v v 6 2v v .

Thus, we can modify A(G
1
) as

6 3 4 5 1 2

6

1 3

4

5

1

2

0 1 0 1 0 0

() 1 0 1 0 0 1

0 1 0 1 0 0

1 0 1 0 1 0

0 0 0 1 0 1

0 1 0 0 1 0

w w w w w w

w

A G w

w

w

w

w

1 1() () and hence .A G A G G G

2.5 PATH CIRCUIT

Now you will study about paths in directed graphs and relationship between a
relation on a set, before transitive closure.

Path: A path from vertex a to vertex b in a directed graph G is a sequence of one
or more edges (v0, v1), (v1, v2), ...,(vn–1, vn) in G, with v0 = a; vn = b, i.e., a
sequence of edges whose terminal vertex is same as the intial vertex of the next
edge in this path. This path is denoted by v0, v1, ...,vn of length n.

Graph Theory

NOTES

Self-Instructional Material 117

Let R be a relation on a set A = {1, 2,..,n} and GR be the corresponding
relation graph whose vertices are a = 1, v1 = 2, ...,b = n. There is a path in GR
from a to b if there is a sequence of vertices a, v1, v2,..., vn–1, b with (a, v1)R,
(v1, v2)R, (v2, v3)R,..., (vn–1, b)R.

Problem 3: Let R be a relation on a set A. Then,

(i) R2 = R R, Rn = Rn–1 R
(ii) Rn R
(iii) In GR, the relational graph of R, there is a path of length n from a to b if

(a,b)Rn.

Connectivity Relation: Let R be a relation on set A. The connectivity relation R*

consists of the pairs (a,b) such that there is a path between a and b in R.

i.e., n

n
RR

1

Problem 4: The transitive closure of a relation R equals the connectivity relation
R*.

Let R be a relation on a set A.

Claim: R* is the transitive closure of R. To prove that,

(i) R* is transitive.
(ii) S is a transitive relation on A with R S. Then R* S.

By definition, i

i
RR

1

 R* contains R.

(i) If (a,b)R* and (b,c)R*, then there are paths from a to b and from b to
c in R. Thus, a path is obtained from a to c by starting with the path a to b
and following it with the path b to c.

 (b,c)R*.

i.e., R* is transitive.

(ii) Let S be a transitive relation containing R.

Since, S is transitive, S* is also transitive.

Further S* S. Since,
1

i

i
S S

 and Si S, S* S.

Since, any path in R is also a path in S, R* S*, if R S.

Now one gets, R* S* and S* S.

 R* S*

i.e., any transitive relation that contains R must also contain R*.

 R* is the transitive closure of R.

Transitive Closure: Let MR be the relation matrix of a relation R on the set A of
n elements. Then the transitive closure matrix MR* is given by,

* 2 3 ...R R nR R R
M M M M M

118 Self-Instructional Material

Graph Theory

NOTES

Example 2.7:

(i) Find the transitive closure of a relation R on the set {a,b,c}, whose relation
matrix M

R
 is given as

0 0 1

1 1 0

1 0 1
RM

Solution: Let R* be the transitive closure of R. The relation matrix MR* of R* is
given as,

MR* = MR 2R
M

 3R
M

Now

2 3

1 0 1 1 1 1

1 1 1 ; 1 1 1

1 1 1 1 1 1

0 0 1 1 0 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1

R R

R

M M

M

(ii) Find the transitive closure matrix of the relation R whose relation matrix is
given as

011

010

101

RM

Solution: Let R* be the transitive closure of R and MR* be the corresponding
relation matrix.

we have MR* = MR MR
2 MR

3

2 3

1 1 1 1 1 1

Now 0 1 0 ; 0 1 0

1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 0 0 1 0

1 1 0 1 1 1 1 1 1 1 1 1

R R

R

M M

M

Note: The transitive closure can be obtained by the following algorithm.

Transitive closure (MR; 0 –1 nn matrix)

A MR

B A

for i 2 to n

begin

A A × MR

M

Graph Theory

NOTES

Self-Instructional Material 119

B B A
end (B is the required matrix R*)

Paths and Closures
A connected graph might contain more than one spanning tree. Consider the given
graphs in Figure 2.30.

In T1 the edges e
1
, e

2
, e

5
, e

6
 are present, whereas in T

2
 the edges e

2
, e

4
, e

5
,

e
6
 are present.

Figure 2.30

The edges of G which are present in a spanning tree T, are called as the
branches of G with respect to T. The edges of G which are not present in its
spanning tree T are called the chords of G with respect to T.

In the above example, the branches of G are e
1
, e

2
, e

5
, e

6
 with respect to T

1
:

the branches of G are e
2
, e

4
, e

5
, e

6
, with respect to T

2
.

Note: Let G be a connected graph on n vertices; e-edges and T be one of its
spanning tree. Since T is a tree on n vertices, it has (n –1) edges, i.e., the number
of branches of G with respect to T is (n –1). The number of chords of G with
respect to T is e– (n –1). Often, the number of branches of G is called as rank of
G and is denoted by r(G); the number of chords of G is called as the nullity of G,
denoted by (G). In general, for a connected graph on n-vertices and e-edges,
r(G), the rank of G is (n –1) and (G), the nullity of G is e – n + 1.

Fundamental Circuit
Let T be the spanning tree of a connected graph G, and e be a chord of G with
respect to T. Since the spanning tree T is minimally acyclic, the graph T+e contains
a unique cycle. This cycle is called a fundamental cycle in G with respect to T as
seen in Figure 2.31.

RM

120 Self-Instructional Material

Graph Theory

NOTES

Every chord of G gives rise to a fundamental cycle. Therefore, the number of
fundamental cycles possible for a connected graph is atmost (G).

For example,

G – Graph, T – Spanning tree of G, T+e
3
 – Fundamental Cycle

Figure 2.31

Cyclic Interchange
Let T be a spanning tree of G and e be a chord of G with respect to T. The graph
T+e is a fundamental circuit. In this circuit other than edge e, all the other edges
are branches of G with respect to T. On removal of any of the branches from the
fundamental circuit, one gets a spanning tree T1, i.e., b is a branch in the fundamental
circuit (with respect to a chord e), then spanning tree T1 is obtained by removing
b from T+e, i.e., T1 = T + e – b. This process is called cyclic interchange (see
Figure 2.32).

G - Connected Graph, T - Spanning Tree

T+e - Fundamental Circuit; T1 - Spanning Tree Obtained by Cyclic Interchange.

Figure 2.32

Graph Theory

NOTES

Self-Instructional Material 121

2.5.1 Floyd’s and Warshall’s Algorithms

Floyd’s Algorithm – Shortest Paths

Floyd’s algorithm finds the paths which has least value between all the vertices of
a graph. This requires matrix representation of the graph. The matrix represents
the distance of edges between vertices which normally corresponds to the cost.

To apply this algorithm a matrix has to be made as a two-dimensional array.
For a graph of n vertices matrix will be n × n. Every row in the matrix is a ‘starting’
vertex, denoted as i and each column is an ‘ending’ point, denoted as j. An edge
between i and j in the graph, length of this edge is the position (i,j) of the matrix. In
case of undirected graphs, edges are bidirectional, a value is given in position (j,i)
of the matrix. If there is no edge as a direct link between two vertices, value is
given as infinity. Alternatively, very large value is put, to express the impossibility of
movement from i to j.

For example, in a graph connecting points 2 and 6, bidirectionally and the
edge has a length of 24 units, number 24 will be placed into positions (2, 6) and
(6, 2) of the matrix.

After setting such a matrix Floyd’s algorithm can be used to find the shortest
distance between every pair of vertices in the graph. The algorithm works for
every non-direct path between pairs of vertices having least value than the way to
move between these vertices. In the event of locating such a path, it is the value
between these vertices which are to be tested. Each element of the matrix represents
the least value of traversal between the vertices with respect to its row and column.
If the graph is directed, (i,j) and (j,i) may not be equal.

Warshall’s Algorithm

This algorithm is more efficient in determining the access of all pairs of nodes in a
graph whether directed or undirected. For a graph G with n nodes, this method
constructs a sequence of n adjacency matrices, P

1
,...,P

n
, by using the same set of

nodes. One starts by setting P
0
= G.

If P
k
 is already defined then P

k+1
has all the edges of P

k
, and additional

edges, if any, needed to ensure that every pair of nodes joined by an edge of P
k
 to

node k + 1 are joined by an arc of P
k+1

(in the undirected case) and also for every
path a k + 1 b. The pair (a, b) is an edge of P

k+1
 (in the directed case).

The algorithm terminates after n iterations and P
n
 contains all adjacency

relationships which are shown as edges.

Floyd–Warshall’s algorithm is an algorithm for graph analysis that finds
shortest paths in a graph that is weighted and directed. The algorithm computes
the shortest paths between all pairs of vertices. This algorithm is an example of
dynamic programming.

A path in the matrix k is defined in such a way that path k[i][j] is true if and
only if there is a path from node i to node j and there is no node higher than k,

122 Self-Instructional Material

Graph Theory

NOTES

except i and j themselves. For any i and j if path k[i][j] = True, it implies that path
(k+1)[i][j] is also true. If there is a situation in which path (k+1)[i][j] is true while
path k[i][j] it is false, it is possible if there is a path from i to j via node k + 1, but
no path from i to j via nodes i through k. This means that there is a path from i to
k + 1 through nodes i through k and a similar path from k + 1 to j. This follows
that the path (k+ 1)[i][j] is true if and only if one of the following two conditions
holds:

(i) Path k[i][j] is true.

(ii) (Path k[i][k+1]) (Path k[k+1][j]) is true.

Also, path 0[i][j] = adjacent. This is since, direct path is there from node i
to node j with no intermediate node. It can also be noted that, path (MAXNODES-
1)[i][j] = Path[i][j], because if a path exists through any node, then any path from
node i to node j may be selected.

This is Warshall’s algorithm which is named, after its discoverer.

This algorithm compares every possible path between every pair of vertices
in the graph. It makes only V

3
 comparisons. Maximum number of edges may be

given as V
2
 in the graph with every combination of edges tested. It estimates the

shortest path between two vertices, by improving it incrementally to find an optimal
solution.

Let there be a graph with a set V, of vertices and each vertex numbered 1
through N. Let there be a function defined as shortest path (i, j, k) which returns
the shortest possible path from i to j using only vertices 1, 2, 3, ….., k as intermediate
nodes. The objective is to find the shortest possible path from each i to each j by
using only nodes 1, 2, 3, …., k + 1.

There are two alternative paths:

(i) Shortest path that uses nodes only in the set (1...k).
or

(ii) Another path that goes from i to j, via k + 1.

Best path from i to j is the one that uses only nodes 1…. k which is defined
by the function. If there was a better path from i to j via k + 1, then the length of
this path would be the sum total of the shortest path from i to k + 1, traversing
vertices 1.....k and the shortest path from k + 1 to j by using same set of vertices,
i.e., 1…....k.

One may define shortest path (i, j, k), that is recursive in nature.

This formula is the heart of Floyd Warshall algorithm which works by first
computing shortest path (i, j, 1) for all (i, j) pairs, then using that to find shortest
path (i, j, 2) for all (i, j) pairs, and so on and terminates when k = n. This finds the
shortest path for all (i, j) pairs by using any intermediate vertices.

Graph Theory

NOTES

Self-Instructional Material 123

2.5.2 Eulerian Path and Circuit

Euler Path

In this section, special graphs and also the origin of the graph theory will be
studied.

The Koingsberg town in The Russian Republic was separated into four lands
by the river Pregel. These islands were connected by seven bridges. The
problem was, could people walk from one island, travel across all the seven
bridges and return to the island where they had started without using any
bridge more than once? For almost two centuries, nobody was in a position
to state whether such a walk was possible or not.

In 1736, the great mathematician Leonhard Euler concluded that such a walk
was impossible. He used multigraph to study and solve this problem. Euler,
today, is considered as the father of the graph theory.

G:

Figure 2.33 Euler Path

The four lands and the seven bridges are represented by vertices and edges
respectively in G. (see Figure 2.33) This problem is called as Koingsberg
bridge problem.

Euler Circuits

A trail that traverses every edge of G is called an Euler trail of G. A circuit
(tour) of G is a closed walk that traverses each edge of G exactly once. An
Euler tour is a tour which traverses each edge exactly once. A graph is
Eulerian if it contains an Euler tour.

Theorem 2.5: A connected graph is Eulerian iff it has no vertices of odd
degree.

Proof: Let G be Eulerian and let C be an Euler tour of G, which begins and
ends at some vertex u.

Claim: G has no vertices of odd degree, i.e., to prove that every vertex of
G is even. Consider a vertex w u. Since w is neither the first nor the last
vertex of C, each time w is encountered, it is reached by some edge and left
by another edge. Hence, each occurrence of w in C contributes 2 to its
degree. Thus w is of even degree. This is true for all internal vertices of C.
The initial occurrence and final occurrence of the vertex u in C contributes
1 to the degree of u. Therefore, every vertex of G is of even degree.

124 Self-Instructional Material

Graph Theory

NOTES

Conversely, let us assume that every vertex of a connected graph G is even.

Claim: G is Eulerian.

Suppose G be a connected non-Eulerian graph with no vertices of odd
degree.

Among such graphs, choose one, say G having the least number of edges.

Since each vertex of G has atleast two edges, G contains a trail. Let C be
a closed trail of maximum possible length in G. By assumption, C is not a
Euler circuit of G and hence G – E(C) has edges.

Therefore, G – E(C) has some component G with edges. Since C itself is
Eulerian, degree of every vertex in C is even. Hence, degree of every vertex
in G – E(C) is also even. Therefore degree of every vertex in G is even.
Since E(G) < E(G), [by the choice of G in (1)].

G is Eulerian and hence G has an Euler circuit (tour) say C. Since G is
connected, there is a vertex v in V(C) V(C) and one may assume without
the loss of generality that v is the initial and the terminal vertex of both circuits
C and C. Now (C C) is a closed trail of G with E(C C) > E(C). This
contradicts the choice of C. Hence, every non-empty connected graph with
no vertices of odd degree is Eulerian. Figure 2.34 shows examples of Eulerian
graphs.

G:

v6

v1 v3
v2

v5
v4

v8v7 H:

Figure 2.34

G and H are Eulerian graphs.

Theorem 2.6: A connected graph G has an Eulerian trail iff G has exactly two
odd vertices.

Proof: Let G be a connected graph with an Eulerian (u – v) trail. By the
similar argument in the previous theorem, it is concluded that all the vertices
on the trail except u and v, have even degree. Conversely, let G be connected
graph with two odd vertices u and v. Let G be the graph obtain from G by
adding a new edge e = uv between u and v. By applying the previous
theorem to G, one can obtain an Eulerian tour in which the edge e is the first
edge. Hence, this Eulerian trail of G can be obtained that starts at v and ends
at u. Therefore, G has an Eulerian trail.

Graph Theory

NOTES

Self-Instructional Material 125

Eulerian Digraphs

An Eulerian trail of a connected directed graph D is a trail that contains all
the edges of D; while an Eulerian circuit of D is a circuit which contains every
edge of D. A directed graph that contains an Eulerian circuit is called Eulerian
digraph(See Figure 2.35).

D1:

D2:

Figure 2.35 Eulerian Digraphs

Theorem 2.7: Let D be a connected directed graph. D is Eulerian iff d + (v)
= d – (v), v G, then G is called a balanced digraph.

Proof: Let D be an Euler directed graph. Then D contains an Euler circuit
C with common initial and terminal vertex v. Let, bu be the number of occurrence
of an internal vertex u in C.

Whenever C enters u through some edge incident into u, there is another
edge incident out of u through which C leaves u. Thus, each occurrence of
u contributes one in-degree and one out-degree. Moreover, C contains all the
edges of D. Thus,

d+(u) = d–(u) = bu

Similarly, d +(v) = d–(v)

 Hence, d +(v) = d–(v), v V(D)

Conversely, suppose the connected digraph D is balanced. Then, for each
vertex u, d +(u) = d–(u) 0. Start with an arbitrary vertex u1, d +(u1) 0.
There exists an edge incident out of u1. Let u2 be the terminal vertex of this
edge, d+(u2) 0. Hence, there exists an edge incident out of u2. Continuing
like this one reaches a vertex which has been traversed directly. Thus a
directed circuit C1 in D is obtained. If E(C1) = E(D), then C1 is the required
Euler circuit. If not, i.e., E(C1) E(D), then remove all the edges of C1 from
D to obtain a spanning subgraph D1. Since D is balanced, D1 is also balanced.
By applying the above process to D1, one will obtain a circuit C2 in D1. If
E(D) = E(C1) E(C2) then C1 and C2 can be combined to obtain an Euler
circuit in D1. Otherwise, edges of C2 is removed from D1 to obtain a spanning
subgraph D2 of D. The above process is repeated in D2 and after a finite
number of steps, one obtains an edge of disjoint circuits C1, C2, ..., Ck such
that E(D) = E(C1) E(C2) ...E(Ck). Since D is connected, any two of

126 Self-Instructional Material

Graph Theory

NOTES

these cycles have a common vertex and the circuits C1, C2, ... ,Ck can be
combined to obtain an Euler circuit in D. Hence, D is an Euler graph.

2.5.3 Hamiltonian Graphs

In 1857, Sir William Rowan Hamilton invented a game called ‘Around the
World’. In this game, a solid regular dodecahedron (20 vertices, 30 edges
and 12 faces) and a supply of string is given. Every vertex is given the name
of an important city. The objective of the game is to find a route along the
edges of dodecahedron that visits every city exactly once and terminates
where it started

D

Figure 2.36 Hamiltonian Graphs

The graph D is a dodecahedron.

Another famous problem is ‘The Knight’s Puzzle’. Is it possible for a knight
to tour the chess board, i.e., visit each square exactly once and return to its
initial square?

It can be represented by a graph G, where the vertices ui correspond to
squares Si of the chess board and uj is adjacent to ui iff it is possible for a
knight to proceed from Si to Sj in a single move.

To solve ‘Around the World’ and ‘Knight’s Puzzle’, one must determine if the
given graph is Hamiltonian.

A path that contains every vertex of G is called a Hamilton path of G.
Similarly, a Hamilton cycle of G is a cycle that contains every vertex of G in
other words spanning cycle. A graph is Hamiltonian if it contains a Hamilton
cycle or a spanning cycle.

Example 2.8: Prove that kn has a Hamiltonian circuit, n 3.

Solution: Let us construct the Hamiltonian circuit in kn (n 3) as follows:

Choose a vertex arbitrarily in kn and begin the Hamiltonian circuit at this
vertex. Such a circuit can be built by traversing vertices in any order, as long
as the path begins and terminates at the same vertex and visits other vertices
exactly once. This is possible in kn, since every vertex is adjacent to all other
vertices. Also k1 and k2 has only Hamiltonian path, not circuit.

Graphical: A sequence d = (d1, d2,, dn) is graphical if there exists a simple
undirected graph on n vertices with the degrees of the vertices d1, d2, ..., dn
respectively.

Graph Theory

NOTES

Self-Instructional Material 127

For example, a graph with degree sequence of vertices v1 to v6 (4, 4, 3, 2,
2, 1) is shown in the following figure.

v5
v6

v4

v2v3

v1

G:

Closure: A closure (CG) of a n-vertex graph G is a graph from G by
recursively joining pairs of non-adjacent vertices whose degree sum is atleast
n until no such pair remains.
For example,

G:

C G()

The above figures explain one way of constructing a closure of a graph.

Important Theorems
Theorem 2.8: Let G be a n-vertex graph. Suppose G1 and G2 are two
graphs obtained from G by recursively joining pairs of non-adjacent vertices
whose degree sum is atleast n. Then G1 = G2. In other words, C(G), the
closure of a graph G is unique.

Proof: Let e1, e2, ..., ek and f1, f2, f3, ..., fe be the edges added to G to
obtain G1 and G2, respectively. It has to be proved that every ei (1 i k)
is an edge of G2 and fj (1 j l) is an edge of G1. Suppose that some edge
in the sequence e1, e2, ..., ek does not belong to G2. Let p be the smallest
positive integer such that ep+1 is not an edge of G2. Let ep+1 = uv and H =
G + {e1, e2, ..., ep}. Then, H is a subgraph of G1 and G2. By the construction
of G1, one gets

dH(u) + dH(v) n

Therefore, dG2
(u) + dG2

(v) dH(u) + dH(v) n.

This is a contradiction since u and v are non-adjacent in G2. Therefore, each
ei is an edge of G2. Similarly, each fj belongs to G1. Hence, G1 = G2.

Theorem 2.9: A graph G is Hamiltonian iff its closure C(G) is Hamiltonian.

Proof: Let e1, e2,...en be edges added to G to obtain its closure C(G). Let
Gi be the graph obtained from G by adding the edge ei.

By repeated application of Example (2.8).

G is Hamiltonian C(G) is also Hamiltonian.

Corollary 1: Let G be a graph with atleast 3 vertices. If C(G) kn, (n
3) then G is Hamiltonian.

128 Self-Instructional Material

Graph Theory

NOTES

Proof: By corollary 1, kn is Hamiltonian. Since C(G) kn, C(G) is Hamiltonian
and hence G is also Hamiltonian.

Corollary 2: Let G be a graph with atleast 3 vertices iff d(u) + d(v) n(n
 3), for all pairs u and v of non-adjacent vertices of G, then G is Hamiltonian.

Proof: Let G be a graph with atleast 3 vertices. Given that d(u) + d(v) n
(n 3) for all pairs of non-adjacent vertices of G. Hence, one can add edges
between such pair of vertices to obtain C(G). Since, C(G) is complete by
corollary, G is also Hamiltonian.

For example,

G : H :

G, Hamiltonian graph and H, non-Hamiltonian graph.

Theorem 2.10: If G is Hamiltonian then, for every non-empty proper subset

S of V, w(G – s) s .

Proof: Let G be a Hamiltonian graph and S be a proper subset of V. Since,
G is Hamiltonian, G has a Hamiltonian cycle C. Suppose w(G – S) = n,
where G1, G2,... Gn are the components of G – S. Let ui (1 i v) be the
last vertex of C that belongs to Gi and let vi be the vertex that immediately
follows ui on C. Clearly vi S for each i and vj vk for j k. Hence, there
are atleast as many vertices in S as components in G – S.

i.e., w(G – S) S .

Weight graph: A graph G is called a weight graph if every edge of G is
assigned with a real number.

Travelling Salesmen Problem (TSP)

Suppose that a salesman is expected to take a trip through a given collection
of n cities (n 3). What route should he take to minimize the total distance
travelled? This can be represented as a weight graph. Let G be a connected
weight graph whose vertices represent the cities to be visited and let the
weight of an edge vi vj be the distance between the cities vi and vj. Now TSP
is equivalent to finding a minimum Hamiltonian cycle in a connected weight
graph.

CHECK YOUR PROGRESS

9. What does a path mean in a directed graph?

10. What is the function of Floyd’s algorithm?

11. What is the function of Warshall’s algorithm?

12. What is Floyd–Warshall algorithm?

Graph Theory

NOTES

Self-Instructional Material 129

2.6 GRAPH COLOURING

Colouring

No two adjacent vertices having the same colour is called the proper colouring or
colouring of a graph. A graph G that requires K different colours (minimum number)
for its proper colouring can be referred to as k-chromatic graph, and the number
k is called the chromatic number of G.

A graph consisting of only isolated vertices is 1-chromatic.

A graph with one or more edges (not a self-top) is at least 2-chromatic also called
bichromatic.

Bipartite Graph: A graph G is called bipartite if its vertex set V can be decom-
posed into two disjoint subsets v1 and v2 such that every edge in G joins a vertex
in v1 with a vertex in v2.

Note: Every tree is a bipartite graph.

a1

a2

a3

P1

P2

P3

P4

PositionsApplicants

Theorem 2.11: Every tree with two or more vertices is bichromatic.

Proof: Choose any vertex r in the given tree T. Let T be a rooted tree at vertex v.
Paint v with colour 1. Paint all vertices adjacent to v with colour 2. Next, paint the
vertices adjacent to these using colour 1. Repeat this process till every vertex in T
has been painted. Hence all vertices at odd distances from v have colour 2 while
v and vertices at even distances from v have colour 1.

Along any path in T the vertices are of alternating colours. Since there is one and
only one path between any two vertices in a tree, no two adjacent vertices have
the same colour.

2
1

2

1
V

2

2

1

2

1

1

1

2

1

Figure 2.37 Proper Colouring of a Tree

130 Self-Instructional Material

Graph Theory

NOTES

Theorem 2.12: A tree with atleast one edge is bichromatic.

Proof: Let T be a tree and v be any vertex of T. For this vertex v assigns colour
1. Assign colour 2 to be adjacent vertex of v. Continuing this process, we can see
that all vertices at even distance from v are assigned colour 1 and the vertices at
odd distance from v are assigned colour 2.

This gives a two colouring of T. Since T is a connected graph with atleast one
edge, T is not 1-coloured.

 T is bichromatic.

Theorem 2.13: A graph is bipartite iff it is bichromatic.

Proof: Let G a bipartite graph with at least one edge. Let (v1, v2) be the partition
of the vertex set of G. In v1 as well as in v2, no two vertices are adjacent. Now
assign colour 1 to the vertices in v1 and assign colour 2 to the vertices in v2.
Hence, G is bichromatic.

Conversely, let us assume that G is a bichromatic graph. Therefore x(G) = 2. Let
v1 be the set of all vertices for which colour 1 is assigned and v2 be the set of all
vertices for which colour 2 is assigned. Clearly (v1, v2) is the partition of the
vertex set of G. Otherwise at least two vertices in v1 or v2 have the same colour.
Therefore, G is a bipartite graph.

Note: A graph G is bipartite if it contains no odd cycles.

Independent Set: A set U of vertices in a graph G is called an independent set if
no two vertices in v are adjacent in G. An independent set U of vertices in a graph
G is called a maximal independent set if U is not a proper subset of any other
independent set of vertices of G. The cardinality of a maximal independent set is
called as an independence number and is denoted by (G).

For example, here {v1, v4, v2, v7}, {v1, v6}, {v1, v7}, {v2, v7} are all indepen-
dent set
and the sets {v1, v4, v2, v7} is a maximal independent set and (G) = 4.

Dominating Set: A set S of vertices in a graph G is a dominating set if every
vertex not in S is adjacent to a vertex in S. A dominating set S is called as a minimal
dominating set if no proper subset of S is a dominating set. The cardinality of a
minimal dominating set is called as domination number and is donoted by (G).

G :

v5 v4

v3

v1

v2

v6

v7

Graph Theory

NOTES

Self-Instructional Material 131

For example,

G, Graph with
(G) = 2

Note: For every graph G, (G) (G).

Map Colourings

When we colour the map of a country we see to it that its neighbouring states are
coloured differently. In such circumstances, one may ask what is the minimum
number of colours needed to colour so that the adjacent states receive different
colours?

From the following example, one can say that 3 colours are not sufficient.

For example,

s3

c3

s3

c4

c1

s4

s4

c4

In the above map, Si denotes the states and Ci denotes the colours received by Si,
clearly 3 colours are not sufficient for map colouring so that no two adjacent states
receive the same colour.

The above map can be represented as a graph. The states are denoted by vertices
and the adjacency between states are denoted by edges. Now the graph obtained
in the above fashion is not 3-colourable.

Note: Every map can be represented as a planar graph.

The four colour problem: Can the regions of a planar graph be coloured with
four colours so that the adjacent states are coloured differently?

Yes, every planar graph is 4-colourable.

Theorem 2.14: Every simple planar graph is 4-colourable. It is discussed as
follows:

2.6.1 Four Colour Theorem

If we are given a graph which has many regions and we have to show these
regions separate in the graph, we should colour this graph such that no two adjacent
regions have same colour. How many colours we need so that every region is

132 Self-Instructional Material

Graph Theory

NOTES

shown separate? It has been discovered that four colours are sufficient for this
purpose in case of a planar graph. This is ‘four colour theorem’ which is true for
any planar graph. This is also known as ‘four colour map theorem’.

Although it is possible to colour a map by using only three colours, but this
is inadequate when a region is surrounded by three regions. In that case a fourth
colour becomes necessary. Few map-makers make use of fifth colour as an easier
approach, but it is optional as four colours are sufficient for such applications.

In 1976, this theorem was proved. For this computer was used. All maps
were categorized into more than 1900 cases. One special-purpose computer
program was run and the concept of four colour theorem was tested. But since
this could not be verified by hand, it was not accepted by all mathematicians.

As per the four colour theorem, every planar map is four colourable.
This conclusion was based on the work of Appel and Haken. Although, not
accepted by all, the original work of Kempe has put forward some basic tools,
which was used at a later stage, to prove it.

Adding edges to a graph does not decrease its chromatic number. Thus, a
maximal planar graph, a kind of triangular graphs, where every face is bounded by
three edges, is to be considered here. Let v, e, and f be the number of vertices,
edges, and faces, respectively. We know that each edge is shared by two faces,
hence, 2e = 3f. Using this fact with Euler’s formula v – e + f = 2 6v – 2e = 12.
Let v

n
 be the number of vertices of degree n and D be the maximum degree. Then,

1 1 1

6 2 6 (6) 12
D D D

i i i
i i i

v e v iv i v

Here, 12 > 0 and 6 – i 0 and so, i 6. Thus, there is at least one vertex
of degree 5 or less. There may be more than one vertex which may have degree 5.

If a maximal planar graph exists that requires 5 colours, then there is a
minimal such graph and removing any vertex reduces it to four-colourable. Let us
take a graph G. This graph can not have a vertex having degree 3 or less than 3. If
d(v) 3, v can be removed from G, we colour the smaller graph using four-colour
and then re-add v. After re-adding v, we extend the four-colouring to this graph
by selecting a colour different from its neighbours.

Kempe argued that G can have no vertex of degree 4. Once again, we
remove a vertex v and apply four colours for remaining vertices.

Figure 2.38 Colouring a Graph

Graph Theory

NOTES

Self-Instructional Material 133

If we select the four colours say red, green, blue, and yellow in clockwise order in
the neighbourhood of v, these are different. We look for an alternating path of
vertices coloured red and blue joining the red and blue neighbours. This path, on
the name of Kempe, is known as Kempe chain. Thus, there may be a Kempe
chain that joins red and blue neighbours, similarly, there may be a Kempe chain
that joins green and yellow neighbours, but not both. This is so since these two
paths will intersect, and the intersecting vertex can not be coloured. Let us consider
that the red and blue neighbours are not chained together. If we explore all vertices
attached to the red neighbour using red-blue alternating paths, and then reverse
the colours on all these vertices. The result so obtained is again a four-colouring
which is valid and we add v back.

The four colour theorem is not applicable in geopolitical mapping where
regions of a country are non-contiguous. For example, Alaska is a part of the
United State and is noncontiguous whereas Leningrad is a part of Russia.

CHECK YOUR PROGRESS

13. What does the four colour theorem say?

14. In which case is the four color theorem not applicable?

2.7 SUMMARY

In this unit, you have learned that:

 A graph is a triplet consisting of a non-empty set of vertices, a set of edges,
a function that is assigned to each edge and a subset that need not be
distinct.

 Every graph has a diagram associated with it and this diagram is useful in
understanding the problems involved in the graph.

 A simple graph is called bipartite if its vertex set can be partitioned into two
disjoint non-empty sets in such a way that every edge in the graph connects
a vertex.

 In a graph’s structure, a trail is a walk in which no edge is repeated and a
path is a trail in which no vertex is repeated.

 Two graphs G and H are said to be isomorphic if there exists bijections in
them.

 Bijection is a function f from a set X to a set Y with the property that, for
every y in Y, there is exactly one x in X such that f(x) = y and no unmapped
element exists in either X or Y.

 Two graphs are homeomorphic if an isomorphism is found from any
subdivision of one graph to the subdivision of another graph.

134 Self-Instructional Material

Graph Theory

NOTES

 Subdivision of a graph refers to another graph that results from subdivision
of edges in that graph.

 Barycentric subdivision is a special subdivision that subdivides every edge
of a graph.

 The degree of a vertex is the number of edges having that vertex as an end
point, and is denoted by d(v).

 A vertex with degree zero is called an isolated vertex.

 A vertex with degree one is called a pendant vertex.

 A path from various vertices in a directed graph is a sequence of one or
more edges.

 Floyd’s algorithm finds those paths which have least value between all the
vertices of a graph and it requires the matrix representation of the graph.

 Floyd’s algorithm works for every non-direct path between pairs of vertices
having least value than the way to move between these vertices.

 Warshall’s algorithm is more efficient in determining the access of all pairs
of node in a graph, whether directed or undirected.

2.8 KEY TERMS

 Simple graph: A graph with no self loops and parallel edges is called a
simple graph.

 Pseudograph: A graph with self loops and parallel edges is called a
pseudograph.

 Isolated vertex: A vertex with degree zero is called an isolated vertex.

 Pendant vertex: A vertex with degree one is called a pendant vertex.

 Adjacent vertices: A pair of vertices that determine an edge are called
adjacent vertices.

 Complete graph: A simple graph in which each pair of distinct vertices is
joined by an edge is called a complete graph.

 Bipartite graph: A simple graph is called bipartite if its vertex set can be
partitioned into two disjoint non-empty sets.

 Floyd’s algorithm: It finds the paths which has least value between all the
vertices of a graph.

 Floyd–Warshall algorithm: Floyd–Warshall algorithm is an algorithm for
graph analysis that finds shortest paths in a graph that is weighted and
directed.

Graph Theory

NOTES

Self-Instructional Material 135

2.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In the diagrammatic representation of a graph, vertices are represented by
small circles and edges by lines whenever the corresponding pair of vertices
forms an edge.

2. A graph with no self loops and parallel edges is called a simple graph.

3. A graph with self loops and parallel edges is called a pseudograph.

4. The various types of graphs are as follows:
(i) Bipartite graphs
(ii) Subgraph
(iii) Complete graph

5. The edge connectivity l(G) of a graph is the minimum cardinality of a set S
of edges of G such that G – S is disconnected.

6. The vertex connectivity K(G) of a graph G is the minimum number of vertices
whose deletion makes G a disconnected or a trivial graph.

7. Two graphs are said to be isomorphic if there exist bijections (it is a function
f from a set X to a set Y with the property that, for every y in Y, there is
exactly one x in X such that f(x) = y and no unmapped element exists in
either X or Y) amongst them.

8. Subdivision of a graph is another graph that results from subdivision of
edges in that graph.

9. A path from various vertices in a directed graph is a sequence of one or
more edges.

10. Floyd’s algorithm finds the paths which have least value between all the
vertices of a graph and it requires a matrix representation of the graph.

11. Warshall’s algorithm determines the access of all pairs of nodes in a graph,
whether directed or undirected.

12. Floyd–Warshall algorithm is an algorithm for graph analysis that finds the
shortest paths in a graph that is weighed and directed.

13. As per the four colour theorem, every planar map is four colourable.

14. The four colour theorem is not applicable in geopolitical mapping where
regions of a country are non-contiguous.

136 Self-Instructional Material

Graph Theory

NOTES

2.10 QUESTIONS AND EXERCISES

Short-Answer Questions

1. What do you understand by the degree of vertex?

2. Differentiate between edge-connectivity and vertex-connectivity.

3. What do you understand by connectivity relation?

4. Write a short note on cyclic interchange.

5. Write a short note on Euler path.

Long-Answer Questions

1. Explain the various types of graphs and their operations.

2. Explain cut-vertices and cut-edges.

3. Explain the structures of various type of graphs.

4. Explain with the help of a diagram the concepts of adjacent and incidence
matrices.

5. Discuss the characteristics of Floyd–Warshall algorithm.

6. Describe Euler circuits.

2.11 FURTHER READING

Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete
Mathematics, 3rd edition. New York: McGraw-Hill, 2007.

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of
Computer Algorithms. Hyderabad: Orient BlackSwan, 2008.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms. The MIT Press, 1990.

Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms. New Delhi:
Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms. New
Jersey: Pearson, 2006.

Baase, Sara and Allen Van Gelder. Computer Algorithms – Introduction to
Design and Analysis. New Jersey: Pearson, 2003.

Mott, J.L. Discrete Mathematics for Computer Scientists, 2nd edition. New
Delhi: Prentice-Hall of India Pvt. Ltd., 2007.

Liu, C.L. Elements of Discrete Mathematics. New Delhi: Tata McGraw-Hill
Publishing Company, 1977.

Rosen, Kenneth. Discrete Mathematics and Its Applications, 6th edition. New
York: McGraw-Hill Higher Education, 2007.

Trees

NOTES

Self-Instructional Material 137

UNIT 3 TREES

Structure

3.0 Introduction
3.1 Unit Objectives
3.2 Trees: Basics

3.2.1 Trees and Sorting
3.3 Minimum Height and Minimum Distance Spanning Trees

3.3.1 Depth-First Search and Breadth-First Search
3.3.2 Optimal Spanning Graph

3.4 Planar Graphs
3.5 Summary
3.6 Key Terms
3.7 Answers to ‘Check Your Progress’
3.8 Questions and Exercises
3.9 Further Reading

3.0 INTRODUCTION

In this unit, you will learn about the various types of tree structures and their
applications. In a graph theory, a tree is defined as a graph in which two vertices
are connected by one and only one path. Generally, trees are known as open
graphs. An organizational hierarchy is considered to be a very good example of a
tree structure. In a tree, every edge is a cut-edge. Traversal algorithm is a methodical
way for visiting each and every vertex of an ordered rooted tree. An ordered
rooted tree is primarily used for representing any arithmetic expressions and
compound proposition expressions.

You will learn how trees are helpful in merge sort. In addition, you will learn
to compute mathematical expressions by using algorithms and formulae and their
graphical representation by using tree structures.

3.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Identify the various types of trees

 Understand the basics of a tree

 Explain the features of minimum height and minimum distance spanning trees

 Comprehend the meaning and functions of planar graphs

138 Self-Instructional Material

Trees

NOTES

3.2 TREES: BASICS

In this section, you will study the characteristics of a tree. In graph theory, a tree is
a graph in which any two vertices are connected by exactly one path.

Acyclic Graph: A graph G, which has no cycles is called an acyclic graph.

Tree: A connected acyclic graph G is called a tree.

Figure 3.1 shows some tree graphs:

G1: G2: G3:

Figure 3.1 Tree Graphs

Notes:

1. Trees are often also known as open graphs.

2. Any organizational hierarchy is an example of tree.

Before proceeding further to learn the types of trees, let us understand
some theorems.

Theorem 3.1: Every two vertices in a tree, are joined by a unique path.

Proof: (By contradiction) let G be a tree and assume that there are two distinct,
(v, w) paths P

1
 and P

2
 in G. Since P

1
 P

2
, there is an edge e = V

1
V

2
 of P

1
 that is

not in P
2
. Clearly (P

1
 P

2
) – e is connected. Therefore, it contains a (V

1
 – V

2
)

path P. Now P + e is a cycle in the acyclic graph G, which is a contradiction to the
fact that G is a tree.

Theorem 3.2: If G is a tree on n vertices, then G has (n – 1) edges.

Proof: By induction on the number of vertices.

When n = 1, E(G) = 0 = n – 1 (G K1)

When n = 2, E(G) = 1 = n – 1 (G K2)

Let us assume that this theorem is true for all trees of G with fewer than n
vertices.

Now, let G be a tree on n vertices. Let e = uv be an edge in G. Then G
– e is disconnected and G has two components say G1 and G2 of G – e.
Since G is acyclic, G1 and G2 are also acyclic and hence G1 and G2 are also
trees. Moreover G1 and G2 has fewer than n vertices say n1 and n2, respectively.
Therefore, by induction hypothesis,

Trees

NOTES

Self-Instructional Material 139

G1 has (n1 – 1) edges and G2 has (n2 – 1) edges.

 E(G) = E(G1) + (G2) + 1

(Here, 1 in the sum corresponds to the edge e)

= (n1 – 1) + (n2 – 1) + 1 = n1 + n2 – 1 = n – 1

Therefore, any vertex tree, has (n – 1) edges.

Theorem 3.3: Every tree has at least two vertices of degree one or in a tree,
there are atleast two pendant vertices.

Proof: Let G be a tree on n vertices. Then,

d(v) 1, v v(G) ...(3.1)

Already we have, vv(G) d(v) = 2 × E(G) = 2 × e ...(3.2)

Since G is an n-vertex tree, it has (n – 1) edges.

 v v(G) d(v) = (2n – 2) ...(3.3)

From equations (3.1) and (3.3), it follows that d(v) = 1 for at least two
vertices.

Note: In a tree, every edge is a cut-edge.

Now, let us learn about the various types of trees.

1. Rooted Tree

In a directed tree (every edge assigned with a direction), a particular vertex is
called a root if that vertex is of degree zero. A tree together with its root produces
a graph called a rooted tree as shown in Figure 3.2. Note that in the rooted tree,
every edge is directed away from the root.

For example, suppose T is a rooted tree. If a vertex u is a vertex in T other
than the root then the parent of u is the unique vertex u1 such that there is
a directed edge from u1 to u. Here, u is called as a child of u1. Vertices of
the same parent are called as siblings. A vertex of a rooted tree is called as
a leaf if it has no children and those vertices which have children, are called
as internal vertices.

G: u1

u2
u3

u4

r

G1:

r

Figure 3.2 Rooted Trees

140 Self-Instructional Material

Trees

NOTES

If v is a vertex in a tree, then a subtree with v as its root is the subgraph of
the tree consisting of v and its children and all edges incident to these children
as shown in Figure 3.3:

G:

u

u1

u3 u4

u2
v1

v

r

H: u1

u

u2

u3 u4

Rooted Tree T Subtree of T with
its Root u.

Figure 3.3 Rooted Tree and Subtree

Level and Height in a Rooted Tree

The level of a vertex v in a rooted tree is the length of the path from the root
to this vertex. The height of a rooted tree is the length of the longest path
from the root to any vertex as illustrated in Figure 3.4:

w1 w2 w3

T:

u
w

r

v

v1

v3 v3

v1

v5

v4

v6 v7

level 0

level 1

level 2

level 3

level 4

Figure 3.4 Height of a Tree

Rooted Tree T with its different Levels.

Height of T is 4.

2. k-ary Tree

A rooted tree is called a k-ary tree if every internal vertex does not have
more than k-children. The tree is called a full k-ary tree if every internal
vertex has exactly k-children. A k-ary tree with k = 2 is called a binary tree.

Trees

NOTES

Self-Instructional Material 141

Figure 3.5 shows some k-aray trees.

T2:

u

T:

T is 2-ary Tree
(Binary Tree)

T1:

T1 is 3-ary Tree

T2 is not a 2-ary Tree

Figure 3.5 Types of k-ary Trees

T2 is not a 2-ary tree because vertex u has only one child, whereas all the
other vertices have two children.

A tree T is called as a binary tree if there is at least one vertex with degree
2 and the remaining vertices are of degree 1 or 2.

Example 3.1: Prove that a full k-ary tree with i-internal vertices contains
ki+1 vertices.

Solution: In a full k-ary tree, every internal vertex has k children and hence a full
k-ary tree with i-internal vertices can have ki vertices. If we include the root, the
tree has ki + 1 vertices. By looking at the fall of k-ary tree, we can observe the
following:

(i) n vertices has i = (n – 1)/k internal vertices and p = [(k – 1) n + 1]/
k leaves.

(ii) i internal vertices has n = ki + 1 vertices and p = (m – 1) i + 1 leaves.
(iii) p leaves has n = (kp – 1)/(k – 1) vertices and i = (p – 1)/(k – 1)

internal vertices.

3. Balanced Tree

A rooted k-ary tree of height h is balanced if all the leaves are at level h or
(h – 1).

4. Binary Search Trees

Binary search tree is a binary tree in which each child is either a left or right
child; no vertex has more than one left child and one right child, and the data
are associated with vertices.

142 Self-Instructional Material

Trees

NOTES

Example 3.2: Build a binary search tree for the words banana, peach, apple,
pear, coconut, mango and papaya using the alphabetical order.

Solution:

apple

banana

peach

pear

papaya

mango

coconut

Figure 3.6 Binary Search Tree

For, if apple < peach, coconut < pear.

Further, mango is the right child of coconut and papaya is the right child of
mango.

5. Decision Trees

If in a rooted tree, each internal vertex is assigned to a decision with a sub-
tree at the vertices, then each possible outcome of the decision is called a
decision tree.

Traversal of a tree

A systematic method of visiting every vertex of an ordered rooted tree is
called a ‘Traversal Algorithm’.
Pre-order: Let T be an ordered rooted tree with root r. Suppose T has only one
vertex say r, then r is the pre-order traversal of T. Suppose that T1, T2, ..., Tk are
the subtrees at r from left to right in T, then the pre-order traversal begins by
visiting r. It continues by traversing T1 in pre-order, then T2 in pre-order and so
on, until Tk is reached. This is illustrated in Figure 3.7:

T1 T2

Step 2:

Step 1:

Tk

S ktep + 1

Step 3:

T

Figure 3.7 Pre-Order Traversal

Trees

NOTES

Self-Instructional Material 143

Step 1. Visit the root r.

Step 2. Visit T1 in pre-order.

Step 3. Visit T2 in pre-order.

Step k + 1. Visit Tk in pre-order.

An example of pre-order traversal is presented in Figure 3.8:

T: a

r

d

i
j

e

b

f

onm

h

g

lk

Figure 3.8 Example of Pre-order Traversal

Let T be an ordered root tree. The steps of the pre-order traversal of T are as
follows:

In Figure 3.8, first you traverse T in pre-order by listing the root r, followed
by the pre-order list of subtree with root a, the pre-order list of subtree with
root b, and the pre-order list of subtree with root c. These steps are shown
in Figure 3.9

r a b c

h

g
f

k l

ed

i
j

m n o

Step 1:

r a d e b c f g h

lk

onm

i

j

Step 2:

Step 3:
r a d i j e b c f k l g h

onm

Step 4:
r a d i j m n o e b c f k l g h

Figure 3.9 Steps of Pre-order Travesal

144 Self-Instructional Material

Trees

NOTES

Algorithm: Pre-order traversal

Step 1. Visit root r and then list r.

Step 2. For each child of r from left to right, list the root of the first subtree then,
the next sub-tree and so on until you complete listing the roots of
subtrees at level 1.

Step 3. Repeat step 2, until you arrive at the leaves of the given tree.

Step 4. Stop.

In-order Traversal

Let T be an ordered, rooted tree with its root at vertex r. Suppose T consists
of only root r, then r is the in-order traversal of T. If not, i.e., suppose T has
subtrees T1, T2, ..., Tk at r from left to right. The in-order traversal begins
by traversing T1 in-order, then visiting r. It continues by traversing T2 in-
order, then T3 in-order and so on and finally Tk in-order. This is shown in
Figure 3.10:

Step 1
T1 T2 Tk

S
te

p
3

Step + 1k

Step 2
r

Figure 3.10 In-Order Traversal

Step 1. Visit T1 in-order.

Step 2. Visit root.

Step 3. Visit T2 in-order.

Step k + 1. Visit Tk in-order.

Example 3.3: Determine the order in which the vertices of the rooted tree
shown in Figure 3.11 is visited using an in-order traversal.

h

c

a

d

r

b

f

e

i j k

m n

l

g

Figure 3.11 Rooted Tree

Solution: As shown in Figure 3.12, the in-order traversal begins with an in-
order traversal of the subtree with root at a, followed by the root r, and the in-
order listing of the subtree with root b.

Trees

NOTES

Self-Instructional Material 145

c

h

d

a r b

e

i j
k

f
g

l

m n

Step 1:

Step 2: a d r e b f g

k
jih

c

m n

l

Step 3:

Step 4: h c a d r i e j b k f m l n g

h c a d r i e j b k f l g

m n

Figure 3.12 Steps of In-order Traversal

Post-order traversal

Let T be an ordered rooted tree with root r. If T has only one vertex r, then
r is the post-order traversal of T. But if T has subtrees T1, T2, ..., Tk at r
from left to right, the post-order traversal begins by traversing T1 in post-
order, then T2 in post-order and so on until Tk is reached and ends by visiting
r. This is shown in Figure 3.13:

Step k
Step 2Step 1

T1 T2

Tk

r k Step +1

 (ii)

T : a

d e

b

f g h

c

r

i

j k

Figure 3.13 Post-order Traversal

146 Self-Instructional Material

Trees

NOTES

The post-order traversal begins with the post-order traversal of the subtree
with root a, the post-order traversal of the subtree with root b, and the post-
order traversal of the subtree with root c, followed by the root r. These steps
are shown in Figure 3.14:

Step 1: a

d e f g h

cb

i

j k

r

Step 2: d e fa g h b i c f

j k

d e a f g b ikj c tStep 3:

Figure 3.14 Steps of post-order traversal

Infix, Prefix and Postfix Notation

One can represent any expression (like arithmetic, compound proposition)
using ordered rooted trees. An ordered rooted tree can be used to represent
expressions, where the internal vertices represent operations, the leaves represent
the variables or numerals.

Example 3.4: What is the ordered rooted tree that represents the expression
((a + b)3) + ((a – 6)/3)?

Solution: First construct a subtree for a + b. Then this tree is included as a part
of the next subtree of ((a + b)3). Similarly a subtree is constructed for (a –
6) then this tree is included as a part of the next subtree of (a – 6)/3. Finally
the subtrees ((a + b)3) and (a – 6)/3 are combined to form the required tree
corresponding to the given expression. This is shown in Figure 3.15:

Step 1:

+ –

a b a 6

/

+ 3 – 3

ba a 6

Step 2:

Figure 3.15 Ordered Rooted Tree Corresponding to the Expression
((a + b)3) + ((a – b)/3)

Trees

NOTES

Self-Instructional Material 147

(Figure 3.15 contd...)

Step 3:

+

/

3+ – 3

6aba

An in-order traversal of the binary tree representing an expression, produces
the original expression with the elements and operations in the same order as
they originally appeared (except unary operator).

If you use parenthesis, whenever you encounter an operation where there will
be no ambiguity. Such fully parenthesized expression is said to be infix form.

To get the prefix form of an expression, we traverse its rooted tree in pre-
order.

Expressions written in prefix form are called polish notations.

Example 3.5: What is the prefix form of ((a + b)3) + ((a – 6)/3)?

Solution: The ordered rooted tree corresponding to the expression ((a + b)3)
+ ((a – 6)/3) is shown in Figure 3.16:

+

/

+ 3 – 3

6aba

Figure 3.16 Ordered rooted tree of ((a +b)3) + ((a–6)/3)

One obtains the prefix form of the given expression, one has to traverse the
binary tree in pre-order. Prefix form of the expression ((a + b)3) + ((a –
6)/3 is + ab 3/ – a 63.

One obtains the postfix form of an expression by traversing its binary tree in
pre-order.

148 Self-Instructional Material

Trees

NOTES

Example 3.6: What is the postfix form of ((a + b)3) + ((a – 6)/3)?

Solution: The binary tree corresponding to the expression is given in the
Figure 3.17:

+

–3+ 3

a b a 6

/

Figure 3.17 Binary Tree for ((a +b)3) + ((a–6)/3)

To obtain the postfix form of the given expression, one has to traverse its
binary tree in post-order. The required postfix form is ab + 3 a6 –3/+.

Example 3.7: Draw the decision tree that orders the elements of the list
a, b, c.

Solution:

a b:

a c:

b c :

b c : c a b > >

a c : c a b > >

b c a > > b a c > >

a c b > > a b c > >

a b> a b<

a c >

b c > b c <

b c > b c <

a c > a c <

Figure 3.18 Decision Tree

3.2.1 Trees and Sorting

To sort a list of elements there are several methods. Here, it will be seen how trees
are helpful in merge sort.

In general, a merge sort proceeds by iteratively splitting lists into two sublists
of equal size (nearly) until each sublist consists of only one element.

This succession of sublists can be represented by a balanced binary tree.
The procedure continues by successively merging pairs of lists (where both lists

Trees

NOTES

Self-Instructional Material 149

are in increasing order) into a larger list with elements in increasing order until the
original list is put into increasing order. The succession in a merged list can be
represented by a balanced binary tree.

Example 3.8: Draw the recursive tree for merge sort of the list 9, 7, 11, 4,
5, 3, 6, 8, 12, 10.

Solution: The list of elements can be represented as:

a[0] = 9; a[1] = 7; a[2] = 11; a[3] = 4; a[4] = 5;

a[5] = 3; a[6] = 6; a[7] = 8; a[8] = 12; a[9] = 10.

Let us denote 0–9 as the position of the elements. Given list is [9, 7, 11, 4,
5, 3, 6, 8, 12, 10].

As a first step, this list is splitted into two sublists of size 0-4 and 5-9,
respectively. Then these two sublists are further splitted into two sublists until
each sublist consist of only one element. The required tree is given in Figure
3.19:

[9,7,11,4,5,3,6,8,12,10]

0–9

[9,7,11,4,5]

0–4 5–9

[3,6,8,12,10]

[9,7,11]

0–2 3–4

[4,5] [3,6,8]

5–7

[12,10]

8–9

[9,7]

0–1 2–2 3–3 4–4

[11] [4] [5]

5–6 7–7 8–8 9–9

[3,6] [8] [12] [10]

[9]

0–0 1–1

[7]
[3] [6]

5–5 6–6

Figure 3.19 Recursive Tree

CHECK YOUR PROGRESS

1. What is an acyclic graph?

2. Define a rooted tree.

3. What is the vertex of a rooted tree known as?

4. Define a binary tree.

5. What is a decision tree?

150 Self-Instructional Material

Trees

NOTES

3.3 MINIMUM HEIGHT AND MINIMUM DISTANCE
SPANNING TREES

In this section, study will be done for the spanning acyclic subgraph of a connected
subgraph, and its optimality.

Let G be a simple connected graph. A spanning tree of G is a subgraph of G, i.e.,
a tree containing every vertex of G. This is shown in Figure 3.20:

G: T :

Figure 3.20 Simple Graph G and its Spanning Tree T

Theorem 3.4: A simple graph is connected if there exists atleast one spanning tree.

Proof: Let G be a simple connected graph. Suppose G has no circuits then G
itself is a spanning tree. Suppose G has a simple circuit. By deleting an edge from
one of these simple circuits, the resulting subgraph is still connected if it is a
spanning subgraph. If this subgraph has simple circuits, then delete an edge from
one of these simple circuits. Repeat this process until no simple circuits are there.
Thus in this manner a tree T is obtained in which V(T) = V(G). Therefore, T is a
spanning tree of G.

Note: The converse of this theorem also holds true.

3.3.1 Depth-First Search and Breadth-First Search

One can build the spanning tree of a connected graph by using Depth-First Search
(DFS) and Breadth-First Search (BFS). First, it will be seen how DFS are useful
in construction of a spanning tree from a given connected graph.

Depth-First Search

Let G be the given connected graph. Arbitrarily, select a vertex as the root. Find a
path starting from this choosen vertex by successively adding edges, where each
edge is incident with the last vertex in the path and a vertex not already in the path.
Continue adding edges to this path as long as possible. If this path consists of all
the vertices of G, then this path is the required spanning tree. If not, then more
edges should be added. Navigate back to the vertex next to last that is in this path,
and if possible, form a new path starting at this vertex passing through vertices that
were not already visited. If this is not possible, move to another vertex in this path
(i.e., 2 vertices back from the last) and try again. Repeat this procedure, beginning
at the last vertex visited, moving back up the path one vertex at a time, forming

Trees

NOTES

Self-Instructional Material 151

new long paths until no more edges can be added. This process ends with a
spanning tree.

When this procedure returns to the vertices previously visited, it is also
called as backtracking.

Example 3.9: Construct a spanning tree for the graph G which is shown in Figure
3.21.

a b c

d f

e

G:

Figure 3.21 Graph G

Solution: First, arbitrarily choose a vertex, say e as the root. Form a path
at e, i.e., cdf is the path. Backtrack to d. Form a path beginning at d in such a way
that it has to visit the vertices which where not visited in the previous path, d e b a.
Since all the vertices of G are visited, this procedure gives the spanning tree T,
which is shown in Figure 3.22.

a
b

T

c d f

Figure 3.22 Spanning Tree T of Graph G

Breadth-First Search

First, choose a vertex arbitrarily as the root. Add the edges of G which are incident
with this vertex. The new vertices added at this stage becomes level 1 in the
spanning tree. Order these vertices arbitrarily. Next, for each vertex at level 1
visited in order, add each edge incident to this vertex to the tree as long as it
does not- create a simple circuit. Order the children of each vertex at level 1
arbitrarily. This produces the vertices at level 2 in the tree. Continue in this manner
until all the vertices of G have been added. Ultimately a spanning tree, is created.

Example 3.10: Construct a spanning tree of the graph G. Which is shown in
Figure 3.23:

e1

a

c e

f

db

e4

e3

e5

e6

e7

e8

e9

e2

Figure 3.23 Graph G

152 Self-Instructional Material

Trees

NOTES

Solution: First choose a vertex say d (arbitrarily) as the root. Add the edges
incident to this vertex d. Hence, the edges e

2
, e

5
, e

7
, e

8
 are incident with the vertex

d. These vertices create level 1, as shown in Figure 3.24:

b d

f

e

c

e2

e7

e8

e5

Figure 3.24 Level 1

Now, add the edges which are incident to the vertices b, c, e, f in such a way, that
the resulting graph does not contain any circuit. Thus, at this level itself you have
got the spanning tree T. Which is shown in Figure 3.25:

a

b

d

e1

e2

e5

e7

e8

T :

Figure 3.25 Spanning tree

Note: If the given graph is a directed graph, then you can construct the underlying
undirected graph and apply DFS or BFS to obtain a spanning graph.

3.3.2 Optimal Spanning Graph

Let G be a weighted graph. Every edge of the graph is associated with a real
number. We have to find the minimum weight spanning tree of the graph G. The
minimum weight spanning tree is called an optimal spanning tree. Weight of a tree
is the sum of weights of the edges in a tree and is denoted by wt(T).

There are three algorithms to find the optimal spanning tree.

(i) Kruskal’s algorithm

(ii) Prim’s algorithm

(iii) Boruvka’s algorithm

Kruskal’s Algorithm

Let G be a connected graph on n vertices.

Step 1: Arrange the edges in ascending order according to their weights. Choose
the minimum weight edge say e

1
.

Step 2: Having selected e
1
, e

2
, ..., e

k
 in such a way that the subgraph formed by

these edges <e
1
, e

2
, ..., e

k
> is acyclic, choose e

k + 1
 such that of the remaining

edges, weight of e
k + 1

 is minimum.

Step 3: Repeat steps 1 and 2 until (n – 1) edges are selected.

Trees

NOTES

Self-Instructional Material 153

This is shown in Figure 3.26:

v5v4

v1

e4
v2

v3

e3

e1

e6

e7e8

e2 e5

5 5
6

3 4

e9

1

2

2 2

Figure 3.26 Connected Graph G according to Weights

Equations: e
9
, e

7
, e

8
, e

3
, e

2
, e

5
, e

4
, e

1
, e

6

Among these equations e
9
 has the minimum weight 1.

v4 v51

After applying step 2 and step 3, the spanning tree created is shown in Figure
3.27:

v1

v2

v4 v5

v3
2

1

3

2

Figure 3.27 Spanning Tree according to Weights

Weight of the optimal spanning tree is 2 + 3 + 1 + 2 = 8

Prim’s Algorithm

Let G be a connected graph.

Step 1: Arbitrarily choose a vertex say v
1
 and an edge e

1
 with minimum weight

among the edges incident with v
1
.

Step 2: Having selected the vertices v
1
, v

2
,...,v

k
 and the edges e

1
, e

2
,...,e

k
 choose

the edge e
k + 1

 as follows. e
k + 1

 in incident with any one of the vertices {v
1
,

v
2
, ..., v

k
} and incident with v(G) –{v

1
, v

2
, ..., v

k
}. Moreover

the subgraph formed with v
1
, v

2
,...,v

k
, v

k + 1
 and the edges e

1
, e

2
,..,

e
k
, e

k + 1
 is acyclic and of the remaining edges e

k + 1
 has minimum

weight.

Step 3: Repeat steps 1 and 2 till (n – 1) edges are arrived.

154 Self-Instructional Material

Trees

NOTES

This is shown in Figure 3.28:

v1

v2

v3

v4 v51

22

3 4

6

55

Figure 3.28 Connected Graph n according to Prim’s Algorithm

Step 1: Choose arbitrarily vertex v
3
 and apply step 2 and step 3. Now, you will

get the spanning trees. Which are shown in Figure 3.29:

v4

v2

2

v4 v5

v2

2

1

v4 v5

v3

v2

3

2

1

v1

v2

v3

v5v4

1

2
3

2

Figure 3.29 Spanning Trees according to Prim’s Algorithm

So the final weight of the spanning tree is 8.

Boruvka’s Algorithm

Boruvka’s algorithm finds a minimum spanning tree in a weighted graph. Boruvka
developed this for constructing an efficient electrical network.

Every vertex in the graph finds its lightest edge, and then the vertices at the
ends of each lightest edge are marked. This process goes and the entire graph
collapses into a single point. The tree consists of all the lightest edges are so found.

The algorithm starts by examining every vertex one-by-one and selecting
the cheapest edge from that vertex to another in the graph, without regard about

Trees

NOTES

Self-Instructional Material 155

the already added edges. It continues joining these groupings in a similar manner
and a tree spanning all vertices is formed.

Every vertex or set of connected vertices is termed as a ‘component’. The
pseudocode for this algorithm is given as follows:

1. Start with a connected graph G containing edges of distinct weights, and an
empty set of edges T.

2. While vertices of G connected by T are disjoint,
 Start with an empty set of edges E.
 For each edge in the component,

– Start with an empty set of edges S.

 For each vertex in the component,

– Add the cheapest edge from the vertex in the component to
another vertex in a disjoint component to S.

– Add the cheapest edge in S to E.

– Add the resulting set of edges E to T.

3. The resulting set of edges T is the minimum spanning tree of G.

Boruvka’s algorithm takes O(log V) iterations of the outer loop before
termination, and runs in time O(Elog V), where E is the number of edges, and V is
the number of vertices in G.

Faster algorithms can be obtained by combining Prim’s algorithm with
Boruvka’s.

CHECK YOUR PROGRESS

6. Define an optimal spanning tree.

7. What is the weight of a tree?

8. What is the working of the Boruvka’s algorithm?

9. Define a ‘component’.

3.4 PLANAR GRAPHS

A graph G is said to be planar if a geometric representation of G exists, which
can be drawn on a plane such that no two of its edges intersect (‘meeting’ of edges
at a vertex is not considered an intersection). A graph that cannot be drawn on a
plane without a cross over between its edges is called a non-planar graph. A
drawing of a geometric representation of a graph on any surface such that no
edges intersect is called embedding.

Some planar graphs are presputed in Figure 3.30.

Note: To show a that graph G is nonplanar you have to prove that all the possible
geometric representations of G, cannot be embedded in a plane.

156 Self-Instructional Material

Trees

NOTES

Theorem 3.5: The complete graph of five vertices is non-planar.

Proof: Let the five vertices in the complete graph be v
1
, v

2
, v

3
, v

4
 and v

5
. By using

the definition of the complete graph, you must have a circuit going from v
1
 - v

2
 - v

3

- v
4
 - v

5
 to v

1
, i.e, a pentagon. This pentagon must divide the plane of the paper

into two regions, one inside and the other, outside.

Since v
1
 is to be connected to v

3
 by means of an edge, this edge may be

drawn inside or outside the pentagon (without intersecting the five edges drawn
previously). Suppose you choose to draw a line from v

1
to v

3
 inside the pentagon.

In this case have to draw an edge from v
2
 to v

3
 and another one from v

2
 to v

5
.

Since neither of these edges can be drawn inside the pentagon without crossing
over the edge already drawn, you need to draw both these edges outside the
pentagon. The edge connecting v

3
 and v

5
 cannot be drawn outside the pentagon

without crossing the edge between v
2
 and v

4
. Therefore, v

3
 and v

5
 have to be

connected with an edge inside the pentagon.

v

v v

v v

v

v v

v v

v

v v

v v

v

v v

v v

v

v v

v v

Figure 3.30 Planar Graphs

Note: A complete graph is nothing but a simple graph in which every vertex is
joined to every other vertex by means of an edge.

Theorem 3.6: Kurtowski’s (Polish mathematician) second graph is also nonplanar.
(k

3,3
 is nonplanar).

Note: In the plane, a continuous non-self intersecting curve whose origin and
terminus coincide is said to be a Jordan curve. If j is a Jordan curve in the plane ,
then – j is a union of two disjoint connected open sets called the interior and the
exterior of j.

Example 3.11: Prove that K
5
 is nonplanar.

Solution:

Step 1. Draw a circuit c on 5 vertices. This circuit c divides the plane into two
regions called interior and exterior of c as shown in Figure 3.31:

Trees

NOTES

Self-Instructional Material 157

V1

V2 V5

V4V3

Figure 3.31 Circuit C

Step 2. Draw the edges v
1
v

3
, v

1
v

4
 in the interior as shown in Figure 3.32. You

cannot draw any more edge in the interior of c, without intersecting any edge.
V1

V2 V5

V4V3

Figure 3.32 Circuit c with edges in the interior

Now, draw the edges v
2
v

5
, v

2
v

4
in the exterior of c as shown in Figure

3.33. But the edge v
3
v

5
 cannot be drawn in the interior or exterior of c, without

intersecting the edge of c.

V1

V2 V5

V3 V4

Figure 3.33 Circuit c with interior and exterior edges

Thus, k
5
 is nonplanar.

In addition, you can prove that k
3,

3
 is nonplanar in the following manner:

Assume that k
3,3

 is planar. Let the vertex of k
3,3

 is {v
1
,...,v

6
}.

Let

P = {v
1
, v

3
, v

5
} and Q = {v

2
, v

4
, v

6
}.

Let C be the cycle v
1
 v

2
 v

3
 v

4
 v

5
 v

6
 v

1
. It is a Jordan curve. The other three

edges v
1
v

4
, v

2
v

5
, v

3
v

6
 are chords of the cycle C. So, either the interior of C or

exterior of C contains two of these three chords. Say there are two chords in Int
c. These two chords must cross each other, which is a contradiction, hence k

3,3
is

nonplanar.

158 Self-Instructional Material

Trees

NOTES

Contour: Let G be a connected planar graph. A region of G is the domain
of the plane surrounded by edges of the graph such that any two points in it can be
joined by a line not crossing any edge. The edges ‘touching’ a region contain a
simple cycle called the contour of the region. Two regions are said to be adjacent
if the contours of the two regions have atleast one edge in common. This is illustrated
in Figure 3.34.

R2
R1

R3

R4

G:

Figure 3.34 Connected Planar Graph

In a planar graph G: R
i
, i = 1, 2, 3, 4, are the regions of G. Here, R

4
 is the infinite

region.

Euler’s Formula

If G, a connected planar graph has n vertices, e edges and r regions, then, n – e +
r = 2

Proof: By induction on e, the number of edges:

If e = 0, then G = K1(G is connected)

 n = 1 ; r = 1 (Infinite face) n – e + r = 1 – 0 + 2 = 3

If e = 1 then n = 2 (G is connected) and r = 1 (Infinite face)

n – e + r = 2 – 1 + 1 = 2

This result is true for e = 0 and e = 1.

Let us assume that this result is true for all the connected planar graphs on (e
– 1) edges.

Let G be a connected planar graphs with e edges.

Case (i) If G is a tree with e edges then n = e +1

 Tree on n vertices has (n – 1) edges.

r = 1

 n – e + r = e + 1 – e + 1 = 2.

Case (ii) If G is not a tree.

Since G is connected, it contains cycles.

Let e1 be an edge in some simple circuit of G.

Let G1 be the graph obtained from G by deleting the e1, i.e., G1 = G – e1

Trees

NOTES

Self-Instructional Material 159

Now, number of vertices in G1 = n

Number of edges in G1 = e–1

Number of regions in G1 = r–1

Since G1 has less then e edges, the result is true for G1 also.

 By induction hypothesis, n1– e1+r1 = 2, where n1 is the number of vertices,
e1 is the number of edges and r1 is the number of regions of G1 respectively.

 n–(e–1) + r–1 = 2 n – e + r = 2.

 In all these cases, the result in true.

Corollary: If G is a connected simple planar graph without loops and has n
vertices, e 2 edges and r regions, then 3/2 r e 3n–6.

Proof: If r = 1 then 3/2 e 3n – 6 is true, since e 2.

If r > 1. Let k be the number of edges in the contours of the finite regions.

Since G is simple, each region (finite) is bounded by atleast 3 edges.

Therefore k 3 (r – 1) ...(3.4)

But, in a planar graph, an edge belongs to the contours of atmost two regions
and atleast 3 edges touch the infinite region.

 k 2e – 3 ...(3.5)

From equations (3.4) and (3.5), 3r–3 k 2e–3

 3r – 3 2e – 3

 3r 2e 3/2 r e ...(3.6)

Since G is planar, n – e + r = 2, by Euler’s Formula.

 n – e + 2/3 e 2 [From equation (3.10) r 2/3 e]

 3n – 3e + 2e6

 – e – 3n + 6

 e 3n – 6 ...(3.7)

From equations (3.6) and (3.7), 3/2r e 3n – 6

Example 3.12: Prove that K5 is nonplanar.

Solution: Suppose K5 is planar, then by the above corollory, e 3n – 6. In K5 n
= 5, e = 10;

 10 3 × 5 – 6 = 9, which is absurd. K5 is nonplanar..

Remark: K5, K3,3 are called Kuratowski’s first graph, second graph respectively.

Corollary: If G is a simple connected planar graph on n vertices, e edges and r
regions and does not contain any triangle, then 2r e (2n – 4).

160 Self-Instructional Material

Trees

NOTES

Subdivision: A subdivision of a graph G is obtained by inserting vertices of
degree 2 into the edges of G, as shown in Figure 3.35:

G: H:

Figure 3.35 Subdivision of Graph G

H is the subdivsision of G.

Kuratowski theorem: A graph is planar if it contains no subgraph that is isomorphic
or is a subdivision of K

5
 or K

3,3
.

CHECK YOUR PROGRESS

10. What is a non-planar graph?

11. Define a complete graph?

3.5 SUMMARY

In this unit, you have learned that:

 In graph theory, a tree refers to a graph in which two vertices are attached
by only one path.

 Trees are generally open graphs.

 In a tree, every edge is a cut-edge.

 Traversal algorithm refers to the systematic method for visiting every vertex
of an ordered rooted tree.

 Arithmetic expression and compound proposition can be represented by
using ordered rooted trees.

 A merge sort proceeds by repeatedly splitting lists into two sub-lists of
equal size (nearly) to a point such that each sub-list consists of only one
element.

 A spanning tree of a connected graph using either of the two methods:
o Depth-First Search (DFS)
o Breadth-First Search (BFS)

 A graph G is considered to be planar if there exists some geometric
representation of G which can be drawn on a plane in such a manner that
no two of its edges intersect (‘meeting’ of edges at a vertex is not considered
an intersection).

 Euler’s Formula states that in case G, a connected planar graph has n vertices,
e edges and r regions, then, n – e + r = 2

Trees

NOTES

Self-Instructional Material 161

3.6 KEY TERMS

 Tree: A connected acyclic graph G is called a tree.

 Vertex: It refers to a point of intersection in any diagram containing two or
more edges.

 Rooted tree: In a directed tree a particular vertex is called a root if that
vertex is of degree zero.

 Balanced tree: A rooted k-ary tree of height h is balanced if all the leaves
are at level h or (h – 1).

3.7 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A graph G, which has no cycles is called an acyclic graph.

2. A tree together with its root produces a graph called a rooted tree.

3 A vertex of a rooted tree is known as a leaf.

4. A tree is called as a binary tree if there is at least one vertex with degree 2
and the remaining vertices are of degree 1 or 2.

5. If in a rooted tree, each internal vertex is assigned to a decision with a sub-
tree at the vertices, then each possible outcome of the decision is called a
decision tree.

6. The minimum weight spanning tree is called an optimal spanning tree.

7. The weight of a tree is the sum of weights of the edges in the tree and is
denoted by wt(T).

8. Boruvka’s algorithm finds a minimum spanning tree in a weighted graph.

9. Every vertex or set of connected vertices is termed as a ‘component’.

10 A graph that cannot be drawn on a plane without a cross-over between its
edges is called a non-planar graph.

11 A complete graph is nothing but a simple graph in which every vertex is
joined to every other vertex by means of an edge.

3.8 QUESTIONS AND EXERCISES

Short-Answer Questions

1. Briefly explain how trees are helpful in the process of merge sort.

2. State the three types of algorithms used to find the optimal spanning tree.

3. What is a fundamental circuit?

4. Diagrammatically state what a contour.

162 Self-Instructional Material

Trees

NOTES

Long-Answer Questions

1. In a graph theory, prove that G has (n-1) edges, if G is a tree with n number
of vertices.

2. Explain the concept of traversal of a tree.

3. Discuss the algorithms used to find optimal spanning trees.

4. ‘The complete graph of five vertices is non-planar.’ Prove it.

3.9 FURTHER READING

Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete
Mathematics, 3rd edition. New York: McGraw-Hill, 2007.

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of
Computer Algorithms. Hyderabad: Orient BlackSwan, 2008.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms. The MIT Press, 1990.

Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms. New Delhi:
Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms. New
Jersey: Pearson, 2006.

Baase, Sara and Allen Van Gelder. Computer Algorithms – Introduction to
Design and Analysis. New Jersey: Pearson, 2003.

Mott, J.L. Discrete Mathematics for Computer Scientists, 2nd edition. New
Delhi: Prentice-Hall of India Pvt. Ltd., 2007.

Liu, C.L. Elements of Discrete Mathematics. New Delhi: Tata McGraw-Hill
Publishing Company, 1977.

Rosen, Kenneth. Discrete Mathematics and Its Applications, 6th edition. New
York: McGraw-Hill Higher Education, 2007.

Recursion

NOTES

Self-Instructional Material 163

UNIT 4 RECURSION

Structure

4.0 Introduction
4.1 Unit Objectives
4.2 Mergesort
4.3 Insertion Sort
4.4 Bubble Sort and Selection Sort

4.4.1 Bubble Sort
4.4.2 Selection Sort

4.5 Binary and Decimal Numbers
4.5.1 Binary Number System
4.5.2 Decimal Number System
4.5.3 Binary to Decimal Conversion
4.5.4 Decimal to Binary Conversion
4.5.5 Double-Dabble Method
4.5.6 Decimal Fraction to Binary

4.6 Recursion and Recurrence Relations
4.6.1 Recursion and Iteration
4.6.2 Closed Form Expression
4.6.3 Sequence of Integers
4.6.4 Recurrence Relations
4.6.5 Linear Homogenous Recurrence Relations (LHRR)
4.6.6 Solving Linear Homogeneous Recurrence Relations
4.6.7 Solving Linear Non-Homogeneous Recurrence Relations
4.6.8 Linear Homogeneous Recurrence Relations with Constant Coefficient

(LHRRWCC)
4.6.9 Divide and Conquer Recurrence Relation (DCRR)

4.7 Recursive Procedures
4.7.1 Functional Recursion
4.7.2 Recursive Proofs
4.7.3 The Recursion Theorem
4.7.4 Infinite Sequences
4.7.5 Recursive Function and Primitive Recursive Function

4.8 Summary
4.9 Key Terms

4.10 Answers to ‘Check Your Progress’
4.11 Questions and Exercises
4.12 Further Reading

4.0 INTRODUCTION

Recursion is a concept prevalent in mathematics and computer science. It is a
method of defining functions in which the function being defined is applied within
its own definition. This specifically means defining an infinite statement using finite
components. The term is also used more generally to describe a process of repeating
objects in a self-similar way. For instance, when the surfaces of two mirrors are

164 Self-Instructional Material

Recursion

NOTES

exactly parallel with each other, the nested images that occur are a form of infinite
recursion.

This in plain English means that recursion is the process a procedure goes
through when one of the steps of that procedure involves re-running the procedure.
A procedure that goes through recursion is recursive, that is, if one of the steps
that makes up the procedure calls for a new running of the procedure. A recursive
procedure must complete each of all its steps. Even if a new running is called for in
one of its steps, each running must run through the remaining steps.

In this unit, you will learn about merge sort, insertion sort, bubble sort and
selection sort, binary and decimal numbers, recursion and recurrent relations and
recursive procedures.

4.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the concepts of merge sort, bubble sort, insertion sort and
selection sort

 Describe binary and decimal numbers

 Convert binary numbers to decimal numbers and vice versa

 Explain the concepts of recursion and recurrence relations

 Describe the various features of recursive procedures

4.2 MERGESORT

The Mergesort algorithm basically works according to a divide and conquer
strategy in which the sequence is divided into two halves. Each half is independently
sorted and then both halves are merged to make a combine sequence. In this
process, the validity of input data required in Mergesort is as follows:

 Check the input sequences. If there is only one element then the
Mergesort operation is not performed.

 The input sequences are separated into two halves.

 Sort the input sequences.

 Merge both sorted input sequences to generate the result.

In the merging process, the elements of two arrays are combined, creating
a new array. The algorithm is based on the merging process where all the elements
are copied in one array and kept in the separate new array. Then it adds the
second array to the new array. After combining the sorted array a Mergesort
array is created. For example, the two arrays A[5] and B[3] are manipulated
and then merged to create a new array. The newly created array, namely C, will
have 5+3=8 elements. The required steps are as follows:

Recursion

NOTES

Self-Instructional Material 165

 Compare the very first elements of both A[0] and B[0]. If A[0] <
B[0] then the value of A[0] is shifted to C[0]. Then the size of both
arrays [Arrays A and C] current pointers are increased by one.

 The elements of array A and array B are compared where the pointers are
pointing, that is, the first element of array A and the null element of B, i.e.,
A[1] and B [0].

 If B[0]<A[1] then B[0] is moved to C[1]. The current pointer of B is
incremented to point the next element in array B.

The following algorithm checks the sequences of validation of arrays:
Function Mergesort(M1, M2)

{

list A Empty

while (neither M1 nor M2)

{

compare first items of M1 and M2

remove smaller of the M1 and M2 from the list

add to end of A

}

catenate remaining list to end of A

return A

}

Mergesort problem: Sort a sequence of given n elements in a non-decreasing
way. It follows the DCC mechanism that represents Divide, Conquer and Combine:

Divide: Divides the n element sequence that is sorted into two subsequences of
n/2 elements.

Conquer: Sorts by using Mergesort the two recursive subsequences.

Combine: Merges both subsequences to produce the sorted result.

The required steps in the Mergesort algorithm are as follows:

Input: Sort a sequence of n numbers that is stored in an array.

Output: Produce an ordered sequence of n numbers.

The following algorithm is applied in mergesort mechanism:
Mergesort(A,m,n) //It sorts A[m…n] by divide and conquer
method

Step 1: if m<n

Step 2: then r[(m+n)/2]

Step 3: Mergesort (A,m,r)

Step 4: Mergesort (A, r+1, n)

Step 5: Merge(A,m,n,r) //This step merges A[m…n] with
A[r+1…n]

Merge (A,m,n,p)

166 Self-Instructional Material

Recursion

NOTES

Step 1: n1n – m+1

Step 2: n2p – n

Step 3: for i 1 to n1

Step 4: do L[i] A[m+i–1]

Step 5: for j 1 to n2

Step 6: do R[j] A[n+j]

Step 7: L[n1+1]
Step 8: R[n2+1]
Step 9: i1

Step 10: j1

Step 11: for km to p

Step 12: do if L[i]<=R[j]

Step 13: then A[k]L[i]

Step 14: i i+1

Step 15: else A[k] R[j]

Step 16: j j+1

In the above algorithm, L[i] and R[j] are the smallest elements of L and
R that are not copied back into A. Figure 4.1 shows the Mergesort process
that is based on this algorithm:

 j

 6 8 26 32 1 9 42 43 … … A
k

 6 8 26 32 1 9 42 43

 k k k k k k k

i i i i

 i j j j j

 6 8 26 32 1 9 42 43

 1 6 8 9 26 32 42 43

L R

 6 8 26 32 1 9 42 43 … … A 6 8 26 32 1 9 42 43

merge

m

p

Figure 4.1 Elements sorted [1, 6, 8, 9, 26, 32, 42, 43] using Mergesort

Analysis of Mergesort Algorithm

In Figure 4.2, an array A is taken in which there are eight elements. The
operation of Mergesort on the array A is [5, 2, 4, 7, 1, 3, 2, 6]. The length of
the sorted sequences is merged as the steps required in algorithm from bottom to
top.

Recursion

NOTES

Self-Instructional Material 167

Figure 4.2 A Mergesort Algorithm

Implementation of Mergesort for Two Vectors of Seven Elements
/*—————————— START OF PROGRAM ——————————*/

#include <stdio.h>

#include <conio.h>

void Mergesort(int [], int [], int [], int, int);

void main()

{

 int A_Array[50], B_Array [50], C_Array [100], m, n,
i;

 printf(“\n Enter the array elements for first array
[max 50]: “);

 scanf(“%d”, &m);

 printf(“\mEnter the array elements in ascending
order:”);

for (i=0; i<m; i++)

 scanf(“%d”, &A_Array[i]);

 printf(“\nEnter the array elements for second array
 [max 50]: “);

 scanf(“%d”, &n);

 printf(“Enter the array elements in ascending order:”);

 for (i=0; i<n; i++)

 scanf(“%d”, &B_Array[i]);

 Mergesort(A_Array, B_Array, C_Array, m, n);

 printf(“\n The sorted array is : “);

 for (i=0; i<m+n; i++)

 printf(“%d\n”, C_Array[i]);

 }

168 Self-Instructional Material

Recursion

NOTES

void Mergesort(int A_Array[], int B_Array[], int C_Array[],
int m, int n)

{

 int a_ele=0, b_ele=0, c_ele=0;

 for (a_ele =0, b_ele=0, c_ele =0; a_ele<m && b_ele<n;)

 {

 if (A_Array[a_ele]< B_Array[b_ele])

//Check the elements of A_Array are less than elements of
B_Array

 C_Array[c_ele++] = A_Array[a_ele++];

//Assign the values of C_Array in A_Array otherwise B_Array

 else

 C_Array[c_ele++] = B_Array [b_ele++];

 }

 if (a_ele<m)

 while (a_ele<m)

 C_Array[c_ele++] = A[a_ele++];

 else

 while (b_ele<n)

 C_Array[c_ele++] = B_Array[b_ele++];

}

The arrays A_Array and B_Array are the input arrays that contain
elements in ascending order. Their sizes are m and n respectively. The C_Array
is the output array containing the elements from the two combined arrays in sorted
order.

The result comes in the following way:
Enter the array elements for first array [max 50]: 3

Enter the array elements in ascending order:

4

8

10

Enter the array elements for second array [max 50]:4

Enter the array elements in ascending order:

3

5

7

9

Recursion

NOTES

Self-Instructional Material 169

Output : The sorted array is:

3

4

5

7

8

9

10

4.3 INSERTION SORT

Insertion sort refers to a simple sorting algorithm. In it, the sorted array (or list) is
built one entry at a time. As compared to more advanced algorithms, such as
quick sort, heap sort or merge sort, it is less efficient on large lists. However,
insertion sort has many advantages, such as:

 Its implementation is simple.

 It is efficient for (quite) small data sets.

 It is efficient for data sets that are already substantially sorted. The time
complexity is O(n + d), where d is the number of inversions.

 It is more efficient in practice as compared to most other simple quadratic
i.e., O(n2) algorithms, such as selection sort or bubble sort. The average
running time of insertion sort is n2/4. Further, in the best case scenario, the
running time is linear.

 It is stable. In other words, it does not change the relative order of elements
with equal keys.

 It is in place, i.e., it only requires a constant amount O(1) of additional
memory space.

 It is online, i.e., it can sort a list as it receives it.

Most people while sorting—ordering a deck of cards, for example—use
the insertion sort like method.

In abstract terms, each iteration of insertion sort removes an element from
the input data and then inserts it into the correct position in the list that is already
sorted. The process continues till all input elements are inserted. The element to be
removed from the input is chosen arbitrarily. Almost any choosen algorithm can be
used for this.

Sorting is typically done in-place. The resulting array after k iterations has
the property where the first k entries are sorted. In each iteration, the first remaining
entry of the input is removed, inserted into the result at the correct position, thus

170 Self-Instructional Material

Recursion

NOTES

extending the result: < x > x x

Sorted partial result Unsorted data

 becomes

< x > xx

Sorted partial result Unsorted data

 with each element greater than

x copied to the right as it is compared against x.

Consider a function called Insert, which is designed for inserting a value
into a sorted sequence at the beginning of an array. It starts operating at the end of
the sequence and shifts each element one place to the right unless an appropriate
position becomes available for the new element. This function has a problem. It
can overwrite the value that is stored just after the sorted sequence in the array.

For performing an insertion sort, you need to begin at the leftmost element
of the array and invoke Insert in order to insert each element which is encountered
into its correct position. The ordered sequence of inserted elements is stored at
the beginning of the array. These elements are stored in the set of indices already
examined. Each insertion overwrites a single value, i.e., the value which is being
inserted.

Algorithm for Insertion Sort
Procedure InsSort(A,N).

[Where A is a vector and N denotes number of elements in
the vector.

I,J acts as indices of vector A and Max].

1. [Initialize I]

I = 0

2. [Perform sort]

REPEAT THRU Step 6 until I < N

3. [Initialize Max,J]

Max = A[I]

J = I

4. [Backtrack and change]

REPEAT WHILE J > 0 AND Max < A[J – 1]) /*Backtrack */

 A[J] = A[J – 1]

 J = J – 1

5. [Assign Max]

 A[J] = Max

6. [Increment I]

I = I + 1

7. [Finished]

RETURN.

Recursion

NOTES

Self-Instructional Material 171

 1 2 3 … (i-1) i (i+1) N

 Sorted list Unsorted list

Example 4.1: Sort the elements 16, 19, 4,1, 20, 2 using Insertion sort.

Solution:

Set of
elements

2nd
Iteration

3rd
Iteration

4th
Iteration

5th
Iteration

6th
Iteration

16 16 4 1 1 1
19 19 16 4 4 2
4 4 19 16 16 4
1 1 1 19 19 16

20 20 20 20 20 19
2 2 2 2 2 20

 From the insertion sort algorithm, sorting is achieved by each iteration as shown in
the diagram. In each row, the elements are in sorted order relative to each other
above the element within a block; below this element, the elements are not affected.

Analysis of Insertion sort: The time complexity of the insertion sort is O(N2),
where ‘N’ is the number of elements in the array. On an average, the number of
interchanges required is (N2/4) and in worst cases about (N2/2). The insertion sort
is highly efficient if the array is already in almost sorted order.

Implementation of Insertion Sort for a Vector having Numbers as its
Elements

#include<stdio.h>

#define MAX 100

typedef VECTOR[MAX];

void InsSort(VECTOR a, int n)

{int i, j, Max;

 for(i = 0; i < n; ++i)

 {

 Max = a[i];

 j = i;

 while(j > 0 && Max < a[j – 1]) /*backtrack */

 {

 a[j] = a[j – 1];

 j = j – 1;

 }

 a[j] = max;

 }

}

void main()

{VECTOR a = {5, 4, 3, 2, 1};

172 Self-Instructional Material

Recursion

NOTES

 int i;

 InsSort(a, 5);

 for(i = 0; i < 5; ++i)

 printf(“%d “, a[i]);

}

Output: 1 2 3 4 5

Implementation of Insertion Sort for a Vector having Strings as its Elements
#include<stdio.h>

#include<string.h>

#define MAXROWS 10

#define MAXCOLS 20

typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS];

void InsSort(STRINGS A,int N)

{

 int I, J;

 STRING MaxStr;

 for(I = 0; I < N; ++I)

 {

 strcpy(MaxStr, A[I]);

 J = I;

 while(J > 0 && strcmp(MaxStr, A[J – 1])<0) /*backtrack
*/

 {

strcpy(A[J], A[J – 1]);

J = J – 1;

 }

 strcpy(A[J], MaxStr);

 }

}

void main()

{

 STRINGS A = {“EE”, “AA”, “BB”, “DD”, “CC”};

 int i;

 InsSort(A, 5);

 for(i = 0; i < 5; ++i)

printf(“%s”, A[i]);

}

OUTPUT: AA BB CC DD EE

The array which is already sorted is considered the best case input. In the
given case, insertion sort has a linear running time, i.e., O(n). During each iteration,

Recursion

NOTES

Self-Instructional Material 173

the first remaining element of the input would only be compared with the rightmost
element of the sorted subsection of the array.

An array sorted in the reverse order is the worst case input. In the given
case, insertion sort has a quadratic running time, i.e., O(n2). Every iteration of the
inner loop scans and shifts the entire sorted subsection of the array before the next
element is inserted. The average case is also quadratic. That is why the insertion
sort is not practical for sorting large arrays. However, for sorting arrays having
less than ten elements, insertion sort is one of the fastest algorithms.

CHECK YOUR PROGRESS

1. What is the Mergesort algorithm based on?

2. List out any two advantages of Insertion sort.

3. What is the role of the insert function?

4.4 BUBBLE SORT AND SELECTION SORT

In the fields of computer science and mathematics, a sorting algorithm refers to an
algorithm whose function is to put elements of a list in a certain order. The numerical
and lexicographical orders are the most used orders. In order to optimize the use
of other algorithms, such as search and merge algorithms, efficient sorting is essential,
as these algorithms require sorted lists to work correctly. Sorting is often used to
canonicalize data and to produce human-readable output. The output must meet
the following two conditions:

 The output should be in non-decreasing order (each element should not be
smaller than the previous element according to the desired total order).

 The output should be a permutation or reordering of the input.

Since the beginning of computing, the sorting problem has greatly attracted
the attention of researchers, perhaps due to the complexity of solving it efficiently
despite its simple, familiar statement. For example, the analysis of bubble sort was
done as early as 1956. Many consider it a solved problem. However, the invention
of new sorting algorithms has not stopped. Library sort, for example, was first
published in 2004. Sorting algorithms are taught in introductory computer science
classes. Students are introduced to a variety of core algorithm concepts, such as
big O notation, divide and conquer algorithms, data structures, randomized
algorithms, best, worst and average case analysis, time-space tradeoffs and lower
bounds.

Sorting is a method of arranging keys in a file in the ascending or descending
order. Sorting makes handling of records in a file easier.

174 Self-Instructional Material

Recursion

NOTES

Sorting can be classified into the following two types:

Internal sorting: Sorting of records in a file, which is stored in the main memory.

External sorting: Sorting of records in a file, which is stored in the secondary
memory. Some sorting techniques are as follows:

 Bubble sort

 Insertion sort

 Selection sort

 Quick sort

 Tree sort

 Arrangement of elements in a list according to the increasing (or decreasing)
values of some key field of each element.

 Sorting will be useful to search, insert or delete a data item in a list.

There are various methods for sorting explained in the following sections.

4.4.1 Bubble Sort

Bubble sort comes under the category of exchange sort technique.

 Consider an array A has n elements A[0] to A[n – 1]. The array is to
be sorted in the ascending order.

 Compare A[0] and A[1] and arrange such that A[0] < A[1]. Then
compare A[1] and A[2] and arrange such that A[1] < A[2].
Repeat this process till the largest element is bubbled to the nth position.

 Since the largest value is now in the last position as required for the ascending
order, consider the first (n – 1) elements. Repeat the above process as to
bubble the next largest value to (n – 1)th position. Then consider the first
(n – 2) elements and in this way proceed to bubble till all the elements are
bubbled to their respective positions. Then sorting will be completed.

Algorithm for Bubble Sort or Exchange Sort
BUBBLE_SORT(B,N). Where B is a vector having N elements

1. [Initialization]

 Last = N (entire list assumed unsorted at this point)

2. [Loop on I index]

 REPEAT THRU STEP 5 FOR I = 1 TO N – 1 DO

3. [Initialize exchanges counter for this pass]

 EXS = 0

4. [Compare the unsorted pairs]

 REPEAT FOR J = 1 TO Last – 1 DO

 IF B[J] < B[J+1] THEN

 B[J] = B[J+1]

 EXS = EXS + 1

Recursion

NOTES

Self-Instructional Material 175

5. [Check whether any exchanges occur or?]

 IF EXS = 0 THEN

RETURN (Sorting finished)

 ELSE

Last = Last – 1(reduce the size of unsorted list)

6. [maximum number of passes finished]

 RETURN

Example 4.2: Sort the elements 74, 13, 52, 34, 6 using bubble sort.

Solution:

74 13 52 34 6

13 74 52 34 6

13 52 74 34 6

13 52 34 74 6

13 52 34 6 74

13 52 34 6 74

Unsorted Array Sorted Array

Apply the same procedure for the unsorted array and repeat the same process
until the elements are not exchanged in any of the pass, then result will be the
sorted list: 6, 13, 34, 52, 74.

Implementation of Bubble Sort to Sort Strings of Vector/Array

Program for Bubble Sort of Numbers
/*—————————START OF PROGRAM—————————*/

#include<stdio.h>

#include<conio.h>

#define MAXCOLS 20

#define MAXROWS 10

176 Self-Instructional Material

Recursion

NOTES

typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS];

void bub_sort(STRINGS a,int n)

{

int i,j;

for(i = 0;i <n – 1; ++i)

{

int pass = 0;

for(j = 0; j < n – 1 – i; ++j)

{

if(strcmp(a[j], a[j + 1]) > 0)

{

STRING temp;

strcpy(temp,a[j]);

strcpy(a[j], a[j + 1]);

strcpy(a[j + 1],temp);

pass = 1;

}

 }

if(pass == 0)

break;

}

}

void main()

{

STRINGS a = {“EE”,”BA”,”AB”,”CD”,”AA”};

int i;

clrscr();

bub_sort(a,5);

for(i = 0; i < 5; ++i)

printf(“%s “,a[i]);

}

/*——————————END OF PROGRAM——————————*/

OUTPUT: AA AB BA CD EE

Implementation of Bubble Sort to Sort Integers of a Vector/Array
/*———————START OF PROGRAM——————————*/

#include<stdio.h>

#include<conio.h>

#define MAXCOLS 20

Recursion

NOTES

Self-Instructional Material 177

typedef int VECTOR[MAXCOLS];

void bub_sort(VECTOR a,int n)

{

int i, j;

for(i = 0; i < n – 1; ++i)

{

int pass = 0;

for(j = 0; j < n – 1 – i; ++j){

if(a[j] > a[j + 1])

{

int temp;

 temp = a[j];

 a[j] = a[j + 1];

 a[j + 1] = temp;

 pass = 1;

}

}

if(pass == 0)

break;

}

}

void main()

{

VECTOR a = {5, 4, 3, 2, 1};

int i;

bub_sort(a, 5);

for(i = 0; i < 5; ++i)

printf(“%d “, a[i]);

}

/*—————————END OF THE PROGRAM—————————*/

OUTPUT: 1 2 3 4 5

4.4.2 Selection Sort

Selection sort is a simple sorting technique to sort a list of elements. This method
helps to find the smallest value in the array. This is exchanged with the first element.
The next smallest is found and exchanged with the second element. This is continued
till all elements are completed. A disadvantage of selection sort is that its running
time depends only slightly on the amount of order already in the given list of elements.

178 Self-Instructional Material

Recursion

NOTES

SELECTION_SORT(A,N)
[Where A is a vector having N elements]

1.[Loop on I index]

 REPEAT THRU Step 4 FOR I = 1, 2,..., N “ 1

2.[Initially assume minimum index is in I]

 Mindex = I

3. [For each pass, get small value]

 REPEAT FOR J = I + 1 to N

 IF A[MIndex] >A[J] THEN

 Mindex = J

4.[Interchange Elements]

 IF Mindex <> I THEN

 A[I]A[Mindex]

5.[Sorted values will be returned]

 RETURN

Explanation: In this algorithm, for each I to N – 1, exchange A[I] with the
minimum element in the array A[I],…,A[N]. As the index I travels from left
to right, the elements to its left are in their final position in the array and will not be
touched again, so the array is fully sorted when I reaches the right end.

Example 4.3: Sort the elements 16, 19, 4, 1, 20, 2 using selection sort.

Solution:

 1 2 3 … (i-1) i (i+1) N

In the ith pass select the lowest
between A[i] and A[N] and swap it
with A[i].

Set of
elements

1st
Iteration

2nd
Iteration

3rd
Iteration

4th
Iteration

5th
Iteration

16 1 1 1 1 1
19 19 2 2 2 2
4 4 4 4 4 4
1 16 16 16 16 16

20 20 20 20 20 19
2 2 19 19 19 20

Implementation of Selection Sort to Sort Values of a Vector/Array

Program for Selection Sort of Numbers
/*——————————START OF PROGRAM————————*/

#include<stdio.h>

#include<conio.h>

#define MAXCOLS 10

Recursion

NOTES

Self-Instructional Material 179

typedef int VECTOR[MAXCOLS];

void sel_sort(VECTOR a, int n)

{

int i, j, flag, index;

for(i = 0; i < n – 1; ++i)

{

 index = i;

 Flag = 0;

for(j = i + 1; j < n; ++j)

{

if(a[index] > a[j])

{

 index = j;

 flag = 1;

}

 }

 if(flag)

 {

 int temp;

 temp = a[i];

 a[i] =a[index];

 a[index] = temp;

 }

}

void main()

{

VECTOR a = {5, 4, 3, 2, 1};

int i;

sel_sort(a, 5);

for(i = 0; i < 5; ++i)

printf(“%d “, a[i]);

}

/*——————————END OF PROGRAM——————————*/

OUTPUT: 1 2 3 4 5

Implementation of Selection Sort to Sort Strings of Vector/Array
/*——————————START OF PROGRAM————————————*/

#include<stdio.h>

#include<conio.h>

#define MAXCOLS 20

#define MAXROWS 10

180 Self-Instructional Material

Recursion

NOTES

typedef char STRINGS[MAXROWS][MAXCOLS];

typedef char STRING[MAXCOLS];

void sel_sort(STRINGS a, int n)

{

int i, j, flag, index;

for(i = 0; i < n – 1; ++i)

{

 flag = 0, index = i;

for(j = i + 1; j < n; ++j){

 if(strcmp(a[index], a[j]) > 0)

{

index = j;

flag = 1;

}

}

 if(flag)

 {

 STRING temp;

 strcpy(temp, a[i]);

 strcpy(a[i], a[j]);

 strcpy(a[j], temp);

 }

}

}

void main()

{

STRINGS a = {“EE”, “BB”, “EA”, “DD”, “AA”};

int i;

sel_sort(a, 5);

for(i = 0; i < 5; ++i)

printf(“%s “, a[i]);

}

/*—————————END OF THE PROGRAM—————————*/

OUTPUT: AA BB DD EA EE

CHECK YOUR PROGRESS

4. What do you understand by sorting?

5. What is internal sorting?

6. Name any two sorting techniques.

Recursion

NOTES

Self-Instructional Material 181

4.5 BINARY AND DECIMAL NUMBERS

4.5.1 Binary Number System

A number system that uses only two digits, 0 and 1, is called the binary number
system. The binary number system is also called a base two system. The two
symbols 0 and 1 are known as bits or binary digits.

The binary system groups numbers by two and by powers of two, shown in
Figure 4.3. The word binary comes from a Latin word meaning two at a time.

Figure 4.3 Binary Position Values

The weight or place value of each position can be expressed in terms of 2,
and is represented as 20, 21, 22, etc. The least significant digit has a weight of
20 (= 1). The second position to the left of the least significant digit is multiplied by
21 (= 2). The third position has a weight equal to 22 (= 4). Thus, the weights are in
the ascending powers of 2 or 1, 2, 4, 8, 16, 32, 64, 128, etc.

The numeral 10
two

 or 10
2
(one, zero, base two) stands for two, the base of

the system. In binary counting, single digits are used for none and one. Two-digit
numbers are used for 10

two
 and 11

two
 (2 and 3 in decimal numerals). For the next

counting number, 100
two

 (4 in decimal numerals) three digits are necessary. After
111

two
 (7 in decimal numerals), four-digit numerals are used until 1111

two
 (15 in

decimal numerals) is reached, and so on. In a binary numeral, every position has a
value 2 times the value of the position to its right.

A binary number with 4 bits is called a nibble and a binary number with
8 bits is known as a byte.

For example, the number 1011
2
 actually stands for the following representation:

1011
2

= 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

= 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1

 1011
2

= 8 + 0 + 2 + 1 = 11
10

In general,

[b
n
,b

n – 1
 ... b

2
, b

1
, b

0
]

2
= b

n
2n + b

n – 1
2n–1 + ... + b

2
22 + b

1
21 + b

0
20

Similarly, the binary number 10101.011 can be written as,

1 0 1 0 1 . 0 1 1

24 23 22 21 20 . 2– 1 2– 2 2– 3

(MSD) (LSD)

182 Self-Instructional Material

Recursion

NOTES

 10101.0112 = 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

+ 0 × 2–1 + 1 × 2–2 + 1 × 2–3

= 16 + 0 + 4 + 0 + 1 + 0 + 0.25 + 0.125 = 21.37510

In each binary digit, the value increases in powers of two starting with 0 to the
left of the binary point and decreases to the right of the binary point starting with
power –1.

Use of Binary Number System in Digital Computers

The binary number system is used in digital computers because all electrical and
electronic circuits can be made to respond to the two-state concept. A switch, for
instance, can be either opened or closed, only two possible states exist. A transistor
can be made to operate either in cut-off or saturation; a magnetic tape can be
either magnetized or non-magnetized; a signal can be either High or Low; a punched
tape can have a hole or no hole. In all of these illustrations, each device is operated
in any one of the two possible states and the intermediate condition does not exist.
Thus, 0 can represent one of the states and 1 can represent the other. Hence,
binary numbers are convenient to use in analysing or designing digital circuits.

4.5.2 Decimal Number System

The number system which utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and
9 is known as decimal number system. It represents numbers in terms of groups of
ten, as shown in Figure 4.4.

We would be forced to stop at 9 or to invent more symbols if it were not for
the use of positional notation. It is necessary to learn only 10 basic numbers and
positional notational system in order to count any desired figure.

Figure 4.4 Decimal Position Values

The decimal number system has a base or radix of 10. Each of the ten
decimal digits 0 through 9 has a place value or weight depending on its position.
The weights are units, tens, hundreds and so on. The same can be written as the
power of its base as 100, 101, 102, 103... etc. Thus, the number 1993 represents
quantity equal to 1000 + 900 + 90 + 3. Actually, this should be written as {1 × 103

+ 9 × 102 + 9 × 101 + 3 × 100}. Hence, 1993 is the sum of all digits multiplied by
their weights. Each position has a value 10 times greater than the position to its
right.

For example, the number 379 actually stands for the following
representation.

Recursion

NOTES

Self-Instructional Material 183

100 10 1

102 101 100

3 7 9

3 × 100 + 7 × 10 + 9 × 1

 37910 = 3 × 100 + 7 × 10 + 9 × 1

= 3 × 102 + 7 × 101 + 9 × 100

In this example, 9 is the least significant digit (LSD) and 3 is the most significant
digit (MSD).

Example 4.4: Write the number 1936.469 using decimal representation.

Solution: 1936.469
10

= 1 × 103 + 9 × 102 + 3 × 101 + 6 × 100 + 4 × 10–1

+ 6 × 10–2 + 9 × 10–3

= 1000 + 900 + 30 + 6 + 0.4 + 0.06 + 0.009

= 1936.469

It is seen that powers are numbered to the left of the decimal point starting
with 0 and to the right of the decimal point starting with –1.

The general rule for representing numbers in the decimal system by using
positional notation is as follows:

a
n
a

n – 1
 ... a

2
a

1
a

0
 = a

n
10n + a

n – 1
10n–1 + ... a

2
102 + a

1
101 + a

0
100

Where n is the number of digits to the left of the decimal point.

4.5.3 Binary to Decimal Conversion

A binary number can be converted into decimal number by multiplying the binary
1 or 0 by the weight corresponding to its position and adding all the values.

Example 4.5: Convert the binary number 110111 to decimal number.

Solution: 110111
2

= 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 1 × 32 + 1 × 16 + 0 × 8 + 1 × 4 + 1 × 2 + 1 × 1

= 32 + 16 + 0 + 4 + 2 + 1

= 55
10

We can streamline binary to decimal conversion by the following procedure:

Step 1:Write the binary, i.e., all its bits in a row.

Step 2:Write 1, 2, 4, 8, 16, 32, ..., directly under the binary number working
from right to left.

Step 3:Omit the decimal weight which lies under zero bits.

Step 4:Add the remaining weights to obtain the decimal equivalent.

The same method is used for binary fractional number.

184 Self-Instructional Material

Recursion

NOTES

Example 4.6: Convert the binary number 11101.1011 into its decimal equivalent.

Solution:

Step 1: 1 1 1 0 1 . 1 0 1 1

Binary Point

Step 2: 16 8 4 2 1 . 0.5 0.25 0.125 0.0625

Step 3: 16 8 4 0 1 . 0.5 0 0.125 0.0625

Step 4: 16 + 8 + 4 + 1 + 0.5 + 0.125 + 0.0625 = [29.6875]10

Hence, [11101.1011]2 = [29.6875]10

Table 1.1 lists the binary numbers from 0000 to 10000. Table 4.2 lists powers of
2 and their decimal equivalents and the number of K. The abbreviation K stands
for 210 = 1024. Therefore, 1K = 1024, 2K = 2048, 3K = 3072, 4K = 4096, and
so on. Many personal computers have 64K memory this means that computers
can store up to 65,536 bytes in the memory section.

Table 4.1 Binary Numbers Table 4.2 Powers of 2

Decimal Binary Powers of 2 Equivalent Abbreviation

0 0 20 1

1 01 21 2

2 10 22 4

3 11 23 8

4 100 24 16

5 101 25 32

6 110 26 64

7 111 27 128

8 1000 28 256

9 1001 29 512

10 1010 210 1024 1K

11 1011 211 2048 2K

12 1100 212 4096 4K

13 1101 213 8192 8K

14 1110 214 16384 16K

15 1111 215 32768 32K

16 10000 216 65536 64K

4.5.4 Decimal to Binary Conversion

There are several methods for converting a decimal number into a binary number.
The first method is to simply subtract values of powers of 2 from the decimal
number until nothing remains. The value of the highest power of 2 is subtracted
first, then the second highest and so on.

Recursion

NOTES

Self-Instructional Material 185

Example 4.7: Convert the decimal integer 29 to the binary number system.

Solution: First, the value of the highest power of 2 which can be subtracted from
29 is found. This is 24 = 16.

Then, 29 – 16 = 13.

If the value of the highest power of 2 which can be subtracted from 13 is 23, then
13 – 23 = 13 – 8 = 5. The value of the highest power of 2 which can be subtracted
from 5 is 22. Then 5 – 22 = 5 – 4 = 1. The remainder after subtraction is 1 or 20.
Therefore, the binary representation for 29 is given by,

29
10

= 24 + 23 + 22 + 20 = 16 + 8 + 4 + 0 × 2 + 1

= 1 1 1 0 1

[29]
10

= [11101]
2

Similarly, [25.375]
10

= 16 + 8 + 1 + 0.25 + 0.125

= 24 + 23 + 0 + 0 + 20 + 0 + 2–2 + 2–3

[25.375]
10

= [11011.011]
2

This is a laborious method for converting numbers. It is convenient for small numbers
and can be performed mentally, but is seldom used for larger numbers.

4.5.5 Double-Dabble Method

A popular method called double-dabble method, also known as divide-by-two
method, is used to convert a large decimal number into its binary equivalent. In this
method, the decimal number is repeatedly divided by 2 and the remainder after
each division is used to indicate the coefficient of the binary number to be formed.
Notice that the binary number derived is written from the bottom up.

Example 4.8: Convert 199
10

 into its binary equivalent.

Solution: 199 2 = 99 + remainder 1 (LSB)
99 2 = 49 + remainder 1
49 2 = 24 + remainder 1

24 2 = 12 + remainder 0

12 2 = 6 + remainder 0
6 2 = 3 + remainder 0
3 2 = 1 + remainder 1
1 2 = 0 + remainder 1 (MSB)

The binary representation of 199 is, therefore, 11000111. Checking the result we
have,

[11000111]2 = 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 +
1 × 20

= 128 + 64 + 0 + 0 + 0 + 4 + 2 + 1

186 Self-Instructional Material

Recursion

NOTES

 [11000111]2 = [199]10

Notice that the first remainder is the LSB and the last remainder is the MSB. This
method will not work for mixed numbers.

4.5.6 Decimal Fraction to Binary

The conversion of decimal fraction into binary fractions may be accomplished by
using several techniques. Again, the most obvious method is to subtract the highest
value of the negative power of 2 from the decimal fraction. Then, the next highest
value of the negative power of 2 is subtracted from the remainder of the first
subtraction, and this process is continued until there is no remainder or to the
desired precision.

Example 4.9: Convert decimal 0.875 to a binary number.

Solution: 0.875 – 1 × 2–1 = 0.875 – 0.5 = 0.375

0.375 – 1 × 2–2 = 0.375 – 0.25 = 0.125

0.125 – 1 × 2–3 = 0.125 – 0.125 = 0

 [0.875]
10

= [0.111]
2

A much simpler method of converting longer decimal fractions to binary consists
of repeatedly multiplying them by 2 and recording any carriers in the integer position.

Example 4.10: Convert 0.6940
10

 to a binary number.

Solution: 0.6940 × 2 = 1.3880 = 0.3880 with a carry of 1

0.3880 × 2 = 0.7760 = 0.7760 with a carry of 0

0.7760 × 2 = 1.5520 = 0.5520 with a carry of 1

0.5520 × 2 = 1.1040 = 0.1040 with a carry of 1

0.1040 × 2 = 0.2080 = 0.2080 with a carry of 0

0.2080 × 2 = 0.4160 = 0.4160 with a carry of 0

0.4160 × 2 = 0.8320 = 0.8320 with a carry of 0

0.8320 × 2 = 1.6640 = 0.6640 with a carry of 1

0.6640 × 2 = 1.3280 = 0.3280 with a carry of 1

We may stop here as the answer would be approximate.

 [0.6940]
10

= [0.101100011]
2

If more accuracy is needed, continue multiplying by 2 until you have as many digits
as necessary for your application.

Example 4.11: Convert 14.625
10

 to binary number.

Solution: First, the integer part 14 is converted into binary and then, the fractional
part 0.625 is converted into binary as follows:

Recursion

NOTES

Self-Instructional Material 187

 Integer part Fractional part

14 2 = 7 + 0 0.625 × 2 = 1.250 with a carry of 1

7 2 = 3 + 1 0.250 × 2 = 0.500 with a carry of 0

3 2 = 1 + 1 0.500 × 2 = 1.000 with a carry of 1

1 2 = 0 + 1

 The binary equivalent is [1110.101]2

CHECK YOUR PROGRESS

7. What is a base two system?

8. Why is a binary number system used in digital computers?

9. State any one method used for the conversion of a decimal number into a
binary number.

4.6 RECURSION AND RECURRENCE RELATIONS

The numbers in the sequence 0, 1, 2, 3, 5, 8, 13, 21,..... in which each new term
is the sum of the previous two terms are called the Fibonacci numbers. If we
denote the (n + 1)th Fibonacci number by f

n
, we have,

f
n
 = f

n–1
 + f

n–2
 for n 2

and f
0
 = 0 and f

1
 = 1. This is called a recursive definition in which each

element of the sequence is defined in terms of the previous numbers in the sequence.

We can define a function with the set of non-negative intergers and its domain
by,

1. Specifying the value of the function at zero
2. giving a rule for finding its value at an integer from its values at smaller

integers

Such a function is called a recursively defined function or such a definition
is called recursive definition.

For example, consider the sequence of powers of 3 given by,

a
n
 = 3n for n = 0, 1, 2,.....

This sequence can also be defined by giving the first term of the
sequence, namely a

0
 = 1 and a rule for finding a term of the sequence from

the previous one, namely,

a
n+1

 = 3a
n
 for n = 0, 1, 2,....

Example 4.12: Find a recursive definition of binomial coefficients.

Solution: Denote the binomial coefficient n
k
 by C (n, k). Then the recursive

definition for C (n, k) where n 0, k 0 and n k is given by,

C (n, 0) = 1;

188 Self-Instructional Material

Recursion

NOTES

C (n, n) = 1; and

C (n, k) = C (n – 1, k) + C (n – 1, k – 1) for n > k > 0.

Example 4.13: Suppose that f is recursively defined as follows,

f(0) = 2

f(n + 1) = 3f(n)+2

Find f(1), f(2), f(3) and f(4).

Solution: From the recursive definition, it follows that:
f(1) = 3f(0) + 2 = 3.2 + 2 = 8
f(2) = 3f(1) + 2 = 3.8 + 2 = 26
f(3) = 3f(2) + 2 = 3.26 + 2 = 80
f(4) = 3f(3) + 2 = 3.80 + 2 = 242

Example 4.14: Give a recursive definition of f(n) = n!

Solution: Since 0! = 1 and (n + 1)! = (n + 1)n!, the desired rule is,

f(0) = 1

f(n + 1) = (n + 1) f(n)

Example 4.15: Give a recursive definition of an where a is a non-zero number
and n is a non-negative integer.

Solution: It can be stated as,

a0 = 1; and an+1 = a.an for n 0.

Where an uniquely defined is for all non-negative integers n.

Example 4.16: Give a recursive definition for polynomial expression.

Solution: An expression of the form,

f(x) = a
0
xn + a

1
xn–1 + + a

n–1
x + a

n

Where a’s are constants (a
0
 0) and n 0, is called polynomial in x of

degree n.

Let S be a set of coefficients. Then, recursive definition for polynomial is,

1. A zeroth degree (constant) polynomial is an element of S.
2. For n 1, an nth degree polynomial expression is an expression of

the form q(x)x+a, where q(x) is an (n – 1)th degree polynomial and
a S.

Example 4.17: Using recursive definition for polynomial expression prove that

f(n) = 3n3 – 8n2 + 2n + 4 is a third-degree polynomial expression

Solution: Given f(n) = 3n3 – 8n2 + 2n + 4

= (3n2 – 8n + 2) n + 4 = ((3n – 8) n + 2) n + 4

= (((3) n – 8) n + 2) n + 4

Recursion

NOTES

Self-Instructional Material 189

Now, 3 is a zeroth degree polynomial.

 (3) n – 8 is a first degree polynomial.

 ((3) n – 8) n + 2 is a second degree polynomial

 f(n) = (((3) n – 8) n + 2) n + 4 is a third degree polynomial.

Note: The final expression is,

f(n) = (((3) n – 8) n + 2) n + 4

This is called its telescoping form. If you use it to calculate f(6), you need only
three multiplications and three additions or substractions. This is called Horner’s
method for evaluating a polynomial expression.

Example 4.18: Write p(x) = x3 – 6x2 + 11x – 6 in telescoping form.

Solution: The telescoping form is as follows:
p(x) = x3 – 6x2 + 11x – 6

= (((1) x – 6) x + 11) x – 6
Example 4.19: Write g(x) = – x5 + 3x4 + 3x3 + 2x2 + x in telescoping form.
Solution: The telescoping form is as follows:

g(x) = x5 + 3x4 + 3x3 + 2x2 + x
= (((((– 1) x + 3) x + 3) x + 2) x + 1) x + 0

4.6.1 Recursion and Iteration

There is another way to evaluate a function from its recursive definition. Instead
of sucessively reducing the computation to evaluate the function at small integers,
we can start with the basis and successively apply the recursive definition to find
the values of the function at successive larger intergers. Such a procedure is
called an iterative procedure.

For Example, to find n! using an iterative procedure, we start with 1, the
value of the factorial function at 0, and multiply it successively by each positive
integer less than or equal to n.

Note: Often an iterative approach for the evaluation of a recursively defined sequence
requires much less computation than a procedure using recursion. However, is sometimes
preferable to use a recursive procedure even if it is less efficient than the iterative procedure.

4.6.2 Closed Form Expression

Let f(x
1
, x

2
, x

n
) be an algebraic expression involving variables, x

1
, x

2
, x

n

which are allowed to take values from some predetermined set. f is a closed form
expression if there exists a number F such that the evaluation of f with any allowed
values x

1
, x

2
,x

n
 will take no more than F operations.

For example, (i) A closed form expression for 1 + 2 + ... + n is,

1 + 2 + ... + n =
n n()1

2

190 Self-Instructional Material

Recursion

NOTES

(ii) A closed form expression for 12 + 22 + ... + n2 is,

 12 + 22 + ... + n2 =
n n n()() 1 2 1

6

4.6.3 Sequence of Integers

A sequence of integers is a function from the natural numbers into integers. That is,
if f is a sequence of integers, then f: N Z is a function. We use the notation f

n
 or

f(n) to denote the image of any natural number n. We call f
n
 and nth term of the

sequence.

Note: A sequence is often called a discrete function.

Example 4.20: Prove by induction that f(k) = 3k + 2, k 0 is a closed form
expression of the sequence f defined recursively by f(0) = 2 and f(k) = f(k – 1) +
3 for k 1.

Solution:

1. Basis of induction: If k = 0, then f(0). But f(0) = 3(0) + 2 = 2 as defined.

2. Induction step: Now assume that for some k > 0,

f(k) = 3k + 2 …(1)

We have,

f(k + 1) = f(k) + 3 by the recursive definition

= 3k + 2 + 3 = 3k + 3 + 2

= 3(k + 1) + 2

 Therefore, by the principle of mathematical induction the result follows. Hence,
f(k) = 3k + 2, k 0 is a closed form expression for the sequence f.

Example 4.21: Define the sequence of numbers f by f
0
 = 100 and f

n
 = 1.08

f
n–1

 for n 1. Prove by induction that f
n
 = 100 (1.08)n, n 0 is a closed form of

expression for the sequence f.

Solution:

1. Basis of induction: If k = 0, then f
0
 = 100 (1.08)0 = 100 as defined.

2. Induction step: Now assume that for some k > 0

f
k

= 100 (1.08)k

Then,

f
(k+1)

= (1.08)f
k
 by the recursive definition

= (1.08)100k

= 100 (1.08)k+1

 Therefore, by the principle of mathematical induction the result follows. Hence,
f
n
 = 100 (1.08)n, n 0 is closed form expression for the sequence f.

Recursion

NOTES

Self-Instructional Material 191

Notes:

1. The sequence f:N Z, defined by f(n) = n3 – n, is a sequence of integers.

2. The sequence f:N Z, defined by f(0) = 1 and f(n) = f(n – 1) + 2 for n
 1 is a sequence of integer.

3. The codomain of a sequence can be any set. We use the notation {f
n
} to

describe the sequence. We describe sequences by listing the terms of the
sequence in the order of increasing subscripts.

For example,

(i) Consider the sequence f:N S defined by f(n) = f
n
 =

1

1n
. The list of the

terms of this sequence f
0
, f

1
, f

2
,... begins with:

1, 1

2
, 1

3
, 1

4
,

(ii) Consider the sequence f:N Z defined by f
n
 = 4n. The list of the terms of

the sequence f
0
, f

1
, f

2
,... begins with:

1, 4, 16, 64,

4.6.4 Recurrence Relations

The expressions for permutations and combinations are one of the most fundamental
tools for counting the elements of finite sets. They often prove to be inadequate
and many problems of computer sciences require a different approach. An important
alternative approach uses recurrence relations (often called recurrence equations
or difference equation) to define the terms of a sequence. A formal definition of
recurrence relations is difficult because of the wide variety of forms in which such
relations can be written, but the concept is straightforward. You have already seen
an example of a recurrence relation in the definition of the Fibonacci sequence,
where for n 2, the term f

n
 is defined by the recurrence relation,

f
n

= f
n–1

 + f
n–2

The salient characteristic of a recurrence relation is the specification of the
term f

n
 as a function of the terms f

0
, f

1
,, f

n–1
. By itself, however, a recurrence

relation is not sufficient to define the terms of a sequence. You must also specify
the values of some initial terms of the sequence. Thus, in our definition of the
Fibonacci sequence, we set f

0
 = 0 and f

1
 = 1. These are called the boundary

conditions or initial conditions of the sequence.

Recall that a recursive definition of a sequence specifies one or more initial
terms and a rule for determining subsequent terms from those that precede them.
Recursive definitions can be used to solve counting problems. When they are, the
rule for finding terms from those that precede them is called a recurrence relation.

Recurrence relation: A recurrence relation for the sequence {f
n
} is a formula

that expresses f
n
 in terms of one or more of the previous terms of the sequence,

192 Self-Instructional Material

Recursion

NOTES

namely, f
0
, f

1
, f

n–1
, for all integers n with n n

0
, when n

0
 is a non-negative

integer. A sequence is called a solution of a recurrence relation if its terms satisfy
the recurrence relation.

Example 4.22: Determine whether the sequence {f
n
} is a solution of the

recurrence relation,

f
n

= 2f
n–1

 – f
n–2

for n = 2, 3, 4, Where f
n
 = 3n for every non-negative integer n.

Solution: Suppose that, f
n
 = 3n for every non-negative integer n. Then for

n 2,

f
n

= 2f
n–1

 – f
n–2

= 2[3(n – 1)] – 3(n – 2) since f
n
 = 3n

= 6n – 6 – 3n + 6 = 3n

Therefore, {f
n
}, where f

n
 = 3n is a solution of the recurrence relation.

Example 4.23: Show that the sequence {f
n
} is a solution of the recurrence

relation f
n
 = – 3f

n–1
 + 4f

n–2
 if f

n
 = 2(–4)n + 3.

Solution: Suppose that, f
n

= 2(– 4)n + 3.

Then f
n

= –3f
n–1

 + 4f
n–2

= – 3 [2(– 4)n–1 + 3] + 4 [2(– 4)n–2 + 3]

= – 6(– 4)n–1 – 9 + 8(– 4)n–2 + 12

= – 6(– 4)n–1 – 2(– 4)n–1 + 3

= – 8(– 4)n–1 + 3

= 2(– 4)n + 3

Therefore {f
n
} where f

n
 = 2(– 4)n + 3 is a solution of the recurrence relation.

Now you will study about a class of recurrence relations known as linear
recurrence relations with constant coefficients.

Linear recurrence relation: A recurrence relation of the form

a
0
 f

n
 + a

1
 f

n–1
 + a

2
 f

n–2
 + + a

k
 f

n–k
 = f(n) ...(4.1)

Where a
1
, a

2
and so on are constants, is called a linear recurrence relation

with constant coefficients. The recurrence relation as shown in Equation 4.1 is
known as a kth-order recurrence relation, provided that both a

0
 and a

k
 are non

zero.

Note: The phrase ‘kth-order’ means that each term in the sequence depends
only on the previous k terms.

For example, consider the Fibonacci sequence defined by the recurrence relation
f
n
 = f

n–1
 + f

n–2
, n 2 and the initial condition f

0
 = 0 and f

1
 = 1. The recurrence

relation is called a second-order relation because f
n
 depends on the two previous

terms of f.

Recursion

NOTES

Self-Instructional Material 193

For example, consider the recurrence relation f(k) – 5f(k – 1) + 6f(k – 2) = 4k + 10

defined for k 2, together with the initial condition f(0) =
7

3
 and f(1) = 5. Clearly,,

it is a second-order linear recurrence relation.

Homogeneous recurrence: A kth-order linear relation is a homogeneous
recurrence relation if f(n) = 0 for all n. Otherwise, it is called non-homogeneous.

For example, consider the recurrence relation c(k) – 5c (k – 1) + 8c (k – 2) = 0
together with the initial condition c(0) = 5 and c(1) = 2. It is a second-order
homogeneous recurrence relation.

Example 4.24: Which of the recurrence relations of the following are
homogeneous and which are non-homogeneous?

(i) f
n
 = nf

n–2
(ii) a

n
 = a

n–1
 + a

n–3

(iii) b
n
 = b

n–1
 + 2 (iv) s (n – 2) + s (n – 4)

Solution: The relation f
n
 = nf

n–2
, a

n
 = a

n–1
 + a

n–3
, s(n) = s(n – 2) + s (n – 4) are

all homogeneous and the relation b
n
 = b

n–1
 + 2 is non-homogeneous.

4.6.5 Linear Homogenous Recurrence Relations (LHRR)

Before writing an algorithm for solving a recurrence relations, let us examine a few
recurrence relations that arise from certain closed form expressions. The procedure
is illustrated by the following examples.

Example 4.25: Form the recurrence relation given f
n
 = 3.5n, n 0.

Solution: If, n 1,

Then f
n

= 3.5n = 3.5.5n–1

= 5.3.5n–1 = 5f
n–1

So, the recurrence relation is f
n
 – 5f

n–1
 = 0 with f

0
 = 3.

Example 4.26: Find the recurrence relation which satisfies that

y
n
 = A(3)n + B(– 2)n.

Solution: Given, y
n

= A(3)n + B(– 2)n

Therefore, y
n+1

= A(3)n+1 + B (– 2)n+1 = 3A(3)n – 2B(– 2)n

and y
n+2

= A(3)n+2 + B (– 2)n+2 = 9A(3)n + 4B(– 2)n

Eliminating A and B from these equations, we get

y
y
y

n

n

n

1 1
3
9 4

01

2

–2

Or y
n+2

 – y
n+1

 – 6y
n
 = 0, which is the required recurrence relation.

194 Self-Instructional Material

Recursion

NOTES

Example 4.27: Find the recurrence relation which satisfies that y
n
 = A(3)n +

B(– 4)n

Solution: Given, y
n+1

= A(3)n + B(– 4)n

Therefore, y
n+1

= 3A (3)n – 4B(– 4)n

and y
n+2

 = 9A(3)n + 16B (– 4)n

Eliminating A and B from these equation, we get

y
y
y

n

n

n

1 1
3
9 16

01

2

–4

Or y
n+2

 + y
n+1

 – 12y
n
 = 0, which is the required recurrence relation.

Example 4.28: Find the recurrence relation which satisfies that y
n
 = (A + Bn)4n

Solution: Given, y
n

= (A + Bn) 4n

= A4n + nB4n

Therefore, y
n+1

= 4A4n + 4 (n + 1) B4n

and y
n+2

= 16A4n + 16 (n + 2) B4n

Eliminating A and B from these equation, we get

y n
y n
y n

n

n

n

1
4 4 (1)

16 16 (2)

1

2

 = 0

Or y
n+2

 – 8y
n+1

 = 0, which is the required recurrence relation.

4.6.6 Solving Linear Homogeneous Recurrence Relations

Consider a linear homogeneous recurrence relations of degree k with constant
coefficients.

f
n

= a
1
 f

n–1
 + a

2
 f

n–2
 + ... + a

k
 f

n–k

Where a
1
, a

2
,, a

k
 are real numbers and a

k
 0. The basic approach for

solving linear homogeneous recurrence relations is to look for solutions of the
form f

n
 = rn, where r is a constant. Note that f

n
 = rn is the solution of the recurrence

relation f
n
 = a

1
 f

n–1
 + a

2
 f

n–2
 + + a

k
 f

n–k
 if and only if,

r
n

= C
1
 rn–1 + C

2
 rn–2 + ... + C

k
 rn–k

When both sides of this equation are divided by rn–k and the right-hand side
is substracted from the left, we obtain:

rk – C
1
 rk–1 – C

2
 rk–2 – – C

k–1
 T – C

k
 = 0

Consequently, the sequence {f
n
} with f

n
 = rn is the solution if and only if r is

a solution of this last equation.

Recursion

NOTES

Self-Instructional Material 195

Characteristic equation: The characteristic equation of the homogeneous kth
order linear relation,

f
n
 + a

1
 f

n–1
 + a

2
 f

n–2
 + ... + a

k
 f

n–k
 = 0

This is the kth degree polynomial equation

rk + C
1
 rk–1 + C

2
 rk–2 + ... + C

k–1
 r + C

k
 = 0

The solutions of this equation are called the characteristic roots of the
recurrence relation.

Example 4.29: What is the characteristic equation of,

Q(k) + 2Q(k – 1) – 3Q(k – 2) – 6Q(k – 4) = 0

Solution: The characteristic equation of the given equation

 Q(k) + 2Q(k – 1) – 3Q(k – 2) – 6Q(k – 4) = 0

 is r4 + 2r3 – 3r2 – 6 = 0.

Note that the absence of a Q(k – 3) term means that there is no r4–3 = r term
in the characteristic equation.

Example 4.30: What is the characteristic equation of T(k) – 7T(k – 2) + 6T(k
– 3) = 0?

Solution: The characteristic equation is r3 – 7r + 6 = 0 and 1, 2 and – 3 are the
characteristic roots.

Algorithm for solving kth-order homogeneous linear recurrence relation

Step 1: If f
n
 + a

1
 f

n–1
 + a

2
 f

n–2
 + ... + a

k
 f

n–k
 = 0 is a given recurrence relation,

then write its characteristic equation.

It is, rk + C
1
 rk–1 + C

2
 rk–2 + ... + C

k–1
 r + C

k
 = 0.

Step 2: Find all the characteristic roots of this equation.

Step 3: Case (i) If there are k distinct roots, say c
1
, c

2
, ... c

k
, then the general

solution of the recurrence relation is,

f
n
 = A

1
 c

1
k + A

2
 c

2
k + ... + A

k
ck

k

Case (ii) Suppose that c
1
 is a root of multiplicity m. Then the

corresponding solution is,

f
n
 = (A

1
 rm–1 + A

2
 rm–2 + ... + A

m
 – 2r2 + A

m–1
 T + A

m
)cT

1
 + ...

Step 4: Use the boundary conditions to determine the constants A
1
, A

2
, A

k
.

Example 4.31: Solve the Fibonacci sequence {f
n
} defined by,

f
n
 = f

n–1
 + f

n–2
 for n 2 with the initial conditions f

0
 = 1 and f

1
 = 1.

Solution: The first step is to form the characteristic equation corresponding to the
given difference equation. In this case it is,

r2 – r – 1 = 0

196 Self-Instructional Material

Recursion

NOTES

Solving, we get c
1
 =

1 5

2
 and c

2
 =

1 5

2
 as the characteristic roots. It

follows that the general solution is,

f
n

= A
1
c

1
n + A

2
c

2
n

Where A
1
 and A

2
 are constants. Since f

0
 = 1 and f

1
 = 1, we get

0 = A
1
 + A

2

and 1 = A
1
c

1
 + A

2
c

2

1 = A
1

1 5

2

F
HG

I
KJ + A

2

1 5

2

F
HG

I
KJ

On solving, we get

A
1

=
1

5
 and A

2
 =

1

5

Hence, the solution is,

f
n

=
1

5

1 5

2

1 5

2

F
HG

I
KJ

F
HG

I
KJ

L

N
M
M

O

Q
P
P

n n

Example 4.32: If the recurrence relation is u
n+1

 – 2u
n
 = 0, then find the closed

form expression (solution) for u
n
.

Solution: The characteristic equation of the given recurrence relation is
r – 2 = 0, i.e., r = 2. Therefore, the general solution is u

n
 = A2n. Hence, u

n
 = u

0
 .

2n is the closed form expression, where the value of u
0
 is the initial condition.

Example 4.33: Find f(n) if f(n) = 7f(n – 1) – 10f(n – 2), given that f(0) = 4 and
 f(1) = 17.

Solution: The characteristic equation of the given recurrence relation is
r2 – 7r + 10 = 0.

Its characteristic roots are r = 2, 5. So, the general solution of the recurrence
relation is,

f(n) = A
1
 (2)n + A

2
 (5)n

Since, f(0) = 4, 4 = A
1
 + A

2

Again, f(1) = 17 implies 17 = 2A
1
 + 5A

2

Solving, we get A
1

= 1 and A
2
 = 3.

 Therefore, f(n) = (2)n + 3(5)n

Recursion

NOTES

Self-Instructional Material 197

Example 4.34: Find T(k) if T(k) – 7T(k –2) + 6T(k – 3) = 0, where T(0) = 8,
T(1) = 6 and T(2) = 22.

Solution: The characteristic equation is r2 – 7r + 6 = 0

Its roots are 1, 2 and –3.

Therefore, the general solution is T(k) = A
1
 (1)k + A

2
 (2)k + A

3
 (– 3)k.

Now,

T(0) = 8 A
1
 + A

2
 + A

3
 = 8

T(1) = 6 A
1
 + 2A

2
 – 3A

3
 = 6

T(2) = 22 A
1
 + 4A

2
 + 9A

3
 = 22

Solving, we get A
1

= 5, A
2
 = 2 and A

3
 = 1.

Hence,

T(k) = 5 + 2(2)k + 1 (– 3)k

= 5 + 2k+1 + (– 3)k

Example 4.35: Solve f
k
 – 8f

k–1
 + 16f

k–2
 = 0, where f

2
 = 16 and f

3
 = 80.

Solution: The characteristic equation is r2 – 8r + 16 = 0 (or) (r – 4)2 = 0

So, r = 4 is a double characteristic root.

Therefore, the general solution is f
k
 = (A

1
 + A

2
k) 4k

Now, f
2

= 16 (A
1
 + 2A

2
) 16 = 16

And, f
3

= 80 (A
1
 + 3A

2
) 64 = 80

Solving, we get A
1

=
1

2
 and A

2
 =

1

4

Hence, the solution is,

f
k

=
1

2

1

4
F
H

I
Kk 4k

= (2 + k)4k–1

Example 4.36: Find a solution to the recurrence relation C
n
 = – 3C

n–1

– 3C
n–2

 – C
n–3

 for n 3 with initial conditions C
0
 = 1, C

1
 = – 2 and C

2
 = 1.

Solution: The characteristic equation is r3 + 3r2 + 3r + 1 = 0 (or) (r + 1)3 = 0.

So r = – 1 is a characteristic root of multiplicity 3. Therefore, the general
solution is,

C
n

= (A
1
 + A

2
n + A

3
n2) (– 1)n

Now, C
0

= 1 A
1
 = 1

198 Self-Instructional Material

Recursion

NOTES

C
1

= 2 – (A
1
 + A

2
 + A

3
) = – 2

C
2

= 1 A
1
 + 2A

2
 + 4A

3
 = 1

Solving, we get A
1
 = 1, A

2
 = 2, A

3
 = 1.

Hence, the solution is C
n
 = (1 + 2n – n2) (– 1)n.

4.6.7 Solving Linear Non-Homogeneous Recurrence Relations

The solution of a linear non-homogeneous recurrence relation with constant
coefficient is the sum of the two parts: the homogeneous solution, which satisfies
the recurrence relation when the right-hand side of the equation is set 1 to 0, and
the particular solution, which satisfies the difference equation with f(n) on the
right-hand side.

There is no general procedure for determining the particular solution of a
difference equation. However, in simple cases, this solution can be obtained by
the method of inspection. To determine the particular solution, the following rules
are used:

Rule 1: When f(n) is of the form of a polynomial of degree m in n,
k

0
 + k

1
n + k

2
n2 + ... + k

m–1
nm–1 + k

m
nm

Then the corresponding particular solution will be of the form,
Q

0
 + Q

1
n + Q

2
n2 + ... + Q

m–1
nm–1 + Q

m
nm

Rule 2: When f(n) is of the form,
(k

0
 + k

1
n + k

2
n2 + ... + k

m+1
nm–1 + k

m
nm)an

Then the corresponding particular solution is of the form,

(Q
0
 + Q

1
n + Q

2
n2 + + Q

m–1
nm–1 + Q

m
nm)an

If a is not a characteristic root of the recurrence relation.

Example 4.37: Solve S(k) – S(k – 1) – 6S(k – 2) = – 30, where S(0) = 20, S(1)
= – 5.

Solution: The associated homogeneous relation is S(k) – S(k – 1) – 6S(k – 2) = 0.

The characteristic equation is r2 – r – 6 = 0.

Its characteristic roots are r = – 2, 3.

So, the homogeneous solution is A
1
 (– 2)k + A

2
 (3)k.

Since the right-hand side of S(k) – S(k – 1) – 6S(k – 2) = – 30 is a
constant, by rule 1, the particular solution will also be a constant, say Q into (1).

Thus,

Q – Q – 6Q = – 30 – 6Q = – 30

 Q = 5

Therefore, the general solution is

S(k) = A
1
 (– 2)k + A

2
 (3)k + 5

Recursion

NOTES

Self-Instructional Material 199

Using the initial conditions, S(0) = 20, S(1) = – 5

20 = A
1
 + A

2
 + 5

 – 5 = – 2A
1
 + 3A

2
 + 5

This will yield A
1
 = 11 and A

2
 = 4.

Hence, the complete solution is S(k) = 11 (– 2)k + 4(3)k + 5.

Rule 3: If a is a characteristic root of multiplicity r – 1, when f(n) is of the
form,

(k
0
 + k

1
n + k

2
n2 + ... + k

m–1
 nm–1 + k

m
nm)an

Then the corresponding particular solution is of the form,

nr–1 (Q
0
 + Q

1
n + Q

2
n2 + ... + Q

m–1
nm–1 + Q

m
nm)an.

Note: The general solution of the recurrence relation is the sum of the
homogeneous solution and particular solution. If no initial conditions are given,
then you have obtained the solution. If m initial conditions are given, obtain m
linear equations in m unknowns and solve the system, if possible, to get a complete
solution.

Example 4.38: Solve the recurrence relation f
n
 – 5f

n–1
 + 6f

n–2
 = 1. ...(1)

Solution: The associated homogeneous relation is f
n
 – 5f

n–1
 + 6f

n–2
 = 0.

The characteristic equation is r2 – 5r + 6 = 0.

Its characteristic roots are r = 2, 3 so the homogeneous solution is,

A
1
 (2)n + A

2
(3)n

Since the right-hand side f(n) = 1 is a constant, by rule 1, the particular
solution will also be a constant, say Q. Substituting Q into Equation (1), we obtain:

Q – 5Q + 6Q = 1

This implies that Q =
1

2
. Therefore, the complete solution is,

f
n

= A
1
 (2)n + A

2
(3)n +

1

2
.

Example 4.39: Find the particular solution of the recurrence relation,

f(n) + 5f(n – 1) + 6f(n – 2) = 3n2 – 2n + 1 …(1)

Solution: By rule 1, the particular solution is of the form,

Q
0
 + Q

1
n + Q

2
n2 …(2)

Substituting Equation (2) into Equation (1), you obtain:

(Q
0
 + Q

1
n + Q

2
n2) + 5 (Q

0
 + Q

1
 (n – 1) + Q

2
 (n – 1)2)

+ 6(Q
0
 + Q

1
 (n – 2) + Q

2
 (n – 2)2) = 3n2 – 2n + 1

200 Self-Instructional Material

Recursion

NOTES

Which simplifies to,

(12Q
0
 – 17Q

1
 + 29Q

2
) + (12Q

1
 – 34Q

2
)n + 12Q

2
n2 = 3n2 – 2n + 1 (3)

Comparing the two sides of Equation (3), you obtain,

12Q
2
 = 3; 12Q

1
 – 34Q

2
 = – 2; 12Q

0
 – 17Q

1
 + 29Q

2
 = 1

Which yields Q
2
 =

1

4
, Q

1
 =

13

24
, Q

0
 =

71

288
.

Therefore, the particular solution is
71

288
 +

13

24
n +

1

4
n2.

Example 4.40: Solve a
r
 + 5a

r–1
 = 9 with initial condition a

0
 = 6.

Solution: The associated homogeneous recurrence relation is a
r
 + 5a

r–1
 = 0.

The characteristic equation is r + 5 = 0.

Therefore, r = – 5. So, the homogeneous solution is A
1
 (– 5)r. Since the

right-hand side of the given relation is a constant, the particular solution will also
be a constant Q. Substituting in the recurrence relation, we get:

Q + 5Q = 9

So, Q =
3

2
. Therefore, the general solution is a

r
 = A

1
 (– 5)r +

3

2
.

Using the initial condition a
0
 = 6, we get

6 = A
1
 +

3

2
 A

1
 =

9

2

Hence, the complete solution is,

a
r
 =

9

2
 (– 5)r +

3

2

Example 4.41: Solve the recurrence relation f(n) – 7f(n – 1) + 10f(n – 2) = 6

+ 8n with f(0) = 1 and f(1) = 2. …(1)

Solution: The homogeneous solution is A
1
 (2)n + A (2)n + A

2
 (5)n. By rule 1, the

particular solution is of the form Q
0
 + Q

1
n.

Substituting in Equation (1), we get :

(Q
0
 + Q

1
n) – 7(Q

0
 + Q

1
(n – 1)) + 10(Q

0
 + Q

1
(n – 2)) = 6 + 8n

Comparing the two sides, you obtain

4Q
0
 – 13Q

1
 = 6 and 4Q

1
 = 8

Which yields, Q
0
 = 8, Q

1
 = 2. Therefore, the particular solution is 8 + 2n

and the general solution is,

f(n) = A
1
 (2)n + A

2
 (5)n + 8 + 2n

Now the initial conditions,

f(0) = 1 A
1
 + A

2
 + 8 = 1

Recursion

NOTES

Self-Instructional Material 201

and

f(1) = 2 2A
1
 + 5A

2
 + 10 = 2

Solving, we get A
1
 = – 9 and A

2
 = 2. Hence, the complete solution is,

f(n) = – 9(2)n + 2(5)n + 8 + 2n

Example 4.42: Find the particular solution of the recurrence relation
a

n
 + 5a

n–1
 + 6a

n–2
 = 42(4)n. …(1)

Solution: Now r2 + r + 6 = 0, r = – 2, – 3 are characteristic roots. Since 4 is
not a characteristic root, by rule 2, you can assume that the general form of the
particular solution is Q (4)n. Substituting in Equation (1), you will obtain

Q.(4)n + 5Q.(4)n–1 + 6Q.(4)n–2 = 42 (4)n

 Q.4n–2 [16 + 20 + 6] = 42 (4)n Q.4n–2 (42) = 42 (4)n

 Q = 42 = 16

Therefore, the particular solution is 16 (4)n = 4n+2

Example 4.43: Find the particular solution of the recurrence relation,

f
n
 + f

n–1
 = 3n2n.

Solution: The characteristic equation is r + 1 = 0. Therefore, r = –1 is a
characteristic root. Since 2 is not a characteristic root, by rule 2, the general form
of the particular solution is (Q

0
 + Q

1
n)2n. Substituting in Equation (1), we obtain:

(Q
0
 + Q

1
n)2n + (Q

0
 + Q

1
 (n –1))2n – 1 = 3n2n

Which simplifies to,

Q
0
2n + Q

1
n2n +

1

2
 Q

0
2n +

1

2
Q

1
n2n –

1

2
 Q

1
n2n = 3n2n

 (
3

2
 Q

0
 –

1

2
 Q

1
)2n +

3

2
 Q

1
n2n = 3n2n

Comparing the two sides, we obtain:

3

2
 Q

0
 –

1

2
 Q

1
 = 0

3

2
 Q

1
 = 3

Thus, Q
0
=

3

2
 and Q

1
 = 2 and the particular solution is (

3

2
 + 2n)2n.

Example 4.44: Find the particular solution of the recurrence relation f(n) – 2f(n – 1)
= 3.2n

Solution: The characteristic equation is r – 2 = 0. Since, r = 2 is the
charactertistic root of multiplicity 1, by rule 3, the general form of the particular
solution is Qn2n. Substituting in Equation (1), you will obtain:

202 Self-Instructional Material

Recursion

NOTES

Qn2n – 2Q.(n – 1)2n – 1 = 3.2n

 Q.2n = 3.2n

 Q = 3

Thus, the particular solution is 3n2n.

Example 4.45: Find the general solution of f(n) – 3f(n – 1) – 4f(n – 2) = 4n

…(1)

Solution: The associated homogeneous relation is,

f(n) – 3f(n – 1) – 4f(n – 2) = 0

Its characteristic equation is r2 – 3r – 4 = 0

Solving, we get r = – 1, 4 as characteristic roots. Therefore, the
homogeneous solution is A

1
 (– 1)n + A

2
(4)n. Since, 4 is a charactetistic root, by

rule 3, we assume that the general form of the particular solution is Qn4n.

Substituting in Equation (1), we get:

Qn4n – 3Q(n – 1)4n – 1 – 4Q(n – 2)4n – 2 = 4n

 Qn4n – 3Qn4n – 1 + 3Q4n – 1 – 4Qn4n – 2 + 8Q4n – 2 = 4n

 (16Qn – 12 Qn + 12Q – 4Qn + 8Q)4n – 2 = (16)4n – 2

 20Q = 16 Q =
4

5

Therefore, the particular solution is
4

5
 n4n. Hence, the general solution of the

recurrence relation of,

f(n) = A
1
 (– 1)n + A

2
(4)n +

4

5
 n4n

Note: What if the characteristic equation gives rise to complex roots? Here, the
methods are still valid, but the method for expressing the solutions of the recurrence
relations is different. Since an understanding of these representations require some
background in complex numbers, it is suggested that an interested reader refer to
a more advanced treatement of recurrence relations.

4.6.8 Linear Homogeneous Recurrence Relations with Constant
Coefficient (LHRRWCC)

We know that a recurrence relation is an equation defining a sequence recursively
in which each term of the sequence is defined as a function of the preceding terms.
A linear homogeneous recurrence relation of k-order with constant coefficients is
a recurrence relation of the form,

a
n
 = c

1
a

n-1
 + c

2
a

n-2
 + … + c

k
a

n-k

Where c
1
, c

2
,…, c

k
 are real numbers and c

k
 0

Recursion

NOTES

Self-Instructional Material 203

 The equation is linear since RHS consists of the sum of the previous
terms, each multiplied by a function of n.

 The equation is homogeneous since there is no term that is not a multiple
of a

j
 s.

 The equation is order k as a
n
 is expressed in terms of previous k

terms in the sequence.
 The equation has constant coefficients c

1
, c

2
,…, c

k
.

 The relation is recurrence of kth order and has k initial conditions such
as a

0
= c

0
, a

1
 = c

1
, … a

k–1
= c

k–1

Thus, the above relation is a linear homogeneous recurrence relation of order
k with constant coefficient. The following is an example on the order of the
recurrence relation:

 P
n
 = 2.5 P

n-1
Order one

 f
n
 = f

n-1
 + f

n-2
Order two

 a
n
 = a

n-5
 Order five

 a
n
 = 2a

n-1
 +

3a

n-2
 + 5a

n-6
Order six

Note: Terms in a recurrence relation is written either by subscript notation or
functional notation.

For example, f
n
 = f

n–1
 + f

n–2
 is also written as f(n) = f(n-1) + f(n-2).

Theorem 4.1: If and are two distinct (real or complex) solutions of the
equation x2 – ax – b = 0, where a, b R and b 0, then every relation of
LHRRWCC a

n
 = a·a

n–1
 +

b·a

n–2
 where a

0
 = C

0
 and a

1
 = C

1
 is of the form a

n
 =

An + Bn for some constant A and B.

Proof: This theorem will be proved in two parts:

(i) First it will be proved that a
n
 = An + Bn is a solution of recurrence relation

for constants A and B. From initial conditions, given values of A and B is
determined.

Since and are roots of the equation x2 – ax – b = 0, a2 = aa + b and
2 = a + b.

Now, it will be shown that a
n
 = An + Bn is the solution of the recurrence relation,

a
n

= a·a
n-1

 +

b·a

n-2
.

a·a
n-1

 +

b·a

n-2
= a(An-1 + Bn-1) + b(An-2 + Bn-2)

= An-2(a + b) + Bn-2(a + b)

= An-22 + Bn-22

= An + Bn i

= a
n

204 Self-Instructional Material

Recursion

NOTES

This proves that a
n
 = An + Bn is a solution of recurrence relation,

 a
n
 = a·a

n–1
+

b·a

n–2

If a
n
 = An + Bn is a solution of the recurrence relation, then values of A

and B should be calculated. Initial conditions are used to evaluate these two. Initial
given conditions are:

a
0
= C

0
and a

1
= C

1

Using this, you get the following two equations.

C
0

 = A + B and C
1

 = A + B.

The values of A and B are as:

A = (C
1
 C

0
)/() and B = (C

0
 C

1
)/() and .

After these values are determined, a
n
 = An + Bn is the unique solution.

However, this formula to determine A and B can not be applied when
 = .

Solution is looked for the form a
n
 = rn, where r is constant.

Here, a
n
 = rn is a solution of recurrence relation given by,

a
n
 = c

1
a

n-1
+ c

2
a

n-2
 +…+ c

k
a

n-k
 iff rn = c

1
rn – 1 + c

2
rn – 2 + c

3
rn – 3 +….+ c

k
rn – k

Dividing both sides by rn – k and bringing RHS to the left, a characteristic
equation is obtained which is shown as follows:

rk c
1
rk – 1 c

2
rk – 2 c

3
rk – 3 …. c

k
rk – k rk c

1
rk – 1 c

2
rk – 2 c

3
rk – 3

 …. c
k
r

By solving this equation, you get the characteristics roots.

Example 4.46: Solve recurrence relation a
n
= 5a

n–1
 – 6a

n–2
 where a

0
= 4

and a
1
= 7.

Solution: To solve this problem, we follow the given steps:

To get general solution of the recurrence relation, find the characteristic equation
which is givn by r2 – 5r + 6 = 0.

r2 – 5r + 6 = (r – 2)(r – 3) = 0 that leads to characteristic roots as 2 and 3.

Hence, general solution is given by a
n
= A·2n + B·3n, where A and B are

constants. These are to be determined from the given initial conditions.

Putting n = 0, you get a
0
= A + B = 4 and a

1
= 2A + 3B = 7. Solving

equations A + B = 4 and 2A + 3B = 7, you get A = 5, B = 1.

Thus, solution is given as a
n
= 5·2n 3n

Example 4.47: Solve the recurrence relation a
n
 = 6a

n–1
 11a

n–2
 + 6a

n–3

where a
0
 = 2, a

1
 =5, and a

2
 = 15.

Solution: General solution is obtained for the given recurrence relation by finding
the characteristic equation first which is given by r3 – 6r2 + 11r – 6 = 0 (r – 1)
(r – 2)(r – 3) = 0. Thus characteristic roots are given as 1, 2 and 3.

/n b

Recursion

NOTES

Self-Instructional Material 205

General solution is given by: a
n
 = A·1n + B·2n + C·3n.

Now evaluate constants by using initial conditions.

Get equations a
0
= A + B + C = 4; a

1
= A + 2B + 3C = 5 and a

2
= A +

4B + 9C = 15. Solving these three equations you will get values of A B and C
as A = 1, B = 1, C = 2. Thus, the unique solution is:

a
n
 = 1 2n + 2·3n for n 0.

Example 4.48: Find f(n) if f(n) = 7f(n – 1) – 10f(n – 2), given that f(0) = 4
and f(1) = 17.

Solution: The characteristic equation of the given recurrence relation is r2 – 7r
+ 10 = 0

Its characteristic roots are r = 2, 5. So, the general solution of the recurrence
relation is,

f(n) = A1 (2)n + A2 (5)n

Since, f(0) = 4, A1 + A2 = 4

Again, f(1) = 17 implies 2A1 + 5A2 = 17

Solving these two equations, You will get A
1
=1 and A

2
 = 3. Therefore,

unique solution is:

 f(n) = (2)n + 3(5)n

Note: If roots of a characteristic equation are equal, i.e., = , then the general
solution is a bit different in form and this has a form a

n
 = (A

1
 + A

2
n) n. This is

illustrated in the following examples.

Example 4.49: Solve fk – 8fk–1 + 16fk–2 = 0, where f2 = 16 and f3 = 80.

Solution: Characteristic equation is r2 – 8r + 16 = 0 (r – 4)2 = 0

So, r = 4 is a double characteristic root. Therefore, the general solution is
 fk = (A1 + A2k) 4k

Now, f 2 = 16 (A1 + 2A2) 16 = 16

and f 3 = 80 (A1 + 3A2) 64 = 80

Solving, you get A1= 1/2 and A2 = 1/4 and hence, unique solution is,

fk = (1/2 + k/4) 4k = (2 + k)4k–1

Example 4.50: Find a solution to the recurrence relation

Cn = – 3Cn–1 – 3Cn–2 – Cn–3 for n 3 with initial conditions C0 = 1, C1 = – 2 and
C2 = 1.

Solution: The characteristic equation is r3 + 3r2 + 3r + 1 = 0 or (r + 1)3 = 0.

So, r = – 1 is a characteristic root of multiplicity 3. Therefore, the general
solution is,

Cn = (A1 + A2n + A3n2) (– 1)n

Now, C0 = 1 A1 = 1

/n b

206 Self-Instructional Material

Recursion

NOTES

C1 = 2 – (A1 + A2 + A3) = – 2

C2 = 1 A1 + 2A2 + 4A3 = 1

Solving, we get A1 = 1, A2 = 2, A3 = 1. Hence, the solution is,

Cn = (1 + 2n – n2) (– 1)n.

4.6.9 Divide and Conquer Recurrence Relation (DCRR)

There are many recurrence relations that are not linear or are linear with variable
coefficients. Such problems are complex and require some strategy to find a method
or design an algorithm to solve such recurrence relations. This strategy is known
as ‘divide and conquer’ strategy. A problem is divided into many smaller problems
and such reduction is done repeatedly to find solutions of smaller problems quickly.
This procedure is called divide and conquer.

Note: We will use functional form of notation for writing recurrence relation that
describes a function of time- complexity for an algorithm, and f(n) will be written
instead of a

n
.

Let the given problem be the computation of f(n) and strategy is ‘divide and
conquer; so it is divided into b number of small sub-problems of the same type.

Each problem size can be given by floor-function n/b or ceiling-function /n b .

In either case, the result is an integer. The basic idea is to know roughly the time
required to compute f(n) using a ‘divide and conquer’ algorithm. The process of
solving the smaller problems may be shown by a function and let this function be
h(n). Now, the function f(n) can be written as f(n) = af(n/b) + h(n) to get an idea
of the time that may be required to solve f(n) using such strategy. You will be
calculating to get an approximation about the time needed to compute f(n/b) and
time to compute h(n).

For this an O notation is used and is denoted as O(f(n)). It is said that
O(f(n)) is the greater of O(f(n/b)) and O(h(n)). If you do not know O(f(n)), then
you also do not know O(f(n/b)); hence you cannot compare O(f(n/b)) and O(h(n)).
Thus, you need tools to help, you find the answer. You may compute f(n) for
n = 1 and find f(1) = c and f(n) = af(n/b)+c, n = bk, k Z+.

The basic idea is find the asymptotic bound for f(n).

Theorem 4.2:

Let f be an increasing function that satisfies the rec. rel. f(n) = af(n/b) + c, whenever

n is divisible by b, where a, b N, b > 1 and c R, c > 0, then f(n) is log()b aO n
if a > 1 and O(logn) if a = 1.

Furthermore, when n = bk, k N, then f(n) = C
1
 logb an + C

2
, where C

1
 = f(1) +

c/(a – 1) and C
2
 = – c/(a – 1).

Recursion

NOTES

Self-Instructional Material 207

1. Binary Search

Binary Search is an example of ‘divide and conquer’ policy. If a function f(n)
denotes numbers of comparisons required for searching an element in the list with,
size n then let us take n as even. In this, the search list is reduced to two lists each
of size n/2. Then there are two types of comparisons needed, one to check that
part of the list for use and the other to check whether there is any term remaining
in the list. So, f(n)=f(n/2)+2 for even n.

2. Finding Maximum and Minimum in a List

Let {a
1
, a

2
, …, a

n
} denote a list. For n = 1, there is a single list a

1
 which is both

maximum and minimum for n > 1, and f(n) as total numbers of comparisons for
finding maximum and minimum elements in the list of n elements. If n is even, then
list is reduced to two lists of equal elements, otherwise if n is odd, one sub-list will
have one element more than the other one. Here also two comparisons are required,
one that makes comparison for maximum and another for minimum of the two
sub-lists. Hence, the recurrence relation is f(n)=2 f(n/2)+2 for even n.

3. Fast Multiplication of Integers

For this job, ‘divide and conquer’ strategy is used. Suppose a and b are 2n-bit
integers. You split each into two blocks with each block having n-bits. Integers a
and b have binary expansions of length 2n. Further,

a = (a
2n–1

a
2n–2

…a
1
a

0
)

2
, b = (b

2n–1
b

2n–2
…b

1
b

0
)

2
 a = 2nA

1
 + A

0
, b = 2nB

1
 +

B
0
 and where A

1
=(a

2n–1
…a

n+1
a

n
)

2
, A

0
=(a

n–1
…a

1
a

0
)

2
, B

1
=(b

2n–1
…b

n+1
b

n
)

2
,

B
0
=(b

n–1
…b

1
b

0
)

2
. So, we can write ab = (22n + 2n) A

1
B

1
 + 2n(A

1
 – A

0
)(B

0
 – B

1
)

+ (2n + 1) A
0
B

0
. Thus multiplication of two 2n-bit integers may be carried by use

of multiplication of three n-bit integers combined by some shifts, subtractions and
additions. Thus, if f(n) stands for total number of bit operations required to multiply
two n-bit integers, then this can be mathematically denoted as f(2n)=3f(n)+Cn.
Here, Cn gives the number of shifts, subtractions and additions required to carry
out multiplication of three n-bit integers which is 3f(n).

4. Fast Matrix Multiplication

Matrix multiplications between two n n matrices need n3 multiplications and
n2(n –1) additions and such an operation is O(n3). This obviously is high resource
consuming operation. Adopting ‘divide and conquer’ strategy, multiplication of
two n n matrices can be reduced to 7 multiplication and 15 additions of two half
size matrices. This reduction was used by V. Strassen. If f(n) shows the number of
both the operations, multiplications and additions, then f(n)=7f(n/2)+15 /4 for
even n.

So, in ‘divide and conquer’ strategy, the recurrence relation of the type
f(n)=af(n/b)+g(n) appears mostly. Here, instead of g(n), h(n) can also be written.
To solve this, let us assume that f satisfies the recurrence relation whenever, n = bk,
kN, where kN. Then,

f(n) = a f(n/b) + g(n)

208 Self-Instructional Material

Recursion

NOTES

= a2 f(n/b2) + ag(n/b) + g(n)

= a3f(n/b3) + a2g(n/b2) + ag(n/b) + g(n)
.
.

= akf(n/bk) +

–1

0

(/)
k

j j

j

a g n b

Since, n = bk, we have f(n) = akf(1) +

–1

0

(/)
k

j j

j

a g n b

This equation can be used for estimating the size of functions satisfying ‘divide
and conquer’ recursive relations.

Example 4.51: Let f(n)=5f(n/2)+3 and f(1)=7. Find f(2k) , k N. Also estimate

f(n) assuming f as an increasing function.

Solution: By applying theorem 4.2 with a = 5, b = 2, c = 3, if n = 2k then
f(n) = 5k(31/4) 3/4. If f is increasing, then by theorem 4.2, f(n) is O(nlog5).

Example 4.52: Estimate the number of comparisons by a binary search.

Solution: As you know, f(n)=f(n/2)+2 when n is even. If f(n) denotes the number
of comparisons for ascertaining whether an element x exists in a list of size n, then
by theorem 4.2 where a = 1, b = 2, c = 2, f(n) is O(logn).

Example 4.53: Estimate the number of comparisons required to find maximum
and minimum elements of the list with n elements.

Solution: This type of problem has been discussed in earlier examples. Here,
f(n)=2f(n/2)+2 for even n, if f(n) denotes the number of comparisons for finding
maximum and minimum on the list. Applying theorem 4.2 where a = 2, b = 2,
c = 2, it is clear that f(n) is O(nlogba) = O(n).

Hence, a more general version of the theorem 4.2 is obtained known as
Master Theorem; it is used in complexity analysis of many ‘divide and conquer’
algorithms.

Master Theorem

Let f be an increasing function that satisfies the recurrence relation

f(n) = af (n/b) + cnd, whenever n = bk, k N, where a, b N, b > 1 and c, dR,
c > 0, d is non-negative. Then f(n) is O(nd) if a < bd, O(ndlogn) if a = bd and

log()b aO n if a > bd.

Example 4.54: Estimate the number of bit operations needed to multiply two
n-bit integers using the fast multiplication algorithm for f(n) = 3f (n/2) + C

n
 where

n is even.

Solution: Here, f(n)=3f(n/2)+Cn when n is even and f(n) denotes the number of
bit operations required for multiplication of two n-bit integers using the fast
multiplication algorithm. Applying the Master Theorem for a = 3, b = 2, d = 1, it is
clear that f(n) is O(n log2 3) = O(n 1.6). This is a faster method than O(n2).

Recursion

NOTES

Self-Instructional Material 209

According to Master Theorem, let there be two constants a and b, where
a 1, b > 1, and a function f(n) is defined recursively by f(n) = af(n/b) + h(n).

Here n/b is either taken as ‘floor function’ or ‘ceiling function’ giving integral
value in either case.

Then, f(n) is bounded asymptotically. These may be expresed as follows:

1. If h(n) O(n(logba)-) for some > 0, then f(n) O(nlogba).

2. If h(n) O(n(logba)), then f(n) O(nlogba ln n).

3. If h(n) O(n(logba)+) for some > 0, and if a h(n/b) c h(n) for some
0 c < 1 and for sufficiently large n, f(n) O(h(n)).

The role played by the term nlogba is important.

If you take n = bk, then f(n) = f(bk) =

af(bk-1) = a2f(bk-2) = · · · = akf(1). However, ak = alogb n = (blogb a)logb n =
b(logb n)(logb a) = nlogb a

So, it will be f(n) O(nlogb a) in the homogeneous case.

Thus, the interpretation of this theorem is that if h(n) grows slower than the
homogeneous case, the homogeneous case is dominant and the inhomogeneous
f(n) O(nlogba). If the rate of growth is the same then the inhomogeneous f(n)
O(nlogba ln n). Lastly, if h(n) grows faster than the homogeneous case, then f(n)
O(h(n)).

CHECK YOUR PROGRESS

10. What is an iterative procedure used for?

11. When is a linear relation considered to be a homogeneous recurrence
relation?

12. What is the ‘divide and conquer’ strategy?

4.7 RECURSIVE PROCEDURES

A recursive procedure is a unique method of defining functions. In it, the function
is applied within its own definition. This term also describes the process of repetition
in a similar way. An example of recursion is seen when reflecting surfaces of two
mirrors are placed parallel to each other. You see the nesting of images and is a
form of recursion.

Mathematics and computer science do a lot to define rules and apply these
rules in breaking down complex cases into simpler ones. They do it by defining
few simple base cases or methods and build recursions on that. These base cases
or methods are kept to minimum, preferably just one.

210 Self-Instructional Material

Recursion

NOTES

For example, we take the case of defining ancestors.

Base case: Parents are ancestors.

Recursion step: Parents of ancestors are also ancestors.

Thus putting this fact in simple words, recursion defines objects in terms of
‘previously defined’ objects belonging to that class.

Such facts are often seen in mathematics. For example, in a set of natural
numbers, 1 is a natural number and each natural number has a successor, which in
turn is also a natural number.

Functions, sets, and fractals are examples of mathematical objects defined
recursively. A fractal is based on the property of self similarity. If you take a
fragmented geometrical shape such that each fragmented part is a reduced size
copy of the original whole it is known as fractal. Recursion is in use in India since
5th century when the ancient Indian linguist Pânini used the principle of recursion
in framing rules for grammar of Sanskrit language.

4.7.1 Functional Recursion

Common examples of functional recursion are Fibonacci number sequence,
Ackermann function, Lucas number sequence, etc.

A function that is partly defined in terms of itself is also a recursive function.
A familiar Fibonacci number sequence is given by F(n) = F(n–2) + F(n–1) where
n > 2, is an example. To make it useful, few values are non-recursively defined. In
Fibonacci number sequence the initial two values are defined non-recursively.
These are F(0) = 0 and F(1) = 1. Here f(0) is the first term and for this reason the
condition n > 2 is given in the definition of Fibonacci number sequence.

Ackermann function is not like Fibonacci sequence. It is always expressed
with recursion and it is not primitive recursive. If P is a set of primitive recursive
functions and R is that of general recursive functions, then P is a subset of R.

The Ackermann function, defined recursively for non-negative integers, m
and n, are given as,

1 if 0

(,) (– 1,1 if and 0

(–1, (, – 1)) if 0and 0

n m

A m n A m m n

A m A m n m n

Now take an example of Lucas number sequence which is defined as, L
1
 = 1,

L
2
=3 and L

x + 1
 = L

x
 + L

x –1
 for x > 2, where x a positive integer. This is like

Fibonacci number sequence in which initial two values are defined non-recursively.
For example, to find the first six terms of this recursive sequence the follwing
method is used.

From the definition of Lucas number sequence, L
3
 = L

2
 + L

1
 = 1+ 3 = 4,

L
4
 = L

3
 + L

2
 = 4 + 3 = 7, L

5
 = L

4
 + L

3
 = 7 + 4 = 11 and L

6
 = L

5
 + L

4
 = 11

+ 7 = 18.

Recursion

NOTES

Self-Instructional Material 211

So the first six terms are 1, 3, 4, 7, 11 and 18.

We now give example of factorial function defined as f(n) = n!.

This leads to n! = n(n – 1)!= n(n – 1)(n – 2)! f(n) = n.f(n – 1)= n(n – 1).
F(n – 2). Here, n N, set of natural numbers.

Catalan numbers are another example of recursive functions; it is given as:

C
0
 = 1, C

n + 1
 = (4n + 2)C

n
 / (n + 2)

Catalan numbers form a sequence of natural numbers that exists in the
problems using recursively defined objects in combinational mathematics.

4.7.2 Recursive Proofs

New systems in mathematics or logical constructs are defined as ‘true’ and ‘false’
or ‘all natural numbers’. These are taken as base cases and after this, subsequent
computations in the system are made according to predefined rules. If base cases
and rules as predefined are computable, then any formula can be computed.

4.7.3 The Recursion Theorem

This theorem guarantees the existence of recursively defined functions. Let X be
a set whose element is x and a function f: X X. The theorem opines the existence
of a unique function F : N X, where N stands for the set of natural numbers and
zero. The function is stated as,

F(0) = x

F(n + 1) = f(F(n)) for any natural number n.

Proof of Uniqueness

Let there be two functions f and g. Domain of f is N and codomain of g is X such
that,

f(0) = x

g(0) = x

f(n + 1) = F(f(n))

g(n + 1) = F(g(n)), where x is an element of X.

It is required to prove that f = g.

Equality of two functions is possible when they have equal domains/
codomains and follow the same curve.

Recursively Defined Functions and Procedures

The basic requirement for a function to be recursive is that at least one value ƒ(x)
is defined in terms of another value ƒ(y), when x y. In a similar way, if there is a
procedure P, it is defined recursively only when the action of P(x) is defined in
terms of another action P(y), provided x y.

212 Self-Instructional Material

Recursion

NOTES

The argument domain is already inductively defined.

Steps in defining recursive functions:

1. A value ƒ(x) or an action P(x) is to be specified for each basis element x
of S.

2. Rules for each inductively defined element x in S is to be specified. Value
ƒ(x) or action P(x) is to be defined in terms of previously defined values.

Example 4.55: A function ƒ : N N is defined as ƒ(n) = 0 + 3 + 6 + … + 3n.
Develop a recursive definition for this function.

Solution: The set N which is inductively defined should be understood first. This
includes 0 too, hence 0 N and n N n + 1 N. Now f(0) should be given
a value in N and then define ƒ(n + 1) in terms of ƒ(n). As given, set ƒ(0) = 0. Next
a definition for ƒ(n + 1) is obtained. According to definition of f(n),

ƒ(n + 1) = (0 + 3 + 6 + … + 3n) + 3(n + 1) = ƒ(n) + 3(n + 1).

Thus, a recursive definition has been developed as, ƒ(0) = 0 and ƒ(n + 1) =
ƒ(n) + 3(n + 1).

This recursive function can be stated in different ways:

• Putting n – 1 in place of n, you get ƒ(0) = 0 and ƒ(n) = ƒ(n – 1) + 3n (n >
0).

• It may be expressed as a conditional statement. If n = 0, then ƒ(n) = 0 else
ƒ(n) = ƒ(n–1) + 3n.

Example 4.56: A function ƒ : N N is defined recursively as ƒ(0) = 0, ƒ(1) = 0
and ƒ(x + 2) = 1 + ƒ(x). This function can be written as a conditional statement. If
x = 0 or x = 1, then f(x) = 0; else 1 + ƒ(x – 2). What does ƒ do?

Solution: Following the rule of the function, find few values of the function for
 x = 0 to 9. f(0) = 0, f(1) = 0, f(2) = 1, f(3) = 1… and like that f(8) = 4 and f(9)
= 4. Now do the mapping (ƒ(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)) = (0, 0, 1, 1, 2, 2, 3,
3, 4, 4) and find ƒ(x) = [x/2].

4.7.4 Infinite Sequences

It is possible to define recursive functions for infinite sequences. For this, define a
value ƒ(x) in terms of x and ƒ(y) for some value y in a sequence.

Example 4.57: An infinite sequence ƒ(x) = (x, x2, x4, x8, …) is to be represented
as a recursive function.

Solution: Follow the given definition and develop a solution:

The function is defined as,

ƒ(x) = (x, x2, x4, x8, …) = (x :: (x2, x4, x8, …)) = x :: ƒ(x2).

So the developed definition is,

ƒ(x) = x :: ƒ(x2).

Recursion

NOTES

Self-Instructional Material 213

Example 4.58: A recursive function is defined as g(x, c) = xc :: g(x, c + 1). Find
the sequence represented by this function.

Solution: According to definition,

g(x, c) = xc :: g(x, c + 1) = xc :: xc+1 :: g(x, c + 2) =… = (xc, xc+1, xc+2, …).

4.7.5 Recursive Function and Primitive Recursive Function

Consider a function, g(x
1
, x

2
, … x

n
) and h(x

1
, x

2
, … x

n
,y,z) of n and n+2 variables.

Now define a function f(x
1
, x

2
, … x

n
, y) of n+1 variables as f(x

1
, x

2
, … x

n
, 0) =

g(x
1
, x

2
, … x

n
,) and f(x

1
, x

2
, … x

n
, y + 1) = h(x

1
, x

2
, … x

n
, ,y, f(x

1
, x

2
, … x

n
,

y)); here f is called a recursive function or simply a recursion. A function f is
primitive recursive if it can be obtained from initial functions by a finite number of
operations of composition and recursion.

CHECK YOUR PROGRESS

13. What do you understand by a recursive procedure?

14. Give some examples of functional recursion.

4.8 SUMMARY

In this unit, you have learned that:

 The Mergesort algorithm works according to a ‘divide and conquer’ strategy
in which the sequence is divided into two halves.

 In the merging process, the elements of two arrays are combined, creating
a new array.

 In insertion sorting algorithm, the sorted array is built one entry at a time.

 The ordered sequence of inserted elements is stored at the beginning of the
array.

 Each iteration of the inner loop scans and shifts the entire sorted subsection
of the array before the next element is inserted.

 Sorting can be classified into two types, viz., internal sorting and external
sorting.

 A binary system groups numbers by two and by powers of two.

 A binary number with 4 bits is called a nibble and a binary number with 8
bits is called a byte.

 A number system that utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8
and 9 is known as a decimal number system.

 A binary number can be converted into decimal number by multiplying the
binary 1 or 0 by the weight corresponding to its position and adding all the
values.

214 Self-Instructional Material

Recursion

NOTES

 The numbers in the sequence 0, 1, 2, 3, 5, 8, 13, 21 … in which each new
term is the sum of the previous two terms are called Fibonacci numbers.

 A recursive relation is an equation defining a sequence in which each term
of the sequence is defined as a function of the preceding terms.

 A kth order linear relation is a homogeneous recurrence relation if f(n)=0
for all n.

 The general solution of the recurrence relation is the sum of the homogeneous
solution and particular solution.

4.9 KEY TERMS

 Selection sort: It refers to a simple technique of sorting a list of elements
by finding the smallest value in an array.

 Binary number system: It refers to the number system in which only two
digits, viz., 0 and 1, are used.

 Nibble: A binary number with 4 bits is called a nibble.

 Double-dabble method: It refers to a method that is used to convert a
large decimal number into its binary equivalent by repeatedly dividing it
by 2.

 Recursive relation: It is an equation defining a sequence in which each
term of the sequence is defined as a function of the preceding terms.

4.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The Mergesort algorithm is based on the merging process where all the
elements are copied in one array and kept in a separate new array.

2. Two advantages of insertion sort are as follows:
(i) Its implementation is simple.
(ii) It can sort a list even as it receives it.

3. The insert function is designed for inserting a value into a sorted sequence at
the beginning of an array.

4. Sorting is a method of arranging keys in a file in the ascending or descending
order.

5. Internal sorting occurs when the records in a file that are stored in the main
memory are sorted.

6. Two common sorting techniques are:
(i) Bubble sort
(ii) Tree sort

Recursion

NOTES

Self-Instructional Material 215

7. A base two system is another term for a binary number system. Such a
number system uses two digits, 0 and 1, only.

8. A binary number system is used in digital computers because all electrical
and electronic circuits can be made to respond to the two-state concept.

9. One method to convert a decimal number into a binary number is to subtract
values of power of 2 from the decimal number until nothing remains.

10. An iterative procedure is used to evaluate a function from its recursive
definition.

11. A k-th order linear relation is considered to be a homogeneous recurrence
relation if f(n)=0 for all n.

12. When a problem is divided into many smaller problems and such reduction
is done repeatedly to find solutions of smaller problems, such a procedure
is called a ‘divide and conquer’ strategy.

13. A recursive procedure is a unique method of defining functions. In it, the
function is applied within its own definition. This term also describes the
process of repetition in a similar way.

14. Common examples of functional recursion are Fibonacci number sequence,
Ackermann function, Lucas number sequence, etc.

4.11 QUESTIONS AND EXERCISES

Short-Answer Questions

1. Give an algorithm illustrating the use of Mergesort mechanism.

2. Write a short note on the Insertion sort algorithm.

3. What are the different types of sorting algorithms?

4. Differentiate between the binary number system and decimal number system.

5. Write a short note on the double-dabble method.

Long-Answer Questions

1. Write a program illustrating the use of Insertion sort.

2. Explain the functions of Bubble sort and Selection sort. Write one program
each to illustrate their implementation.

3. Explain the various techniques that are used to convert binary numbers into
decimal numbers and vice versa.

4. What do you understand by recursion and recurrence relations? Give
examples to illustrate both the relations.

216 Self-Instructional Material

Recursion

NOTES

4.12 FURTHER READING

Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete
Mathematics, 3rd edition. New York: McGraw-Hill, 2007.

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of
Computer Algorithms. Hyderabad: Orient BlackSwan, 2008.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms. The MIT Press, 1990.

Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms. New Delhi:
Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms. New
Jersey: Pearson, 2006.

Baase, Sara and Allen Van Gelder. Computer Algorithms – Introduction to
Design and Analysis. New Jersey: Pearson, 2003.

Mott, J.L. Discrete Mathematics for Computer Scientists, 2nd edition. New
Delhi: Prentice-Hall of India Pvt. Ltd., 2007.

Liu, C.L. Elements of Discrete Mathematics. New Delhi: Tata McGraw-Hill
Publishing Company, 1977.

Rosen, Kenneth. Discrete Mathematics and Its Applications, 6th edition. New
York: McGraw-Hill Higher Education, 2007.

Number Theory

NOTES

Self-Instructional Material 217

UNIT 5 NUMBER THEORY

Structure

5.0 Introduction
5.1 Unit Objectives
5.2 Number Theory: Basics

5.2.1 Fundamental Theorem of Arithmetic
5.2.2 Prime Numbers
5.2.3 Division Algorithms
5.2.4 Divisibility
5.2.5 Absolute Value
5.2.6 Order and Inequalities

5.3 Greatest Common Divisor
5.3.1 Linear Diophantine Equation

5.4 Euclidean Algorithm
5.5 Fibonacci Numbers
5.6 Congruences and Equivalence Relations

5.6.1 Congruences Relations
5.6.2 Equivalence Relations

5.7 Public Key Encryption Schemes
5.7.1 Message Authentication Code
5.7.2 Digital Structure

5.8 Summary
5.9 Key Terms

5.10 Answer to ‘Check Your Progress’
5.11 Questions and Exercises
5.12 Further Reading

5.0 INTRODUCTION

Numbers form the very basis for any type of calculation. There are primarily two
types of numbers—prime and composite numbers. A prime number refer to those
numbers which have only 1 and the number itself as its factors and does not
contain any multiple. In this unit, you will learn about the various types of numbers,
their properties and their applications.

A common calculation that is used frequently is the finding of the greatest
common divisor (GCD) and the Euclid’s algorithm. You will learn about the
application of GCD, least common multiple (LCM), and Euclidean algorithm.

Fibonacci numbers refer to numbers that are a sum of the previous two
numbers. Among other things, this unit will talk about Fibonacci numbers, congruent
relations, equivalence relations and also encryption schemes.

218 Self-Instructional Material

Number Theory

NOTES

5.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the basics of the number theory

 Identify the greatest common divisor (GCD), Euclidean algorithm and
Fibonacci numbers

 Explain the concepts of congruence and equivalent relations

 Comprehend the public key encryption schemes and their application

5.2 NUMBER THEORY: BASICS

5.2.1 Fundamental Theorem of Arithmetic

Let a, b be two integers such that a = bc, where b and c are called factors of a and
a is called multiple of b and c. If b is a factor of a, this implies that b divides a and
it is written as b | a. It is easy to prove that ± 1 are factors of a and every non-zero
integers is a factor of 0.

For example, 6 = (– 2) (– 3) – 2 and – 3 are factors of 6.

Again 7 = 7. 1, so 7 and 1 are factors of 7.

An integer n different from ± 1 is called a prime integer provided its only
factors are ± 1 and ± n.

Thus, 2, – 3, 7, 11, – 13 are some prime integers, while – 4, 16, 12 are not
prime integers as – 4 = 2 (– 2), 16 = 4 . 4, 12 = 6 . 2

A positive prime integer is called a prime number.

Properties of Prime Numbers
(i) If a prime number p divides ab then either p | a or p | b.

(ii) If a prime number p does not divide an integer a then the Highest Comman
Factor (HCF) of p and a is 1 (by convention take HCF to be a +ve integer).

Fundamental Theorem of Arithmetic
Every integer n > 1 can be factorized into a product of finite numbers of prime
numbers. This expression is unique except for the order in which the prime factors
are written.

For example, 56 = 2 . 2 . 2 . 7 = 23 . 7

72 = 2 . 2 . 2 . 3 . 3 = 23 . 32

Number Theory

NOTES

Self-Instructional Material 219

5.2.2 Prime Numbers

An integer p > 1 is called a prime number if 1 and p are the only divisors of p.

We prove it using Greatest Comnon Divisor (GCD) which is normally
represented as g.c.d.

Theorem 5.1: If a prime number p divides ab, then either p divides a or p
divides b.

Proof: Let ab = pc for some integer c.
Suppose p does not divide a.

Then, g.c.d. (a, p) = 1

 pab and g.c.d.(a, p) = 1

 pb

This result can be generalized in the following theorem.

Theorem 5.2: If p divides a1, a2, ..., an, then p divides ai for some i.

Proof: This result can be proved by induction on n.
If n = 1, then this result is clearly true.
If n = 2, then the result is true.
Let the result be true for natural numbers less than n.

Suppose, pa1 ... an= (a1 ...an–1)an

 pa1 ...an–1 or pan

If p divides a1, ..., an–1, then by induction hypothesis, p divides ai for some i.

So, the result is true in this case also.
By induction, result is true for all n > 1.

Composite Numbers
A composite number is an integer n > 1 such that n is not prime. It is a positive
integer with a positive divisor other than one or itself. For example, the integer 14
is a composite number as it can be factorized as 2 7. The integers 2 and 3 are
not composite numbers because these can only be divided by one and the number
itself. The example of composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16 etc.

Example 5.1: Prove that if 2n – 1 is prime, then n is also prime.

Solution: Let 2n – 1 = p = Prime.
Let n is not prime.
Then, n = rs, 1 < r, s < n

 p = 2n – 1

= 2rs – 1 = (2r)s – 1

= xs – 1, x = 2r > 2 as r > 1

 = (x – 1) (xs – 1 + xs – 2 + ... + x + 1)

220 Self-Instructional Material

Number Theory

NOTES

Either, x – 1 = 1 or, xs – 1 + ... + x + 1 = 1

x – 1 = 1 x = 2, which is not true.

And xs – 1 + ... + x + 1 = 1

 xs – 1 + ... + x = 0, which is not true.
 n is prime.

Example 5.2: Prove that n4 + 4 is composite if n > 1.

Solution: n4 + 4 = (n2 + 2)2 – 4n2

= (n2 + 2 – 2n) (n2 + 2 + 2n)

n > 1 n 2 n2 2n n2 – 2n 0

 n2 – 2n + 2 2
Also, n2 + 2 + 2n > 1
 n4 + 4 is composite as both n2 + 2 + 2n and n2 + 2 – 2n < n4 + 4.

5.2.3 Division Algorithms

In mathematics, the division algorithm is a theorem which expresses the outcome
of the usual process of division of integers. It is a well-defined procedure for
achieving a specific task and can be used to find the greatest common divisor of
two integers. The term ‘division algorithm’ is the study of algebra. Specifically, the
division algorithm states that for given two integers a and d with d 0, there exist
unique integers q and r such that a = qd + r and 0 < r < | d |, where | d | denotes
the absolute value of d.

In such a case, the integer:
 q is called the quotient
 r is called the remainder
 d is called the divisor
 a is called the dividend

The following examples will make the concept clear:
 If a = 9 and d = 4, then q = 2 and r = 1, since 9 = (2)(4) + 1
 If a = 9 and d = –4, then q = –2 and r = 1, since 9 = (–2)(–4) + 1

Existence: Consider the set S = { a nd : n }

Here, S contains at least one non-negative integer and the following two cases can
be considered:

 If d < 0, then – d > 0, and by the Archimedean property, there is a non-
negative integer n such that (– d)n >– a, i.e., a– dn > 0.

 If d > 0, then again by the Archimedean property, there is a non-
negative integer n such that dn > – a, i.e., a – d(–n) = a + dn >0.

Number Theory

NOTES

Self-Instructional Material 221

Each case shows that S contains a non-negative integer. This means that the well-
ordering principle can be applied to deduce that S contains a least non-negative
integer r. Let q = (a–r)/d, then q and r are integers and a = qd + r. It shows that
0 < r < |d|.

5.2.4 Divisibility

The divisibility of any number is determined on the basis whether a given number
is evenly divisible by other numbers. There are standard divisibility rules for testing
a number’s factors without resorting to division calculations. Divisibility rules can
be created for any base including decimal numbers. A divisor, in mathematics, is
an integer n, also termed as factor of n, which evenly divides n without leaving
any remainder. For example, to divide m by n, you can write m/n and read as
m divides n for non-zero integers m and n, iff there exists an integer k such that
n = km. The divisors can be both positive and negative. Numbers which are
evenly divisible by 2 without leaving any remainder are called even numbers and
numbers not evenly divisible by 2 are called odd numbers. Further, a divisor of
n that is not 1, –1, n or –n, which are basically the trivial divisors, is known as
a non-trivial divisor. Prime numbers do not have non-trivial divisors while the
composite numbers have non-trivial divisors. The term is derived from the arithmetic
operation of division. If a/b = c then a is the dividend, b the divisor, and c the
quotient.

The following are some elementary rules of divisibility:

 If a | b and a | c, then a | (b + c), in fact, a | (mb + nc) for all integers
m, n.

 According to transitive relation, if a | b and b | c, then a | c.

 If a | b and b | a, then a = b or a = –b.

 According to Euclid’s lemma, if a | bc and g.c.d.(a, b) = 1, then a | c.

A positive divisor of n which is different from integer n is termed as proper
divisor or aliquot part of n while a number which does not evenly divide n, but
leaves a remainder is termed as aliquant part of n. An integer n > 1, whose only
proper divisor is 1, is called a prime number. Mathematically, a prime number is
one which has exactly two factors, i.e., 1 and the number itself. Also, any positive
divisor of n is a product of prime divisors of n raised to some power.

Definition. A non-zero integer a is said to divide an integer b if b = ac for
some integer c and is expressed as ab.

The following results can be proved:

(i) ab, bc then ac

(ii) ab, ac then ab + c

(iii) a0, aa

222 Self-Instructional Material

Number Theory

NOTES

5.2.5 Absolute Value

For any a R, | a | is defined as follows:

| a | = a if a 0

= – a if a < 0

Thus, | – 2 | = 2 , | 0 | = 0, | 5. 7 | = 5. 7

Definition. | a | is called absolute value of a.

Note: It follows from definition that for all x R, | x | 0.

 Properties of Absolute Value Function:

(1) For all a R, | a | a.

Proof: If a 0 then, | a | = a. As a a, you get | a | a.

In case a < 0 then, a + (– a) < 0 + (– a) 0 < – a – a > 0

Now – a > 0 and 0 > a – a > a

But for a < 0, | a | = – a. Hence | a | > a. Then, by definition of ‘ ‘, | a | a.

(2) For all a,b R, | a b | = | a | | b |

Proof: The following four cases occur:

Case I.

a 0, b 0

By definition, | a | = a, | b | = b. Further, a 0, b 0 imply ab

Thus, | ab | = ab = | a | | b |

Case II.

a 0, b 0

In this case | a | = – a and | b | = b. But a < 0, b 0 imply ab < 0.

So, | a b | = – a b = | a | | b |

Case III.

a 0, b < 0

This is similar to Case II; There is just an interchange of a and b.

Case IV.

a < 0, b < 0

Here, | a | = – a, | b | = – b and a b > 0 | ab | = ab

So, | a b | = (– a) (– b) = | a | | b |

(3) For all a, b in R, | a + b | | a | + | b |

Proof: For all a, b R, (| a | + | b |)2 = | a |2 + 2 | a | | b | + | b |2

= a2 + 2 | a | | b | + b2.

Number Theory

NOTES

Self-Instructional Material 223

Since, | a |2 = a2 and | b |2 = b2

= a2 + 2 | a b | + b2

 a2 + 2 ab + b2 by Property (1)

Thus, (| a | + | b |)2 (a + b)2 = | a + b |2

 | a | + | b | | a + b |

(4) For a, k R, | a | < k – k < a < k

Proof: Suppose | a | < k. In case a 0, you get a < k.

In case, a < 0, | a | = – a – a < k a > – k

 – k < a

Hence, | a | < k implies that – k < a < k.

Conversely, let – k < a < k

If a 0 you get | a | = a < k

If a < 0, then | a | = – a.

But, – k < a k > – a

or, – a < k.

So, | a | < k

5.2.6 Order and Inequalities

In mathematics, an inequality is a statement that defines the relative size or order
of two objects to check whether they are similar or not. The following statements
explain the order and inequality relationship between integers:

 The notation a < b means that a is less than b.

 The notation a > b means that a is greater than b.

 The notation a b means that a is not equal to b. It does not mean that a
is bigger than b or even that they can be compared in size.

In all these cases, a is not equal to b defines that there is inequality in their
relation. The following relations are known as strict inequality:

 The notation a < b means that a is less than or equal to b or in other words
a is not greater than b.

 The notation a > b means that a is greater than or equal to b or in other
words a is not smaller than b.

When the inequality is same for all the values of the given variables for
which it is defined, then the inequality is termed as an ‘absolute’ or ‘unconditional’
inequality. Similarly, if an inequality holds only for certain values of the variables
involved, but is reversed or destroyed for other values of the variables then it is
termed as ‘conditional inequality’.

224 Self-Instructional Material

Number Theory

NOTES

Inequalities are governed by the following properties:

Trichotomy: The trichotomy property states that for any real numbers a
and b any one of the following is true:

 a < b

 a = b

 a > b

Transitivity: The transitivity of inequalities states that for any real numbers
a, b, c, any one of the following case may be true:

 If a > b and b > c; then a > c

 If a < b and b < c; then a < c

 If a > b and b = c; then a > c

 If a < b and b = c; then a < c

Addition and subtraction: The properties which deal with addition and
subtraction, state that for any real numbers a, b, c, any one of the following case
may be true:

 If a < b, then a + c < b + c and a – c < b – c

 If a > b, then a + c > b + c and a – c > b – c

This states that the real numbers are an ordered group.

Multiplication and division: The properties which deal with multiplication
and division, state that for any real numbers a, b, c any one of the following case
may be true:

 If c is positive and a < b, then ac < bc

 If c is negative and a < b, then ac > bc

This is basically applied to an ordered field.

The next step is to extend N so as to include the solution of the equations of
the type a + x = b with a, b N. The extended system Z, consists of, ..., – 4, –
3, – 2, – 1, 0, 1, 2, 3, ..., etc. Each member of Z is called an integer. To construct
an integer with the help of natural numbers, remember a simple fact that every
integer can be written as m – n for some m, n N, where ‘–’ stands for the usual
difference sign. But, as you have not defined this operation for N, hence tactfully
avoid it and proceed as follows:

Consider N × N = {(m, n) | m, n N}, i.e., the elements of N × N are
ordered pairs of natural numbers.

Define a relation ~ on N as under,

(m, n) ~ (p, q) if and only if m + q = n + p

For example, (1, 5) ~ (3, 7) as 1 + 7 = 5 + 3 = 8 and (4, 4) ~ (2, 2) as

4 + 2 = 2 + 4 = 6

Number Theory

NOTES

Self-Instructional Material 225

It can be verified that ‘~’ is an equivalence relation on N. By [m, n] it is meant
that all ordered pairs (p, q) such that (m, n) ~ (p, q). This [m, n] will be called an
integer. The set of all [m, n], m, n N is denoted by Z.

Addition and multiplication on Z are defined as follows:

[m, n] + [m1, n1] = [m + m1, n + n1]

[m, n] . [m1, n1] = [mm + nn1, mn1 + m1n]

It can be verified that these operations are well defined, i.e., if

(m, n) ~ (p, q) and (m1, n1) ~ (p1, q1)

Then, [m, n] + [m1, n1] = [p, q] + [p1, q1]

and [m, n] [m1, n1] = [p, q] . [p1, q1]

Addition and multiplication are motivated by the following observations:

Let z and z1 be two integers and z = m – n, z1 = p – q when m, n, p, q N.

Then, z + z1 = (m + p) – (n + q) and zz1 = mp + nq – (mq + np)

For numerical instances of addition and multiplication, consider integers [3, 5]
and [4, 1]. [3, 5] + [4, 1] = [3 + 4, 5 + 1] = [7, 6]

 [3, 5].[4, 1] = [3 . 4 + 5 . 1, 3 . 1 + 5 . 4]

= [17, 23]

Compare this with the facts that [3, 5] is actually – 2 and [4, 1] is 3 then,

– 2 + 3 = 1

Which is same as 7 – 6, whereas (– 2) (3) = – 6 = 17 – 23

The following properties hold for integers:

(i) Addition is associative and commutative.

(ii) Multiplication is associative and commutative.

(iii) Multiplication is distributive over addition.

(iv) The integer [n, n] is called zero element and is denoted by 0.

It can be easily shown that 0 + z = z = z + 0 for all z Z.

(v) For each integer z = [m, n], the integer z¢ = [n, m] is called negative of z.
It can be that z + z¢ = z¢ + z = 0

Note: By z – z we mean z + (– z) for any z, zZ.

The integer z = [m, n] is called positive if m > n and is called negative in
case n > m.

Let, z, z Z

You define z > zif z = z + u for some positive integer u.

(vi) Given two integers z and z for which one and only one of the following
holds: Either z > z or z = z or z > z.

226 Self-Instructional Material

Number Theory

NOTES

Example 5.3: Show that addition on Z is commutative.

Solution: Let, z = [m, n] and z= [p, q], where m, n, p, q N

Now z + z = [m + p, n + q] = [p + m, q + n]

= [p, q] + [m, n] = z+ z

Example 5.4: Prove that multiplication on Z is associative.

Solution: Let, z = [m, n], z = [p, q] and z = [r, s] where m, n, p, q, r, s N.

(zz) z= [mp + nq, mq + np] [r, s]

= [(mp + nq) r + (mq + np) s, (mp + nq) s + (mq + np) r]

= [mpr + nqr + mqs + nps, mps + nqs + mqr + npr] ... (1)

Further z (zz) = [m, n] [pr + qs, pr + qr]

= [m (pr + qs) + n (ps + qs), m (ps + qr) + n (pr + qs)]

= [(mpn + mqs + nps +nqr, mps + mqr + npr + nqs] ...(2)

Using properties of N, one can easily show that the right sides of
Equations (1) and (2) are same as a consequence.

(zz) z = z (zz)

Example 5.5: Show that for all z Z, z. 0 = 0

Solution: Let z = [m, n], 0 = [p, p]

z 0 = [mp + np, mp + np] = 0

Example 5.6: Prove that if z > z then (i) For any zZ, z + z > z + z

(ii) For any + ve integer k, zk > zk

Solution:

 (i) z > z z= z + u, u is a positive integer.

Clearly, z + z = z + u + z

= z + z + u

 z + z > z + z

(ii) As zk = (z + u) k = zk + uk, it is sufficient to prove that product of two
positive integers is a positive integer.

Let, u = [m, n] and k = [p, q]

Since u is positive, so m > n. In case n = 1and m > 1, then there exists a
natural number t such that m = t*. So (m, n) = (t*, 1)

If n 1, n > 1 n = 1 + k, for some k N.

Then, m > n m = 1 + k + l for some l N.

Thus, [m, n] = [1 + k + l, 1 + k] = [1 + l, 1]

Since, (1 + k + l) + 1 = (1 + k) + (1 + l) (1 + k + l, 1 + k) ~ (1 + l, 1)

This implies that [m, n] = [l*, 1]

So, in each case if z = [m, n], then it is positive.

Number Theory

NOTES

Self-Instructional Material 227

You can write u = [t*, 1] for some t N.

Similarly,

k = [s*, 1] for some s N

Now, uk = [t*s* + 1. t* + s*]

But, t*s* + 1 = (t + 1) (s + 1) + 1 = (t + 1) + (s + 1) + ts

 = (t* + s*) + ts and ts N

So, t*s* + 1 > (t* + s*) + ts. In other words, uk is + ve. Hence the assertion
is follow.

Notes:

1. It can be shown that z Z is positive if and only if z > 0 and negative if and
only if 0 > z.

2. Let z and zZ , then z > z if and only if z – z > 0.

3. By z z it is shown that either z > z or z = z
4. Z+ denotes the set of all positive integers, Z– denotes the set of all negative,

integers. Law of Trichotomy states that Z = Z+ Z– {0} which is a disjoint
union.

5. As a convention, 0 is regarded both positive and negative. When we wish to
stress upon a non-zero positive integer, then it is called strictly positive.
Similarly, the strictly negative integer is defined.

CHECK YOUR PROGRESS

1. State the properties of prime numbers.

2. Define division algorithm.

3. What are even numbers?

4. Define an inequality.

5.3 GREATEST COMMON DIVISOR

The greatest common divisor (g.c.d) is also termed as the greatest common factor
(g.c.f.) or highest common factor (h.c.f.). The g.c.d. of two or more non-zero
integers is the largest positive integer that divides a number without leaving a
remainder.
A special case in Euclid’s algorithm arises when the remainder is zero.

Definition. An integer d > 0 is called g.c.d. of two integers a, b (non-zero) if,

(i) da, db

(ii) If ca, cb then d c

It is written d = g.c.d.(a, b) or simply d = (a, b).

228 Self-Instructional Material

Number Theory

NOTES

Notes:
1. (a, 0) = a, (0, b) = b

Clearly, aa, a0

If ca, then ca (a, 0) = a
Similarly (0, b) = b

2. If ab, then (a, b) = a
aa, and ab ab

If ca, cb, then ca
 (a, b) =a

3. The g.c.d. of a and b does not depend on signs of a and b.

i.e., (a, b) = (– a, b) = (a, – b) = (–a, –b)

Let, d = (a, b).

Then, da, db d–a, d b

c–a, cb ca, cb cd

 d = (–a, b).

The following theorem will prove the existence and uniqueness of g.c.d. of
integers a and b.

Theorem 5.3 Let a, b be two integers. Suppose either a 0 or b 0. Then
for some), the greatest common divisor d of a, b such that, d = ax + by for
some integers x, y d is uniquely determined by a and b.

Proof: Let S = {au + bv u, v are integers and au + bv > 0}.

If a > 0, then a = a.1 + b.0 > 0 a S.

If a < 0, then –a = a(–1) + b.0 > 0 –a S.

Similarly, if b > 0 then b S and if b < 0 then –b S. Since one of a and b
is non-zero, either ±a S or ±b S. In any case S .

By well ordering principle, S has a least element, say d.

Now d S d = ax + by for some integers x and y. Also, d > 0.

Let, a = dq + r, 0 r < d

Let, r 0. Since r = a – dq

= a – (ax + by)q

= a(1 – xq) + b(–yq) > 0

 r S

But r < d, which contradicts the fact that d is the least element of S. So, r = 0.

Therefore, a = dq da

Similarly, db

Suppose, ca, cb cax + by = d

Number Theory

NOTES

Self-Instructional Material 229

So, d is the greatest common divisor of a and b.

If d is also the greatest common divisor of a and b, then d a, d b, dd
Similarly, da, db d d. Since d, d > 0, d = d . So, d is uniquely determined
by a and b.

Note: x and y in the preceding theorem need not be unique.

For, d = ax + by

 d = a(x – b) + b(a + y)

If x – b = x, a + y = y b = 0 = a, which is not true. So either,

x – b x or a + y y.

Definition: If g.c.d.(a, b) = 1, then a and b are said to be relatively prime or
coprime.

Corollary 1. Two integers a, b are relatively prime, if and only if integers x,
y are such that ax + by = 1.

Proof: Suppose, a, b are relatively prime. Then g.c.d.(a, b) = 1. By the preceding
theorem, integers x, y such that ax + by = 1.

Conversely, let ax + by = 1 for some integers x, y.

Let, d = g.c.d.(a, b).

Then, d | a, d | b d | ax, d | by d | ax + by = 1 d = 1.

So, a, b are relatively prime.

Corollary 2. If g.c.d.(a, b) = d, then g.c.d. ,
a b

d d
 = 1.

Proof: Given that g.c.d.(a, b) = d

 integers x, y such that,

d = ax + by

 1 = a b
x y

d d

 g.c.d. ,
a b

d d
 = 1, by Corollary 1.

Corollary 3. If abc, with g.c.d.(a, b) = 1, then ac

Proof: As g.c.d.(a, b) = 1 integers x, y such that,

 ax + by = 1 acx + bcy = c

Now, aac, abc aacx, abcy

 aacx + bcy = c

Corollary 4. If g.c.d.(a, b) = 1 and g.c.d.(a, c) = 1, then g.c.d.(a, bc) = 1.

Proof: Since g.c.d.(a, b) = 1, integers x, y, such that ax + by = 1. Also,
g.c.d.(a, c) = 1, integers u, v, such that au + cv = 1.

230 Self-Instructional Material

Number Theory

NOTES

 1 = (ax + by) (au + cv)

= a (axu + cxv + byu) + bc (yv)

By Corollary 1, g.c.d.(a, bc) = 1.

The following lemman defines the practical method of finding the greatest
common divisor of two integers. First, prove the following result:

Lemma. If a = bq + r, then g.c.d.(a, b) = g.c.d.(b, r).

Proof: Let, g.c.d.(a, b) = d.

Then, da, db da, dbq da – bq = r.

Suppose cb, cr.

Then, cbq, cr cbq + r ca, cb cd.

Thus, d = g.c.d. (b, r).

Let a, b be two integers.

Since, g.c.d.(a, b) = g.c.d.(ab), let a b > 0.

Let, a = bq1 + r1, 0 r1 < b.

If r1 = 0, then ba and g.c.d. (a, b) = b.

Let r1 0. Divide b by r1 to get integers q2 and r2 such that,

b = r1q2 + r2, 0 r2 < r1

If r2 = 0, then g.c.d.(b, r1) = r1 and so by above lemma, g.c.d.(a, b) = r1.

If r2 0, then proceed as above till we get remainder as zero,

Given that, a = q1b + r1, 0 < r1 < b

b = q2r1 + r2, 0 < r2 < r1

r1 = q3r2 + r3, 0 < r3 < r2

.

rn–2 = qnrn–1 + rn’ 0 < rn < rn–1

rn–1 = qn+1rn + 0

By above lemma,

g.c.d.(a, b) = g.c.d.(b, r1) = = g.c.d.(rn’ 0) = rn

So, the last remainder nr is g.c.d. of a and b.

For example, to determine g.c.d. (56, 72), divide 72 by 56 to get,

72 = 56 + 16

56 = 16 3 + 8

16 = 8 2 + 0

Number Theory

NOTES

Self-Instructional Material 231

Since the last non-zero remainder is 8 hence g.c.d.(56, 72) = 8.

Also, 8 = 56 – 16 3

= 56 – (72 – 56) 3

= 56 (4) + 72 (–3)

= 56x + 72y where x = 4, y = –3.

Which shows us the way to find x, y such that,

g.c.d. (a, b) = ax + by

Theorem 5.4:Let k > 0. Then g.c.d.(ka, kb) = k g.c.d.(a, b).

Proof: Let, g.c.d.(a, b) = d

Then, da, db kdka, kdkb

Also, integers x, y such that,

d = ax + by

 kd = kax + kby

Let, cka, ckb then, ckax, ckby

 ckax + kby = kd

 g.c.d. (ka, kb) = kd = k g.c.d. (a, b)

Note: As k > 0, d > 0 we get kd > 0

Corollary: For any integer k 0, g.c.d. (ka, kb) = k g.c.d.(a, b).

Proof: For k > 0, the result follows from the preceding theorem.

Let, k < 0. Then, g.c.d.(ka, kb)

= g.c.d.(–ka, –kb)

= – k g.c.d.(a, b) by above theorem.

= k g.c.d.(a, b)

Definition: The least common multiple (l.c.m.) of two non-zero integers a and
b, denoted as l.c.m.(a, b) is the positive integer m such that,

(i) am, bm

(ii) If ac, bc, with c > 0, then mc

Theorem 5.5: For positive integers a and b,

g.c.d.(a, b) l.c.m.(a, b) = ab

Proof: Let, d = g.c.d.(a, b)

Now, . as
ab b ab b

a a
d d d d
 is integer..

Also, . as
ab a ab a

b b
d d d d
 is integer..

232 Self-Instructional Material

Number Theory

NOTES

Let, m =
ab

d
, then am and bm.

Suppose now ac, bc. Since (a, b) = d, integers x, y such that,

d = ax + by.

 ()c cd c ax by c c
x y

m ab ab b a
Integer

 mc

Thus, m = l.c.m. (a, b), i.e.,
ab

d
 = l.c.m. (a, b)

Or, ab = g.c.d. (a, b) l.c.m. (a, b).

Example 5.7: Let g.c.d. (a, b) = 1.

Show that g.c.d.(a + b, a2 – ab + b2) = 1 or 3.

Solution: Let, g.c.d.(a + b, a2 – ab + b2) = d

Then, da + b, da2 – ab + b2

 d(a + b)2 = a2 + b2 + 2ab, da2 – ab + b2

 d3ab

Let, g.c.d. (d, a) = e

Then, eda + b ea + b and ea

 e(a + b) – a = b

So, eg.c.d.(a, b) = 1 e = 1

 g.c.d.(d, a) = 1

Similarly, g.c.d.(d, b) = 1

 d3 d = 1 or 3.

Example 5.8: Let g.c.d.(a, b) = 1. Show that g.c.d.(an, bn) = 1 for every
integer n 1.

Solution: Since, g.c.d. (a, b) = 1, integers x, y, such that ax + by = 1.

 (ax + by) (ax + by) = 1

 a2x2 + 2abxy + by2 = 1

 a2x2 + b(2axy + y2) = 1

 g.c.d.(a2, b) = 1

In this way you will get,

g.c.d.(an, b) = 1 or g.c.d.(b, an) = 1

Proceeding as above, we get

g.c.d.(bn, an) = 1

Number Theory

NOTES

Self-Instructional Material 233

5.3.1 Linear Diophantine Equation

Definition. Linear Diophantine equation is an equation ax + by = c in two
unknowns x and y, where a, b, c are given integers and one of a, b is not zero.
The name is due to the mathematician Diophantus. A natural question arises as to
when such an equation would have a solution? The following theorem is helpful
in finding the answer.

Theorem 5.6: The linear Diophantine equation ax + by = c has a solution
if and only if dc, where d = g.c.d. (a, b). If x0, y0 is a particular solution,
then the other solutions are given by,

0 0,
b a

x x t y y t
d d

 for varying integer t.

Proof: Suppose, ax + by = c has a solution.

Let, x = x0, y = y0 be a solution.

Then, ax0 + by0 = c.

Let, d = g.c.d.(a, b).

 da, db dax0, dby0

 dax0 + by0 = c

Conversely, let dc. Let, c = dk.

Since, d = g.c.d. (a, b), integers x0, y0 such that

ax0 + by0 = d a(x0k) + b(y0k) = dk = c

 ax + by = c has a solution x = x0k, y = y0k

To prove the second assertion, let x0, y0 be a given solution of,

ax + by = c.

Let x, y be any solution of ax + by = c

 ax0 + by0 = ax + by = c

 a(x0 – x) = b(y – y0)

 0() (),o
a b

x x y y
d d

 where d = g.c.d. (a, b)

 0()
b a

x x
d d

Since, g.c.d. , 1.
a b

d d

0 0
b b

x x x x
d d

0

b
x x t

d
, where t is an integer..

234 Self-Instructional Material

Number Theory

NOTES

 0 0()
b a b b

x x t t y y
d d d d

 0 0
a a

t y y y y t
d d

It can be easily seen that for all values of 0 0, ,
b a

t x x t y y t
d d

 is a

solution of ax + by = c as,

0 0
b a

a x t b y t
d d

= 0 0ax by c

Example 5.9: Determine all the solutions in the integers of the Diophantine equation
56x + 72y = 40.

Solution: First find g.c.d.(56, 72).

Now, 72 = 56 1 + 16

56 = 3 16 + 8

16 = 2 8

Hence, g.c.d.(56, 72) = 8

8 = 56 – 3 16

= 56 – 3 (72 – 56)

= 4 56 – 3 72

 40 = 56 20 + 72 (–15)

 x = 20, y = – 15, is a solution of 56x + 72y = 40
By the preceding theorem, any other solution is given by

72 56
20 , 15

8 8
t t

= (20 + 9t, – 15 – 7t) for any integer t.

CHECK YOUR PROGRESS

5. What is the greatest common divisor (GCD)?

6. State the linear Diophantine equation.

5.4 EUCLIDEAN ALGORITHM

In number theory, the Euclidean algorithm also termed as Euclid’s algorithm, is a
very important algorithm that is used to determine the greatest common divisor of
two elements of any Euclidean domain. It does not need factoring the two integers
and is one of the oldest algorithms known, dating back to the ancient Greeks.

Number Theory

NOTES

Self-Instructional Material 235

These algorithms are used when division with remainder is possible. It also includes
rings of polynomials over a field and the ring of Gaussian integers for all Euclidean
domains.

Theorem 5.7: Euclid’s algorithm
Let k > 0 be an integer and j be any integer. Then unique integers

q and r such that j = kq + r, where 0 r < k.

Proof: Let S = {j – kqq is an integer, j – kq 0}.

Then, S , if you take q = – j.

When, j > 0, then j – kq = j + kj > 0 j – kq S

and if j < 0, then j – kq = j – kj

= j (1 – k)0
 j – kq S

If j = 0, then j – kq = j – k.0

= j = 0

 j – kq S
In any case, S .

By well ordering principle, S has least element, say r S.

r S r = j – kq for some integer q.

j = kq + r.
 Also, r 0
Suppose, r k
Then, j – kq k

 j – k (q + 1) 0

 j – k (q + 1) S

But, j – k (q + 1) < j – kq as k > 0, contradicts r = j – kq which is least the
element of S.

 0 r < k.

Uniqueness: Suppose, j = kq + r = kq + r, 0 r, r < k. Then, k(q–
q) = r – r. Suppose, r > r. Then, r– r > 0. But kr– r k r– r.
Since, r, r < k, r– r < k, a contradiction.

 r >/ r. Similarly r >/ r r = r kq = kq q = q.
An important application of this result is the basis representation theorem.

Theorem 5.8: Basis Representation Theorem
Let b > 0 be an integer and let N > 1 be also any integer. Then N can

be expressed as,

N = ambm + am–1b
m–1 + ... + a1b + a0,

Where m and ais are integers such that m > 0 and 0 ai < b. Also then, these
ais are uniquely determined. Here, b is called the base of representation of
N.

236 Self-Instructional Material

Number Theory

NOTES

Proof: If N < b

Then, N = 0bm + 0bm–1 +... + 0b + N is the representation of N as
required.

Let N b > 0.

By Euclid’s algorithm, integers q, r such that,

N = bq + r, 0 r < b N
Since, N – r > 0, bq > 0 q > 0 as b > 0.

If q < b, then N = bq + r is the required representation of n.

If q b > 0, then by Euclid’s algorithm integers q1, r1 such that,

q = bq1 + r1, 0 r1 < b q

Since, q – r1 > 0, bq1 > 0 q1 > 0 as b > 0

Now, N = bq + r = b(bq1 + r1) + r

 N = b2q1 + br1 + r

If q1 < b, then it is the required representation of N. In this way after a finite
number of steps, you get,

N = am b
m +am–1b

m–1 + ... +a1b +a0

Where ais are integers such that,

0 ai < b for all i = 1,..., m

Uniqueness of ai s follows as:

Suppose N = cm b
m + cm–1 b

m–1 + ... + c1 b + c0 where each ci is an integer
such that 0 ci < b. You can select the same m in both the representations of N
because if one representation of N has lesser terms then you can always insert
zero coefficients and make the number of terms to be same.

 0 = (am – cm)bm + ... + (a1 – c1)b +(a0 – c0)

Let, ai – ci = di

Then, dmbm + ... + d1b + d0 = 0

Show that di = 0 for all i.
Suppose for some i, di 0. Let k be the least subscript such that dk 0

Then, dkb
k + dk+1b

k+1 + ... + dmbm = 0

 dkb
k = –(dk+1b

k+1 + ... + dmbm)

 dk = –(dk+1b + dk + 2b
2 + ... + dmbm – k)

 dk = – b(dk+1 + dk+2b ... + dmbm–k–1)

 bdk

 bdk

 b dk

But, ak , ck < b ak – ck< b

 dk < b

Number Theory

NOTES

Self-Instructional Material 237

So, The contradiction is as follows:

 di = 0 for all i = 1,..., m

 ai = ci for all i = 1,..., m

When the integer N is expressed as follows:
N = ambm + ... + a1b + a0, 0 ai < b,

It is represented as, N = (am am–1 ... a1a0)b

And say that N is amam–1 ... a0 to the base b.
For example,

132 = 1.102 +3.10 + 2. Here base is 10.
Then, according the preceding statement

132 = (132)10

So, numbers that you usually write are to the base 10.
Again, if you want to write 132 to the base 2, then first you write,

132 = 27 + 22 = 27 + 0.26 + 0.25 + 0.24 + 0.23 + 1.22 + 0.2 + 0
By basis representation theorem,

132 = (10000100)2

Example 5.10: If a, b are integers with b 0, show that there exist unique integers

q and r satisfying a = bq + r, where – 1

2
b< r 1

2
b.

Solution: By Euclid’s algorithm, there exist unique integers q, rsuch that,

a = qb + r, where 0 r< b

(As b> 0 when b 0).

Case 1. 0 < r 1

2
b

Take, rrqq (if b > 0),
qq (if b < 0)

Since, – 1

2
b< 0r 1

2
b

– 1

2
b< r 1

2
b

Also, a = qbrbecomes,
a = qb + r if b > 0

And, a = (–q) (–b) + r if b < 0
= qb + r

where, 1

2
b< r 1

2
b

238 Self-Instructional Material

Number Theory

NOTES

Case 2. 1

2
b< rb

Take, rr + b

qq – 1 if b > 0

= – q – 1 if b < 0

Now, 1

2
b< rr +b

– 1

2
b< r

 – 1

2
b< r < 1

2
b

Again, a = b q + r becomes,

a = b(q – 1) + r + b, when b > 0

= bq + r

Also, when b > 0, a = b q + r becomes,

a = –b (–q –1) + r – b

= bq + r

Where, – 1

2
b< r 1

2
b

5.5 FIBONACCI NUMBERS

In mathematics, the following number sequence is termed as Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ………………….

The first two Fibonacci numbers are 0 and 1, and all other numbers are the
sum of the previous two numbers.

The Fibonacci number sequence is named after Leonardo of Pisa, who
was famous as Fibonacci.

The Fibonacci sequence has its origin in ancient India and was used in the
metrical sciences (prosody). The inspiration came from Sanskrit prosody in which
the length of long syllables was 2 and the short syllables, 1. Any configuration of
length n was created by simply adding a short syllable to a design of length n –1 or
a long syllable to a design of length n –2. Hence, the number of designs of length
n was the sum of the two previous numbers in the sequence. The first 21 Fibonacci
numbers denoted by F

n
 are represented in Table 5.1, where n = 0, 1, 2,, 20:

Number Theory

NOTES

Self-Instructional Material 239

Table 5.1 First 21 Fibonacci Numbers

F0 0
F1 1
F2 1
F3 2
F4 3
F5 5
F6 8
F7 13
F8 21
F9 34
F10 55
F11 89
F12 144
F13 233
F14 377
F15 610
F16 987
F17 1597
F18 2584
F19 4181
F20 6765

The numbers sequence F
n
 in Fibonacci can also be explained by using the

recurrence relation as, F
n
 = F

n –1
+ F

n –2
 with seed values F

0
 = 0 and F

1
 = 1.

The Fibonacci recursion expressed as F (n + 2) –F (n + 1) –F (n) = 0 is
akin to the significant equation of the golden ratio form x2 –x –1 = 0.

It is also termed as the generating polynomial of the recursion. The Fibonacci
numbers also form a Lucas sequence U

n
 (1, –1) and are termed as Lucas

companions that satisfy the similar recurrence equation.

CHECK YOUR PROGRESS

7. What is Euclid’s algorithm?

8. How are the Fibonacci numbers calculated?

5.6 CONGRUENCES AND EQUIVALENCE
RELATIONS

5.6.1 Congruences Relations

Let a, b, c (c > 0) be integers. It is said that a is congruent to b modulo c if c
divides a – b and is written as a b (mod c).This relation ‘’ on the set of integers
is an equivalence relation.

240 Self-Instructional Material

Number Theory

NOTES

Addition, subtraction and multiplication in congruences behave naturally.

Let, a b (mod c)

a1b1 (mod c) ca – b, ca1 – b1

 c (a + a1) – (b + b1)

 a + a1 b + b1 (mod c)

Similarly, a – a1 b – b1 (mod c)

Also, ca – b, ca1 – b1

 caa1 – ba1, cba1 – bb1

 c(aa1 – ba1) + (ba1 – bb1)

 caa1 – bb1

 aa1 bb1 (mod c)

However, it is not possible to achieve the above result in case of division.

Indeed
1 1

or
a b

a b
 may not even be integers.

Again, cancellation in congruences in general may not hold.

i.e., ad bd (mod c) need not essentially imply.

a b (mod c)

For example, 2.2 2.1 (mod 2)

But, 2 1 (mod 2)

However, cancellation holds if g.c.d.(d, c) = 1.

i.e., if ad bd (mod c)

And, g.c.d.(d, c) = 1

Then, a b (mod c)

Proof: ad bd (mod c)

 cad – bd

 cd (a – b)

 ca – b as g.c.d.(c, d) = 1

 a b (mod c)

Example 5.11: If a b (mod n), prove that g.c.d.(a, n) = (b, n).

Solution: Let, d = g.c.d.(a, n)

Then, da, dn. But, na – b

 da – b, da

 da – (a – b) = b

 db, dn

Number Theory

NOTES

Self-Instructional Material 241

Let, cb, cn cb, ca – b as na – b

 ca – b + b = a

 ca, cn

 cd as d = g.c.d.(a, n)
 g.c.d.(b, n) = d

Example 5.12: Establish that if a is an odd integer, then
2n

a 1 (mod 2n +2) for any n 1.

Solution: The result can be prove by induction on n.

Let, n = 1.

Then, 2n

a = a2

And 2n + 2 = 23 = 8

Let, a = 2k + 1

Then, a2 = 4k2 + 4k + 1

= 4k (k + 1) + 1

 a2 – 1 = 4k (k + 1)

= Multiple of 8, as either k is even or k + 1 is even.
 a2 1 (mod 8)
So, result is true for n = 1.
Assume that the result is true for n = k.

Then, a2k 1 (mod 2k + 2)

Now, a2k + 1 – 1 = (a2k
)2 – 1

= (a2k – 1) (a2k + 1)

= (Multiple of 2k + 2) (a2k + 1) by induction hypothesis.

But, a = Odd a2k = Odd a2k + 1 = Even

 a2k + 1 – 1 = Multiple of 2k + 3

 a2k + 1 1 (mod 2k + 3)
So, result is true for n = k + 1.
By induction, result is true for all n 1.

Example 5.13: Show that for any integer a,

a3 0, 1, or 8 (mod 9)

Solution: Let, a = 3k + r, 0 r < 3

If, r = 0, then a = 3k

 a3 = 27k30 (mod 9)

If , r = 1, then a = 3k + 1

 a3 = 27k3 + 1 + 9k2 + 9k

242 Self-Instructional Material

Number Theory

NOTES

 a3 1 (mod 9)

If , a = 3k + 2, then a3 = 27k3 + 8 + 27k2 + 36k2

 a3 8 (mod 9)

 a30, 1 or 8 (mod 9)

Example 5.14: If ca cb (mod n), then a b mod ,
n

d

 where d = g.c.d.

(c, n).

Solution: Given that, d = g.c.d. (c, n)

 1 = g.c.d. ,
c n

d d

Also, ca cb (mod n)

 ca – cb = nk for some integer k.

 c c
a b

d d
 =

n
k

d

 ()
n c

a b
d d

 as g.c.d. ,
n c n

a b
d d d

 = 1

 a b mod .
n

d

Example 5.15: Find the remainder obtained by dividing 1! + 2! + 3! + 4! + ...
+ 100! by 12.

Solution: Each number 4! onwards is a multiple of 12.

1! + 2! + 3! + 4! + ... + 100! 1! + 2! + 3! + 0 + ... + 0 (mod 12)

 1! + 2! + 3! + 4! + ... + 100! 9 (mod 12)

 9 is the required remainder.

Example 5.16: Find the remainder when 250 is divided by 7.

Solution: Now 23 1 (mod 7)

 (23)16116 1 (mod 7)

 248 1 (mod 7)

 248 22 22 (mod 7)

 20 4 (mod 7)
 4 is the remainder.

Number Theory

NOTES

Self-Instructional Material 243

Example 5.17: What is the remainder when the sum 15 + 25 + 35 + ... + 995

+ 1005 is divided by 4?

Solution: 1 1 (mod 4) 15 1 (mod 4)

22 0 (mod 4) 25 0 (mod 4)

32 1 (mod 4) 35 3 (mod 4)

 35 – 1 (mod 4)

42 0 (mod 4) 45 0 (mod 4)

 15 + 25 + 35 + 45 1 + 0 – 1 + 0 0 (mod 4)
Any number after these will be of the form 2k + 1, 2k + 2, 2k + 3,

2k + 4, k > 1.
Now, (2k + 1)2 1 (mod 4) (2k + 1)5 2k + 1 1 (mod 4)

(2k + 2)2 0 (mod 4) (2k + 2)5 0 (mod 4)

(2k + 3)2 1 (mod 4) (2k + 3)5 2k + 3 – 1 (mod 4)

(2k + 4)2 0 (mod 4) (2k + 4)5 0 (mod 4)

 15 + 25 + 35 + 45 + ... 995 + 1005 0 (mod 4)

So, remainder is 0 when the given number is divided by 4.

5.6.2 Equivalence Relations

A relation R on a set A is called an equivalence relation if R is reflexive, symmetric
and transitive.

For example, let N be set of natural numbers. Define R on N as,

R = {(x,y) : x + y is even, x, yN}

Proof: Let, xN. Now, x + x = 2x.

Clearly 2x is even. Therefore, R is reflexive. Let x, yN and x + y be even.
Clearly y + x is also even and hence, R is symmetric.

Now, if x + y is even and y + z is even then prove that x + z is even.

Since, x + y and y + z are even, both (x + y) and (y + z) are divisible by 2.

 (x + y) + (y + z) is also divisible by 2, i.e., x + (y + y) + z is divisible by 2.

 (x + z) is divisible by 2.

Hence, R is transitive. So, R is an equivalence relation.

Note: From the relation graph or relation matrix the kind of relation can be
identified.

Example 5.18: The relation R on a set is represented by,

110

111

011

RM

Is R reflexive, symmetric or antisymmetric?

244 Self-Instructional Material

Number Theory

NOTES

Solution: In the matrix MR, the diagonal elements are 1. Therefore, R is reflexive.
Since, the matrix MR is symmetric hence, the relation R is also symmetric.

Example 5.19: The relation R and R1 on a set is represented by,

(i) M
R
=

1 0 0

0 1 0

0 0 1
(ii) M

R1
 =

111
101
111

Are the relations R and R1

reflexive, symmetric, antisymmetric and/or

transitive?

Solution:

(i) Matrix MR is symmetric. Its diagonal entries are 1. Hence, relation R is
symmetric and reflexive. Since R is not antisymmetric, R is transitive.

(ii) The relation R1 is not reflexive as all diagonal entries are not 1.

R1 is symmetric [MR1 is symmetric] and R1 is transitive.

Example 5.20: Draw the relation graph for the following relations.

(i) R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}on the set
X = {1, 2, 3, 4}.

(ii) R1 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}on the set Y= {1, 2, 3}.

Solution:

(i) The relation graph GR of R is drawn as follows.

The vertices of GR are 1, 2, 3 and 4.

(ii) The relation graph G
R1

of R1 is drawn as:

Number Theory

NOTES

Self-Instructional Material 245

Example 5.21: Let R be the relation represented by:

101

011

110

RM

Find the relation matrices representing (i) R –1 (ii) Rc (iii) R2.

Solution:

(i) To get the inverse relation matrix 1()
R

M of a relation matrix (MR) just write

the transpose of MR.

 1

0 1 1

1 1 0

1 0 1
R

M

(ii) To find the complement relation matrix, replace 0 by 1 and 1 by 0 in the given
relation matrix.

010

100

001

cR
M

(iii) To find the relation matrix of R2 when R2 = R o R.

If the relation matrix M
R
 is known, then 2 RR

M M × M
R
, i.e., the matrix

multiplication

111

111

111

101

011

110

101

011

110

2R
M

Example 5.22: Find whether the relations for the directed graphs shown in the
following figures are reflexive, symmetric, antisymmetric and/or transitive.

Solution:

(i) In GR, there are loops at every vertex of the relation graph and hence it is
reflexive.

246 Self-Instructional Material

Number Theory

NOTES

It is neither symmetric nor antisymmetric since there is an edge between 1
and 2 but not from 2 to 1. There are edges connecting 2 and 3 in both
directions.

Moreover, the relation is not transitive, since there is an edge from 1 to 2
and 2 to 3, but no edge from 1 to 3.

(ii) Since loops are not present in GS, this relation is not reflexive. Further it is
symmetric and not antisymmetric.

Moreover, the relation is not transitive.

5.7 PUBLIC KEY ENCRYPTION SCHEMES

Public key encryption refers to a sort of cipher architecture recognized as public
key cryptography that uses two keys or a key pair for encrypting and decrypting
data. One of the two keys is a public key, which is used to encrypt a message.
When this encrypted message is sent to the recipient, he or she uses his or her
private key to decrypt it. This is the basic theory of public key encryption.
Cryptography issues are important in many security services, such as peer entity
authentication, data origin authentication, data confidentiality, data integrity, message
and selected fields as sent by genuine person.

SECURE APPLICATIONS

CRYPTO MODULES/ALGORITHMS

SECURITY
MECHANISMS/
PROTOCOLS

SECURITY
SUPPORT
SERVICES

SSAPI SSSAPI

CAPI

Security Service API:

Crypto API

authentication
integrity
confidentiality
Non-repudiation
Access-control

Connection-oriented
Store-and-forward

HW tokens/boxes
SW modules

Security Support
Service API:

Key management
Certificate mgmt.
Authentication
Key recovery
Labelling
Audit

Figure 5.1 Architecture Cryptography Based Security

In Figure 5.1, the cryptography based security provides a layered architecture in
which security service applications program interfaces (APIs), crypto API and
security support service API provide secure applications. These services provide
cryptographic modules and algorithms. The security service API provides
authentication, integrity, confidentiality, non-repudiation, access control, connection-

Number Theory

NOTES

Self-Instructional Material 247

oriented method and ‘store and forward’ method. The crypto API provides HW
tokens and SW modules. HW tokens are hardware cryptographic services, for
example, accelerator boards and SW modules are kernel modules providing
cryptographic services, such as implementation of cryptographic algorithm. The
security support service API provides certificate management authentication, key
recovery, labelling and auditing. The prime aim of this hierarchy level is to provide
the following mechanisms:

 This level promotes the development of security services and cryptographic
API.

 This level also identifies the area of security support service APIs along with
certificate management, key management and authentication APIs.

 This level demonstrates the uses of cryptographic APIs products and
services.

 This level identifies the steps of demonstrations and experiments in the field
of crypto services.

Table 5.2 shows the relationship between security services and security
mechanisms:

Table 5.2 Relationship between Security Mechanism and Security Services

Service Encipherment Digital
Signature

Access
Control

Data
Integrity

Authentication
Exchange

Traffic
Padding

Routing
Control

Notarization

Peer entity

authentication

Data origin

authentication

Access control

Data integrity

Traffic flow

confidentiality

Nonrepudiation

Availability

5.7.1 Message Authentication Code

Message Authentication Code (MAC) follows the algorithm given as follows:
H a s h (M A C _ w r i t e _ s e c r e t | | p a d _ 2 | |
hash(MAC_write_secret||pad_1||seq_num||SSLCompressed.type|
|SSLCompressed.length||SSLCompressed.fragment))

This code is written and computed over compressed data. A shared secret
key is used for this algorithm. Table 5.3 shows the keywords used in this code:

248 Self-Instructional Material

Number Theory

NOTES

Table 5.3 Keywords Used in Crypto Algorithm and Their Functions

Keywords Function
|| Concatenation operator.
MAC_write_secret Shared secret key.
hash Cryptograph hash algorithm.
pad_1 By 036 (binary value: 0011

0110) repeated 48 times (384
bits) for MD5 and 40 times
(320 bits) for SHA-1.

pad_2 The byte 05C (binary value:
0101 1100) repeated 48 times
and for MD5 and 40 times for
SHA-1.

seq_num It is the sequence number that
is used for this message.

SSLCompressed.type It is the higher level protocol
used to process this fragment.

SSLCompressed.length The length of compressed
fragment.

SSLCompressed.fragment The compressed fragment.

Note: The SSLCompressed.fragment is used if the compression message
is not used.

Application Data

Fragment

Compress

Add MAC

Encrypt

Append SSL
record header

Figure 5.2 Add MAC Protocol

Figure 5.2 shows the process of hierarchy in which application data is
fragmented and compressed. The message authentication code is added to encrypt
the SSL record header. The SSLCompressed.type is the higher level
protocol used in the fragment. The role of SSL record header is to compress the
message that is later used to append the encrypted message.

Number Theory

NOTES

Self-Instructional Material 249

Content type Major version Minor version Compressed length

Plaintext
(Optionally compressed)

MAC
(0, 16 or 20 Bytes)

Encrypted

Figure 5.3 Format of Record Header

In Figure 5.3, the record header contains the content type, major and minor versions
of SSL and compressed length. The compressed length is the length (bytes) of the
plain text fragment. In the client and server computing, MAC operation is used.
For this, the client and server share a secret key that is used to perform the functions
of master_secret referring initial random values from both client and server
sides. The algorithm used by client and server computing for message authentication
is as follows:

key_block=MD5(master_secret||SHA1(‘A’||premaster_secret||

Clienthello.random||ServerHello.random))||MD5(master_
secret||

SHA1(‘BB’||premaster_secret||Clienthello.random||

ServerHello.random))||MD5(master_secret||SHA1(‘CCC’||

premaster_secret||Clienthello.random||ServerHello.
random))…

This coding is done if the number of bytes is generated for client_write
MAC, server_write MAC, client_write key and server_write
key. The client sends the premaster key as ‘premaster_secret’ that is
encrypted with server’s public key. The server decrypts the premaster key that is
encrypted with Pseudo Random Function (PRF) value and server’s public key.
The PRF value contains the parameters (Master_key, Input and
Output_Length) in message authentication code. The server decrypts the
message to check the validity of PRF value that is exchanged with the client. If
both the values match, the server uses transition of the state that would be pending
to current derived keys during the authentication of the message.

Server Authentication

Server authentication is a part of client–server computing. SSL/TLS is generally
used for authentication. A web server acquires digital certificate from available
server using Certification Authority (CA). CA is a third party authority that issues
digital certificates for authentication. A Digital Certificate (DC) authenticates the
signature that is in fact digitally signed message. DC uses SSL/TLS (Secured
Socket Layer/ Transport Layer Security) in X.509 public key infrastructure a
defined by International Telecommunication Standardization Sector.

250 Self-Instructional Material

Number Theory

NOTES

Certification Authority

Server
Certificate

Issue
Certificates

Client
Certificates

Client
Private Key

SSL Session

Server
Private Key

Figure 5.4 Authentication in SSL/TLS

In Figure 5.4, if client connects to the server using SSL/TLS then both client and
server follow strong cryptographic algorithm. Then, the server sends X.509
certificate that contains the server’s public key. The client then generates a 48-
byte random number and a premaster secret key after encrypting the number used
by the server’s public key. The encrypted premaster secret key is sent to the
server by the client. After getting premaster secret key, the server decrypts the
message using the private keys. Then, both the client and the server share the
same premaster secret key which is basically symmetric key used to encrypt the
message. Subsequently they start communicating via generated keys. In this
mechanism, only server knows the private key that decrypts the encrypted
premaster secret key. Clients know the message after sending the decrypted
message by server. It proves that the client is talking to the correct server. This
whole mechanism represents the complete scenario of authenticating the server.

Client Authentication

In SSL/TSL, client authentication is not required; instead it is optional. A client
stays anonymous while communicating between a web server and a browser in
B2B business transaction. Therefore, they use HTTP authentication methods.

Number Theory

NOTES

Self-Instructional Material 251

Client Get/myapps/servlet/order Server

401
WWW-Authenticate: Basic realm = “PurchaseOrder”

Get/myapps/servlet/order
Authorization: Basic QWxhZGRpbjpvcGVulHNlc2FtZQ==

Base64-encoded “user id:password”

Figure 5.5 HTTP Authentication

In Figure 5.5, the HTTP authentication known as RFC 2617, represents the HTTP
protocol in which client and server communicate between each other via HTTP
protocol. It basically considers two factors, user-id and password, to authenticate
the users/clients. Sometimes, user-id might be user’s email-id also. Both values
are sent to authenticate without encryption and hence they are not considered as
secure methods of authentication in cryptography. In this mechanism, client sends
Base64-encoded user-id and password in HTTP header. If data is sent through
SSL/TLS connection, it is not altered or stolen during transmission. A malicious
server cannot disguise itself as genuine web server and cannot steal the password
of users. For client authentication, SSL/TLS certificate is used to obtain an
appropriate digital certificate before connecting to the server. A client generates
the private key/public key pair to obtain the client certificate. A private key is kept
as the secret key and is protected by passphrase. A passphrase works as the
password with added security. It is a sequence of words used to control access to
the system. The application does not maintain the database of user-id and password.
It verifies the certificate that is signed by trusted CA.

Application A

Application B

Application C

Certification
Authority

Certificate

Trust

Issue Certificate

Figure 5.6 Uses of Client Certificates

252 Self-Instructional Material

Number Theory

NOTES

Figure 5.6 shows the complete mechanism of using the client certificates. Take an
example of a customer who manages ten passwords in which company ‘XXX’
uses a specific password to access the system and company ‘YYY’ also uses the
service. Once certificate-based authentications are used by applications ‘A’, ‘B’
and ‘C’, the companies issue CA where they trust legitimate users. In this way,
client certificates are used to authenticate the message. Tables 5.4 and 5.5 show a
comparison list of various cryptographic functions and techniques used in a
cryptographic algorithm:

Table 5.4 Comparison List of Encryption Speed of Block Cipher

Algorithm Encryption Speed Key Length
DES 35KB/s 56 bits
3DES 12KB/s 112 bits
IDEA 70KB/s 128 bits

Table 5.5 Comparison List of Hash Function of Block Cipher

Algorithm Encryption Speed Key Length
MD5 174KB/s 128bits
SHA 75KB/s 160bits
 Note: MD5 and SHA are hash algorithms used for authenticating the packet data.

These two mechanisms provide an additional level of hashing.

Cryptographic Protocols

Cryptographic protocols exchange messages over insecure communication medium
ensuring authentication and secrecy of data. Kerberos, IPSec, SET protocol and
Pretty Good Privacy (PGP) are popular examples of cryptographic protocol.
Kerberos is a network authentication system used for insecure networks. PGP
protocol is used for file storage applications and email services that provide
authenticable and confidential services. Encryption encodes file storage locally
and transmits email messages. The email service enables PGP to be used for
private exchange over network. IPSec follows security architecture to the Internet.
This protocol formats IP security protocol to lead the cryptographic algorithm.
This protocol basically provides subnet-to-subnet and host-to-subnet topologies.

CAPSL

GUI

CryPA

PVS
Connector

Attack
Constructor

Figure 5.7 Cryptographic Protocol Analyser (CRYPA) Tool

Number Theory

NOTES

Self-Instructional Material 253

Figure 5.7 shows that CRYptographic Protocol Analyser (CRYPA) is based on
graphics user interface specification of cryptographic protocols using construction
of attack on protocol. PGP supports digital signature and encryption. This tool
provides a virtual distributed environment system that provides a secure chain of
handling and controlling the crypto message.

5.7.2 Digital Signature

Digital Signature (DS) follows authentication mechanism. A code is attached with
messages in DS. Primarily, the signature is generated by hashing the message and
later this message is encrypted with the sender’s private key. DS is based on
public key encryption. A signature confirms that integrity and source of message is
correct. NIST (National Institute of Standards and Technology) recognized the
DS standard that uses the Secure Hash Algorithm (SHA). Message authentication
protects digital signature as this way the messages are exchanged by a third party.
DS is analogous to manual signature. The characteristics of DS are as follows:

 It attaches date and time along with the author of the signature.

 It authenticates the contents while the signature is being completed.

 It solves the disputes using a third party (generally in online payment by
PayPal).

 It ensures that the message is not altered. The message can be in the form of
electronic documents, such as email, text file, spreadsheet, etc.

A person or information is authenticated on the computer by using various
techniques. Brief descriptions of these techniques are as follows:

Password

User name and password provides authentication. When the user logs on the
system unit or application, the system asks for user name and password for
checking authentication. Generally, the following type of password authentication
is provided to users in which two prime fields, namely ‘User Name’ and
‘Password’ are required to access the system.

User Name:

Password:

Click!

254 Self-Instructional Material

Number Theory

NOTES

If two requirements do not match then authentication fails and , users are
not allowed to access the system.

Checksum

The checksum provides a form of authentication where an invalid checksum is not
recognized. If the packet of checksum is one byte long, it will have a maximum
value of 255. If the sum of other bytes of the packet is 255 or less than that, the
checksum contains exact value. However, if the sum of other bytes is more than
255, the checksum gives the remainder of total value.

Table 5.6 Checksum Calculation

Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Total Checksum
212 232 54 135 244 15 179 80 1151 127

For example, in Table 5.6, 1151 is divided by 256 returning a remainder of
4.496 (round value is taken as 4). It is then multiplied with 4× 256 that equals to
1024. The value 1024 is subtracted from 1151 returning 127. In this way, the total
checksum value is calculated.

Cyclic Redundancy Check (CRC)

The process of CRC is same as checksum. In this method, the polynomial division
determines the value of CRC, which can be equal in length of 16 or 32 bits. The
one difference between CRC and checksum is that CRC is more accurate. If a
single bit is taken as incorrect, the CRC value does not match.

Private Key Encryption

A private key encryption contains a secret key that is taken as code. This
mechanism encrypts a packet of information if it passed across network to the
other computers. A private key requires installing the key which is essentially the
same as the secret code. The code provides the key to decoding the message.
For example, a coded message A is substituted by C and B is substituted by D.
Therefore, A becomes C and B becomes D. If a clue is given for the message, that
code is shifted by 2. The message can be decoded by your friend. If any person
wants to see the message, he/she cannot get the message until and unless he/she
knows the secret key. Let us take a good example of how a message is decoded.
A message ‘aectac’ is written as ciphertext. This is a hidden message between
two persons. Person ‘A’ sends the message to person ‘B’ that he is coming to
meet him but the place has not been decided. Person B does not know where
they have to meet. The secret key is decided by A; he decides that ‘n’ for ‘a’ and
‘t’ for ‘c’ will be used while decoding the message. Person ‘B’ decodes the
message. He reaches the sea coast and meets ‘A’ to discuss his housing plan at
sea coast. The deciphered message as understood by person B is ‘natant’. Natant
means ‘floating in water’. It is the name of the ship by which A is coming to meet
B. Therefore, it proves that digital signature issue can be solved by the mediator
theory.

Number Theory

NOTES

Self-Instructional Material 255

Mediator Concept

Mediator concept is associated with digital signature because of the central authority
involved in sending and receiving messages from person A to person B. Person M
scrutinizes the message to find out where and to whom the message is being sent
and received. Figure 5.8 shows how a message is sent and received between two
persons.

A, Key (B,Rm, t, Q)

M

KB (A, Rm, t, Q, KP(A,t,Q))

Pers
on A

Pe
rs
on
B

Figure 5.8 Message Passing Between A and B via M

In the figure, alphabets are used as codes when the message is sent from
one person to another. Person M plays the role of a mediator who is the genuine
message sender and receiver. However, Person M could also be a hacker who
can alter the message or if he/she knows the secret key. Table 5.7 shows the
details of the alphabets used in the message sent from A to B via M:

Table 5.7 Used Alphabets and Their Functions

Alphabets Function
A Person A’s entity.
Key Secret key code.
B Person B’s entity.
Rm

Random number chosen by A.

t Time at which signer signs the message.
Q Attachment shows that the message has not been

altered.
KB Key for person B.
M Mediator who scrutinizes the system (scrutinizer).
 A sends a message to B. P checks the message and decrypts it and sends it

to B. B decodes the message and sends back the message to P as K
P
(A,t,Q).

This illustrates the use of symmetric key signature as B receive the correct message.
Now, the whole concept of sending and receiving message depends on P and
attachment Q. If person B realizes that the Q value is still attached with the message,
it means that the message has not been altered. P is not a hacker. In this way, DS
authenticatation might solve financial legal and commercial transactions in the
presence or absence of an authorized handwritten signature.

256 Self-Instructional Material

Number Theory

NOTES

Public Key Encryption

A public key encryption uses private and public keys. A private key is restricted to
the individual systems, whereas public key can be accessed by any system where
message is to be communicated securely with the individual system. Decoding of
an encrypted message can be done by a public key that is provided by the individual
system as well as its own private key. Basically, the key is based on the hash value.
For example, Table 5.8 shows the hash value of input number:

Table 5.8 Hash Value of Input Number

Input Number Hashing Algorithm Hash Value
12421 Input # × 131 1627151
 In the table, the value 1627151 is the result of multiplication of 131 and

12421. If the multiplier is 131, the value comes as 1627151. The public key can
use large values to encrypt, such as 40bit and 128bit. The value 128bit can have
2128 combinations.

A digital signature follows the following operations:

Key pair generation: In this process, a public and a private key pair is generated.

Generation operation: In this process, a signature is produced for a message
with private key.

Verification operation: In this process, a signature is checked with the public
key.

Digital signature provides data integrity, signer authenticity, authorization,
security, accountability and non-repudiation. These are the mechanisms that are
frequently associated with digital signatures. These mechanisms are inter-related
with each other and hence are popular in transaction of digital cash, e-money
transfer across net, etc.

Non-
repudiation

Accountability Security

Authorization

Signer
Authenticity

Data Integrity

Digital Signatures

Figure 5.9 Mechanisms of Digital Signature

Figure 5.9 shows how various mechanisms are associated with digital
signatures.

Number Theory

NOTES

Self-Instructional Material 257

Properties of Digital Signature

The properties of digital signature are as follows:

 Digital signature cannot be forged by person.

 Once signer signs the document or message, it cannot be forged.

 Signer cannot replace the sign once the message is signed.

The concept of digital signature can be explained with the help of example.
Assuming there are two persons and a message is being sent from person ‘A’ to
person ‘B’. With reference to cryptography, person ‘A’ encrypts the message to
person ‘B’ using public key. The message is signed by person ‘A’ with a secret
key. The secret is the code in which the ciphertext can be decoded. Person ‘B’
decrypts the message with a personal secret key and then verifies it with A’s public
key. If the code is matched, ‘B’ gets the correct message. The hash coding
condenses the message into 100 to 200 bits range. Signing of hash message is
faster than signing the whole message. The one-way hash function ensures that no
two messages will have the same value.

File
(message,
document,
executable, etc.)

Compute
digest (hash)
from contents.

Digest

SIGN THE FILE by
using sender’s private
key to encrypt digest.

Digital
Signature

Figure 5.10 An Encrypted Digest Using Digital Signature

In Figure 5.10, a digital signature is taken as document, message, driver or program
that is being signed. Then the message is encrypted using the public and/or private
key. The document or message is signed by using the sender’s private key that
encrypts the digest. Once the message is encrypted, the file cannot be altered by
an attacker.

Verifying a Digital Signature

Once signer signs, the data is verified. Verifying signature confirms that the signed
data has not been altered. If the digital signature is verified, it can be decrypted by

258 Self-Instructional Material

Number Theory

NOTES

using a public key that produces the original hash value. If the two hash values
match, the signature is exactly same.

Various software, such as Multilevel Digital Signateure System,
MyLiveSignature, Random Signature Changer, SignetSure, SignaturePilot,
SignaturePilotPro, 602XMLFormFilter, AzSDK MD5Sum, Signit, etc., are used
by various commercial transaction hubs for signing and verifying the digital signature.

CHECK YOUR PROGRESS

9. What do you understand by an equivalence relation?

10. What do you understand by public key encryption?

11. What role does the certification authority (CA) play in data authentication?

12. What do cryptographic protocols do?

13. How can the decoding of an encrypted message be done?

5.8 SUMMARY

In this unit, you have learned that:

 There are two types of numbers: prime numbers and composite numbers.

 The division algorithm is a well-defined procedure for achieving a specific
task and can be used to find the greatest common divisor of two integers.

 Numbers can be divided into two based on their divisibility by 2:
(i) Even numbers: They do not leave any remainder.
(ii) Odd numbers: They are not evenly divisible by 2.

 An inequality statement identifies the relative size or order of two objects to
confirm whether they are similar or not.

 Inequalities are influenced by these properties: trichotomy, transitivity,
addition and subtraction and multiplication and division.

 The greatest common divisor (G.C.D) is the largest positive integer that
divides a number entirely, i.e., without leaving any remainder.

 Euclid’s algorithm determines the G.C.D of two elements of any Euclidean
domain.

 The Fibonacci number sequence is named after Leonardo of Pisa, who
was famously known as Fibonacci.

 In the Fibonacci series, 0 and 1 are the first two Fibonacci numbers; all the
other numbers of the series are the sum of the previous two numbers.

 Congruent relation states that if a, b, c (c > 0) are integers, then a is congruent
to b modulo c if c divides a – b.

 Equivalence relation refers to a relation R on a set A which is in equivalence
in case R is reflexive, symmetric and transitive.

Number Theory

NOTES

Self-Instructional Material 259

 Public key encryption refers to a sort of cipher architecture recognized as
public key cryptography that uses two keys, or a key pair for encrypting
and decrypting data.

5.9 KEY TERMS

 Prime number: An integer p > 1 is called a prime number if 1 and p are
the only divisors of p.

 Composite number: A composite number is an integer n > 1 such that n is
not prime.

 Divisor: A divisor, in mathematics, is an integer n, also termed as factor of
n, which evenly divides n without leaving any remainder.

5.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Properties of prime numbers are as follows:
(i) If a prime number p divides ab, then either p | a or p | b.

(ii) If a prime number p does not divide an integer a, then the highest
comman factor (HCF) of p and a is 1 (by convention HCF is taken to
be a + ve integer).

2. In mathematics, the division algorithm is a theorem which expresses the
outcome of the usual process of division of integers.

3. Numbers which are evenly divisible by 2 without leaving any remainder are
called even numbers.

4. In mathematics, an inequality is a statement that defines the relative size or
order of two objects to check whether they are similar or not.

5. The GCD of two or more non-zero integers is the largest positive integer
that divides a number without leaving a remainder.

6. Linear Diophantine equation is an equation ax + by = c in two unknowns, x
and y, where a, b, c are given integers and one of a, b is not zero.

7. In number theory, the Euclidean algorithm also termed as Euclid’s algorithm,
is a very important algorithm that is used to determine the greatest common
divisor of two elements of any Euclidean domain.

8. The first two Fibonacci numbers are 0 and 1, and all other numbers are the
sum of the previous two numbers.

9. A relation R on a set A is called an equivalence relation if R is reflexive,
symmetric and transitive.

10. Public key inscription refers to a sort of cipher architecture recognized as
public key cryptography that uses two keys for encrypting and decrypting
data.

260 Self-Instructional Material

Number Theory

NOTES

11. Certification Authority (CA) serves as a third party that issues digital
certificates for data authentication.

12. Cryptographic protocols exchange messages over insecure communication
medium ensuring authentication and secrecy of data.

13. Decoding of an encrypted message can be done by a public key that is
provided by the individual system as well as its own private key. Basically,
the key is based on the hash value.

5.11 QUESTIONS AND EXERCISES

Short-Answer Questions

1. What does the concept of strict inequality state?

2. Briefly explain the fundamental theorem of arithmetic.

3. What do you understand by prime numbers?

4. Differentiate between trivial and non-trivial divisors.

5. What are the various keywords that are used in crypto algorithm? Also
state their functions.

6. Write a short note on private key encryption.

Long –Answer questions

1. Explain the properties of inequalities.

2. Prove the Euclidean algorithm.

3. Explain the basis representation theorem.

4. Explain how http authentication is done in business-to-business transactions.

5. Describe the various techniques used for the authentication of data on
computer.

5.12 FURTHER READING

Lipschutz, Seymour and Lipson Marc. Schaum’s Outline of Discrete
Mathematics, 3rd edition. New York: McGraw-Hill, 2007.

Horowitz, Ellis, Sartaj Sahni and Sanguthevar Rajasekaran. Fundamentals of
Computer Algorithms. Hyderabad: Orient BlackSwan, 2008.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms. The MIT Press, 1990.

Brassard, Gilles and Paul Bratley. Fundamentals of Algorithms. New Delhi:
Prentice Hall of India, 1995.

Levitin, Anany. Introduction to the Design and Analysis of Algorithms. New
Jersey: Pearson, 2006.

Number Theory

NOTES

Self-Instructional Material 261

Baase, Sara and Allen Van Gelder. Computer Algorithms – Introduction to
Design and Analysis. New Jersey: Pearson, 2003.

Mott, J.L. Discrete Mathematics for Computer Scientists, 2nd edition. New
Delhi: Prentice-Hall of India Pvt. Ltd., 2007.

Liu, C.L. Elements of Discrete Mathematics. New Delhi: Tata McGraw-Hill
Publishing Company, 1977.

Rosen, Kenneth. Discrete Mathematics and Its Applications, 6th edition. New
York: McGraw-Hill Higher Education, 2007.

262 Self-Instructional Material

NOTES

Self-Instructional Material 263

NOTES

264 Self-Instructional Material

NOTES

